top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (1170 p.)
Disciplina 621.38413
Collana Wiley Series in Microwave and Optical Engineering
Soggetto topico Radio lines
Microwave transmission lines
ISBN 1-119-05837-6
1-119-05833-3
1-119-05840-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments 1. Fundamentals of Planar Transmission Lines 1.1 Planar transmission lines, distributed circuits and artificial transmission lines 1.2 Distributed circuit analysis and main transmission line parameters 1.3 Loaded (terminated) transmission lines 1.4 Lossy transmission lines 1.5 Comparative analysis of planar transmission lines 1.6 Some illustrative applications of planar transmission lines References 2. Artificial Transmission Lines based on Periodic Structures 2.1 Introduction and scope 2.2 Floquet analysis of periodic structures 2.3 The transfer matrix method 2.4 Coupled mode theory 2.5 Applications References 3. Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 3.1 Introduction, terminology, and scope 3.2 Effective medium metamaterials 3.3 Electrically small resonators for metamaterials and microwave circuit design 3.4 Canonical models of metamaterial transmission lines 3.5 Implementation of metamaterial transmission lines and lumped element equivalent circuit models References 4. Metamaterial Transmission Lines: RF/Microwave Applications 4.1 Introduction 4.2 Applications of CRLH transmission lines 4.3 Transmission lines with metamaterial loading and applications References 5. Reconfigurable, Tunable and Nonlinear Artificial Transmission Lines 5.1 Introduction 5.2 Materials, components and technologies to implement tunable devices 5.3 Tunable and reconfigurable metamaterial transmission lines and applications 5.4 Nonlinear transmission lines (NLTLs) References 6. Other Advanced Transmission Lines 6.1 Introduction 6.2 Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines 6.3 Balanced transmission lines with common-mode suppression 6.4 Wideband artificial transmission lines 6.5 Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines References Appendixes Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model Appendix B. The Smith Chart Appendix C. The scattering matrix Appendix D. Current density distribution in a conductor Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines Appendix G. Parameter extraction G.1 Parameter extraction in CSRR-loaded lines G.2 Parameter extraction in SRR-loaded lines G.3 Parameter extraction in OSRR-loaded lines G.4 Parameter extraction in OCSRR-loaded lines Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM) H.1 General formulation of ASM H.2 Determination of the convergence region in the coarse model space H.3 Determination of the initial layout H.4 The core ASM algorithm H.5 Illustrative examples and convergence speed Appendix I. Conditions to obtain all-pass X-type and bridged-T networks Index .
Record Nr. UNINA-9910131540603321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Artificial transmission lines for RF and microwave applications / / Ferran Martin
Autore Martín Ferran <1965->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (1170 p.)
Disciplina 621.38413
Collana Wiley Series in Microwave and Optical Engineering
Soggetto topico Radio lines
Microwave transmission lines
ISBN 1-119-05837-6
1-119-05833-3
1-119-05840-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments 1. Fundamentals of Planar Transmission Lines 1.1 Planar transmission lines, distributed circuits and artificial transmission lines 1.2 Distributed circuit analysis and main transmission line parameters 1.3 Loaded (terminated) transmission lines 1.4 Lossy transmission lines 1.5 Comparative analysis of planar transmission lines 1.6 Some illustrative applications of planar transmission lines References 2. Artificial Transmission Lines based on Periodic Structures 2.1 Introduction and scope 2.2 Floquet analysis of periodic structures 2.3 The transfer matrix method 2.4 Coupled mode theory 2.5 Applications References 3. Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 3.1 Introduction, terminology, and scope 3.2 Effective medium metamaterials 3.3 Electrically small resonators for metamaterials and microwave circuit design 3.4 Canonical models of metamaterial transmission lines 3.5 Implementation of metamaterial transmission lines and lumped element equivalent circuit models References 4. Metamaterial Transmission Lines: RF/Microwave Applications 4.1 Introduction 4.2 Applications of CRLH transmission lines 4.3 Transmission lines with metamaterial loading and applications References 5. Reconfigurable, Tunable and Nonlinear Artificial Transmission Lines 5.1 Introduction 5.2 Materials, components and technologies to implement tunable devices 5.3 Tunable and reconfigurable metamaterial transmission lines and applications 5.4 Nonlinear transmission lines (NLTLs) References 6. Other Advanced Transmission Lines 6.1 Introduction 6.2 Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines 6.3 Balanced transmission lines with common-mode suppression 6.4 Wideband artificial transmission lines 6.5 Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines References Appendixes Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model Appendix B. The Smith Chart Appendix C. The scattering matrix Appendix D. Current density distribution in a conductor Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines Appendix G. Parameter extraction G.1 Parameter extraction in CSRR-loaded lines G.2 Parameter extraction in SRR-loaded lines G.3 Parameter extraction in OSRR-loaded lines G.4 Parameter extraction in OCSRR-loaded lines Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM) H.1 General formulation of ASM H.2 Determination of the convergence region in the coarse model space H.3 Determination of the initial layout H.4 The core ASM algorithm H.5 Illustrative examples and convergence speed Appendix I. Conditions to obtain all-pass X-type and bridged-T networks Index .
Record Nr. UNINA-9910812976403321
Martín Ferran <1965->  
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Autore Kizer George M (George Maurice), <1945->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , [2013]
Descrizione fisica 1 online resource (758 p.)
Disciplina 621.382
Soggetto topico Microwave communication systems
Digital communications
ISBN 1-118-63680-5
1-118-63674-0
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- Acknowledgments xvii -- About the Author xix -- 1 A Brief History of Microwave Radio Fixed Point-to-Point (Relay) Communication Systems 1 -- 1.1 In the Beginning, 1 -- 1.2 Microwave Telecommunications Companies, 7 -- 1.3 Practical Applications, 10 -- 1.4 The Beat Goes On, 14 -- References, 16 -- 2 Regulation of Microwave Radio Transmissions 20 -- 2.1 Radio Frequency Management, 21 -- 2.2 Testing for Interference, 28 -- 2.3 Radio Paths by FCC Frequency Band in the United States, 29 -- 2.4 Influences in Frequency Allocation and Utilization Policy within the Western Hemisphere, 30 -- 2.4.1 United States of America (USA), 30 -- 2.4.2 Canada, 36 -- 2.5 FCC Fixed Radio Services, 36 -- 2.6 Site Data Accuracy Requirements, 41 -- 2.7 FCC Antenna Registration System (ASR) Registration Requirements, 42 -- 2.8 Engineering Microwave Paths Near Airports and Heliports, 44 -- 2.8.1 Airport Guidelines, 46 -- References, 47 -- 3 Microwave Radio Overview 48 -- 3.1 Introduction, 48 -- 3.2 Digital Signaling, 50 -- 3.3 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 50 -- 3.4 Digital Pulse Amplitude Modulation (PAM), 53 -- 3.5 Radio Transmitters and Receivers, 58 -- 3.6 Modulation Format, 60 -- 3.7 QAM Digital Radios, 65 -- 3.8 Channel Equalization, 68 -- 3.9 Channel Coding, 70 -- 3.10 Trellis Coded Modulation (TCM), 72 -- 3.11 Orthogonal Frequency Division Multiplexing (OFDM), 75 -- 3.12 Radio Configurations, 76 -- 3.12.1 Cross-Polarization Interference Cancellation (XPIC), 78 -- 3.13 Frequency Diversity and Multiline Considerations, 82 -- 3.14 Transmission Latency, 85 -- 3.15 Automatic Transmitter Power Control (ATPC), 87 -- 3.16 Current Trends, 87 -- 3.16.1 TDM (or ATM) over IP, 87 -- 3.16.2 TDM Synchronization over IP, 88 -- 3.16.3 Adaptive Modulation, 89 -- 3.16.4 Quality of Service (QoS) [Grade of Service (GoS) in Europe], 89 -- References, 90 -- 4 Radio Network Performance Objectives 96 -- 4.1 Customer Service Objectives, 96 -- 4.2 Maintenance Objectives, 96.
4.3 Commissioning Objectives, 98 -- 4.4 Design Objectives, 98 -- 4.4.1 Quality, 98 -- 4.4.2 Availability, 98 -- 4.5 Differences Between North American and European Radio System Objectives, 99 -- 4.5.1 North American Radio Engineering Standards (Historical Bell System Oriented), 99 -- 4.5.2 European Radio Engineering Standards (ITU Oriented), 99 -- 4.6 North American Telecommunications System Design Objectives, 100 -- 4.7 International Telecommunications System Design Objectives, 100 -- 4.7.1 Legacy European Microwave Radio Standards, 102 -- 4.7.2 Modern European Microwave Radio Standards, 102 -- 4.8 Engineering Microwave Paths to Design Objectives, 102 -- 4.9 Accuracy of Path Availability Calculations, 106 -- 4.9.1 Rain Fading, 106 -- 4.9.2 Multipath Fading, 106 -- 4.9.3 Dispersive Fading Outage, 107 -- 4.9.4 Diversity Improvement Factor, 107 -- 4.10 Impact of Flat Multipath Variability, 108 -- 4.11 Impact of Outage Measurement Methodology, 108 -- 4.12 Impact of External Interference, 109 -- 4.13 Conclusion, 109 -- References, 110 -- 5 Radio System Components 114 -- 5.1 Microwave Signal Transmission Lines, 115 -- 5.2 Antenna Support Structures, 121 -- 5.2.1 Lattice Towers, 122 -- 5.2.2 Self-Supporting Towers, 122 -- 5.2.3 Guyed Towers, 122 -- 5.2.4 Monopoles, 124 -- 5.2.5 Architecturally Designed Towers, 125 -- 5.2.6 Building-Mounted Antennas, 126 -- 5.2.7 Camouflaged Structures, 126 -- 5.2.8 Temporary Structures, 126 -- 5.3 Tower Rigidity and Integrity, 127 -- 5.4 Transmission Line Management, 127 -- 5.5 Antennas, 127 -- 5.6 Near Field, 137 -- 5.7 Fundamental Antenna Limitations, 143 -- 5.8 Propagation, 143 -- 5.9 Radio System Performance as a Function of Radio Path Propagation, 145 -- 5.9.1 Flat Fading, 146 -- 5.9.2 Dispersive Fading, 148 -- 5.10 Radio System Performance as a Function of Radio Path Terrain, 149 -- 5.11 Antenna Placement, 153 -- 5.12 Frequency Band Characteristics, 155 -- 5.13 Path Distances, 157 -- 5.A Appendix, 159 -- 5.A.1 Antenna Isotropic Gain and Free Space Loss, 159.
5.A.2 Free Space Loss, 163 -- 5.A.3 Antenna Isotropic Gain, 164 -- 5.A.4 Circular (Parabolic) Antennas, 166 -- 5.A.5 Square (Panel) Antennas, 167 -- 5.A.6 11-GHz Two-foot Antennas, 168 -- 5.A.7 Tower Rigidity Requirements, 169 -- References, 172 -- 6 Designing and Operating Microwave Systems 175 -- 6.1 Why Microwave Radio? 175 -- 6.2 Radio System Design, 175 -- 6.3 Designing Low Frequency Radio Networks, 179 -- 6.4 Designing High Frequency Radio Networks, 182 -- 6.4.1 Hub and Spoke, 183 -- 6.4.2 Nested Rings, 184 -- 6.5 Field Measurements, 185 -- 6.6 User Data Interfaces, 185 -- 6.7 Operations and Maintenance, 202 -- 6.7.1 Fault Management, 203 -- 6.7.2 Alarms and Status, 206 -- 6.7.3 Performance Management, 207 -- 6.8 Maintaining the Network, 210 -- References, 217 -- 7 Hypothetical Reference Circuits 220 -- 7.1 North American (NA) Availability Objectives, 220 -- 7.1.1 NA Bell System Hypothetical Reference Circuit-Availability Objectives, 220 -- 7.1.2 NA Telcordia Hypothetical Reference Circuit-Availability Objectives, 222 -- 7.2 North American Quality Objectives, 225 -- 7.2.1 Residual BER, 225 -- 7.2.2 Burst Errored Seconds, 225 -- 7.2.3 DS1 Errored Seconds, 225 -- 7.2.4 DS3 Errored Seconds, 225 -- 7.3 International Objectives, 225 -- 7.3.1 International Telecommunication Union Availability Objectives, 228 -- 7.4 International Telecommunication Union Quality Objectives, 236 -- 7.4.1 Legacy Quality Objectives, 236 -- 7.4.2 Current Quality Objectives, 240 -- 7.5 Error-Performance Relationship Among BER, BBER, and SESs, 245 -- References, 247 -- 8 Microwave Antenna Theory 249 -- 8.1 Common Parameters, 251 -- 8.2 Passive Reflectors, 252 -- 8.2.1 Passive Reflector Far Field Radiation Pattern, 253 -- 8.2.2 Passive Reflector Near Field Power Density, 255 -- 8.3 Circular (Parabolic) Antennas, 256 -- 8.3.1 Circular (Parabolic) Antenna Far Field Radiation Pattern, 256 -- 8.3.2 Circular (Parabolic) Antenna Efficiency, 260 -- 8.3.3 Circular (Parabolic) Antenna Beamwidth, 261.
8.3.4 Circular (Parabolic) Antenna Near Field Power Density, 264 -- 8.3.5 General Near Field Power Density Calculations, 265 -- 8.3.6 Circular Antenna Near Field Power Density Transitions, 272 -- 8.3.7 Circular Antenna Far Field Reference Power, 273 -- 8.4 Square Flat Panel Antennas, 274 -- 8.4.1 Square Antenna Beamwidth, 276 -- 8.4.2 Square Near Field Power Density, 279 -- 8.4.3 Square Antenna Far Field Reference Power, 288 -- 8.4.4 Square Near Field Power Density Transitions, 289 -- 8.5 Regulatory Near Field Power Density Limits, 290 -- 8.6 Practical Near Field Power Calculations, 290 -- 8.6.1 A Parabolic Antenna Near Field Power Example Calculation, 293 -- 8.6.2 Safety Limits, 294 -- 8.7 Near Field Antenna Coupling Loss, 296 -- 8.7.1 Antenna to Antenna Near Field Coupling Loss, 296 -- 8.7.2 Coupling Loss between Identical Antennas, 300 -- 8.7.3 Coupling Loss between Different-Sized Circular Antennas, 300 -- 8.7.4 Coupling Loss between Different-Sized Square Antennas, 301 -- 8.7.5 Parabolic Antenna to Passive Reflector Near Field Coupling Loss, 302 -- 8.7.6 Coupling Loss for Circular Antenna and Square Reflector, 303 -- 8.7.7 Coupling Loss for Square Antenna and Square Reflector (Both Aligned), 305 -- 8.7.8 Back-to-Back Square Passive Reflector Near Field Coupling Loss, 306 -- 8.A Appendix, 307 -- 8.A.1 Circular Antenna Numerical Power Calculations, 307 -- 8.A.2 Square Antenna Numerical Power Calculations, 311 -- 8.A.3 Bessel Functions, 315 -- References, 318 -- 9 Multipath Fading 320 -- 9.1 Flat and Dispersive Fading, 329 -- 9.A Appendix, 338 -- 9.A.1 Fading Statistics, 338 -- 9.A.2 DFM Equation Derivation, 339 -- 9.A.3 Characteristics of Receiver Signature Curves and DFM, 342 -- References, 344 -- 10 Microwave Radio Diversity 348 -- 10.1 Space Diversity, 350 -- 10.2 Dual-Frequency Diversity, 354 -- 10.3 Quad (Space and Frequency) Diversity, 357 -- 10.4 Hybrid Diversity, 358 -- 10.5 Multiline Frequency Diversity, 358 -- 10.6 Crossband Multiline, 365 -- 10.7 Angle Diversity, 366.
10.7.1 Angle Diversity Configurations, 368 -- 10.7.2 Angle Diversity Performance, 371 -- 10.A Appendix, 372 -- 10.A.1 Optimizing Space Diversity Vertical Spacing, 372 -- 10.A.2 Additional Optimization, 377 -- References, 380 -- 11 Rain Fading 384 -- 11.1 Point (Single-Location) Rain Loss (Fade) Estimation, 386 -- 11.2 Path Rain-Fade Estimation, 390 -- 11.3 Point-to-Path Length Conversion Factor, 398 -- 11.4 Single-Location Rain Rate R, 398 -- 11.5 City Rain Rate Data for North America, 407 -- 11.6 New Rain Zones, 430 -- 11.7 Worst-Month Rain Rates, 430 -- 11.8 Point Rain Rate Variability, 439 -- 11.9 Examples of Rain-Loss-Dominated Path Designs, 441 -- 11.10 Conclusions, 444 -- 11.A Appendix, 446 -- 11.A.1 North American City Rain Data Index, 446 -- References, 458 -- 12 Ducting and Obstruction Fading 461 -- 12.1 Introduction, 461 -- 12.1.1 Power Fading, 463 -- 12.2 Superrefraction (Ducting), 465 -- 12.3 Subrefraction (Earth Bulge or Obstruction), 469 -- 12.4 Minimizing Obstruction Fading, 471 -- 12.4.1 Path Clearance (Antenna Vertical Placement) Criteria, 471 -- 12.5 Obstruction Fading Model, 477 -- 12.6 Obstruction Fading Estimation, 479 -- 12.7 Bell Labs Seasonal Parameter Charts, 483 -- 12.8 Refractivity Data Limitations, 484 -- 12.9 Reviewing the Bell Labs Seasonal Parameter Charts, 485 -- 12.10 Obstruction Fading Parameter Estimation, 486 -- 12.11 Evaluating Path Clearance Criteria, 487 -- 12.A Appendix: North American Refractivity Index Charts, 490 -- 12.B Appendix: Worldwide Obstruction Fading Data, 491 -- References, 511 -- 13 Reflections and Obstructions 514 -- 13.1 Theoretical Rough Earth Reflection Coefficient, 514 -- 13.1.1 Gaussian Model, 516 -- 13.1.2 Uniform Model, 517 -- 13.2 Scattering from Earth Terrain, 517 -- 13.3 Practical Earth Reflection Coefficient, 519 -- 13.4 Reflection Location, 519 -- 13.5 Smooth Earth Divergence Factor, 522 -- 13.6 Reflections from Objects Near a Path, 523 -- 13.7 Fresnel Zones, 525 -- 13.8 Antenna Launch Angle (Transmit or Receive Antenna Takeoff Angle), 527.
13.9 Grazing Angle, 527 -- 13.10 Additional Path Distance, 528 -- 13.11 Estimating the Effect of a Signal Reflected from the Earth, 528 -- 13.12 Flat Earth Obstruction Path Loss, 529 -- 13.13 Smooth Earth Obstruction Loss, 529 -- 13.14 Knife-Edge Obstruction Path Gain, 530 -- 13.15 Rounded-Edge Obstruction Path Gain, 531 -- 13.16 Complex Terrain Obstruction Losses, 532 -- 13.A Appendix, 536 -- 13.A.1 Smooth Earth Reflection Coefficient, 536 -- 13.A.2 Procedure for Calculating RH AND RV, 536 -- 13.A.3 Earth Parameters for Frequencies Between 100 kHz and 1 GHz, 538 -- 13.A.4 Earth Parameters for Frequencies Between 1 GHz and 100 GHz, 540 -- 13.A.5 Comments on Conductivity and Permittivity, 541 -- 13.A.6 Reflection Coefficients, 541 -- References, 555 -- 14 Digital Receiver Interference 559 -- 14.1 Composite Interference (T/T) Criterion, 559 -- 14.2 Carrier-to-Interference Ratio (C/I) Criterion, 560 -- 14.3 Measuring C/I, 560 -- 14.4 Estimating C/I, 561 -- 14.5 Threshold to Interference (T/I) Criterion, 562 -- 14.6 Why Estimate T/I, 563 -- 14.7 T/I Estimation-Method One, 564 -- 14.8 T/I Estimation-Method Two, 565 -- 14.9 Conclusion, 569 -- 14.A Appendix, 569 -- 14.A.1 Basic 10-6 Threshold for Gaussian (Radio Front End) Noise Only, 569 -- 14.A.2 Using a Spectrum Mask as a Default Spectrum Curve, 570 -- 14.B Appendix: Receiver Parameters, 571 -- References, 572 -- 15 Network Reliability Calculations 573 -- 15.1 Hardware Reliability, 574 -- 15.2 System Reliability, 577 -- 15.2.1 Equipment in Series, 577 -- 15.2.2 Multiple Equipment in Parallel, 578 -- 15.2.3 Nested Equipment, 579 -- 15.2.4 Meshed Duplex Configuration, 579 -- 15.3 Communication Systems, 579 -- 15.4 Application to Radio Configurations, 580 -- 15.5 Spare Unit Requirements, 580 -- 15.6 BER Estimation, 583 -- 15.6.1 Time to Transmit N Digits, 585 -- References, 585 -- 16 Path Performance Calculations 587 -- 16.1 Path Loss, 588 -- 16.2 Fade Margin, 589 -- 16.3 Path Performance, 589 -- 16.4 Allowance for Interference, 590.
16.5 North American (NA) Path Performance Calculations, 590 -- 16.5.1 Vigants-Barnett Multipath Fading (Barnett, 1972; Vigants, 1975)-NA, 591 -- 16.5.2 Cross-Polarization Discrimination Degradation Outages-NA, 596 -- 16.5.3 Space Diversity: Flat-Fading Improvement-NA, 596 -- 16.5.4 Space Diversity: Dispersive-Fading Improvement-NA, 599 -- 16.5.5 Dual Frequency Diversity: Flat-Fading Improvement-NA, 599 -- 16.5.6 Dual Frequency Diversity: Dispersive-Fading Improvement-NA, 600 -- 16.5.7 Quad (Space and Frequency) Diversity-NA, 601 -- 16.5.8 Hybrid Diversity-NA, 601 -- 16.5.9 Multiline Frequency Diversity-NA, 601 -- 16.5.10 Angle Diversity-NA, 602 -- 16.5.11 Upfading-NA, 603 -- 16.5.12 Shallow Flat Fading-NA, 603 -- 16.6 International Telecommunication Union-Radiocommunication Sector (ITU-R) Path Performance Calculations, 604 -- 16.6.1 Flat Fading-ITU-R, 605 -- 16.6.2 Dispersive Fading-ITU-R, 606 -- 16.6.3 Cross-Polarization Discrimination Degradation Outages-ITU-R, 608 -- 16.6.4 Upfading-ITU-R, 609 -- 16.6.5 Shallow Flat Fading-ITU-R, 609 -- 16.6.6 Space Diversity Improvement-ITU-R, 610 -- 16.6.7 Dual-Frequency Diversity Improvement-ITU-R, 611 -- 16.6.8 Quad (Space and Frequency) Diversity-ITU-R, 611 -- 16.6.9 Angle Diversity Improvement-ITU-R, 613 -- 16.6.10 Other Diversity Improvements-ITU-R, 614 -- 16.7 Rain Fading and Obstruction Fading (NA and ITU-R), 614 -- 16.8 Comparing the North American and the ITU-R Flat-Fading Estimates, 614 -- 16.8.1 Vigants-Barnett Flat-Fading Estimation for Bell Labs Path, 614 -- 16.8.2 ITU-R Flat-Fading Estimation for Bell Labs Path, 615 -- 16.9 Diffraction and Vegetation Attenuation, 621 -- 16.10 Fog Attenuation, 622 -- 16.11 Air Attenuation, 624 -- 16.A Appendix, 631 -- References, 649 -- A Microwave Formulas and Tables 653 -- A.1 General, 653 -- Table A.1 General, 653 -- Table A.2 Scientific and Engineering Notation, 654 -- Table A.3 Emission Designator, 655 -- Table A.4 Typical Commercial Parabolic Antenna Gain (dBi), 656 -- Table A.5 Typical Rectangular Waveguide, 656.
Table A.6 Typical Rectangular Waveguide Data, 657 -- Table A.7 Typical Copper Corrugated Elliptical Waveguide Loss, 657 -- Table A.8 Typical Copper Circular Waveguide Loss, 658 -- Table A.9 Rectangular Waveguide Attenuation Factors, 659 -- Table A.10 CommScope Elliptical Waveguide Attenuation Factors, 659 -- Table A.11 RFS Elliptical Waveguide Attenuation Factors, 660 -- Table A.12 Elliptical Waveguide Cutoff Frequencies, 660 -- Table A.13 Circular Waveguide Cutoff Frequencies, 661 -- Table A.14 Typical Coaxial Microwave Connectors, 663 -- Table A.15 Coaxial Cable Velocity Factors, 664 -- Table A.16 50 Ohm Coaxial Cable Attenuation Factors, 664 -- Table A.17 Frequency Bands, General Users, 665 -- Table A.18 Frequency Bands, Fixed Point to Point Operators, 665 -- Table A.19 Frequency Bands, Radar, Space and Satellite Operators, 666 -- Table A.20 Frequency Bands, Electronic Warfare Operators, 666 -- Table A.21 Frequency Bands, Great Britain Operators, 666 -- Table A.22 Signal-to-Noise Ratio for Demodulator 10-6 BER, 667 -- A.2 Radio Transmission, 668 -- A.2.1 Unit Conversions, 668 -- A.2.2 Free Space Propagation Absolute Delay, 669 -- A.2.3 Waveguide Propagation Absolute Delay, 669 -- A.2.4 Coaxial Cable Propagation Absolute Delay, 669 -- A.2.5 Free Space Propagation Wavelength, 669 -- A.2.6 Dielectric Medium Propagation Wavelength, 669 -- A.2.7 Free Space Loss (dB), 670 -- A.2.8 Effective Radiated Power (ERP) and Effective Isotropic Radiated Power (EIRP), 670 -- A.2.9 Voltage Reflection Coefficient, 670 -- A.2.10 Voltage Standing Wave Ratio Maximum, 670 -- A.2.11 Voltage Standing Wave Ratio Minimum, 670 -- A.2.12 Voltage Standing Wave Ratio, 670 -- A.2.13 Power Reflection Coefficient, 671 -- A.2.14 Reflection Loss, 671 -- A.2.15 Return Loss, 671 -- A.2.16 Q (Quality) Factor (Figure of Merit for Resonant Circuits or Cavities), 671 -- A.2.17 Q (Quality) Factor (Figure of Merit for Optical Receivers), 672 -- A.2.18 Typical Long-Term Interference Objectives, 672 -- A.2.19 Frequency Planning Carrier-to-Interference Ratio (C/I), 672.
A.2.20 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 672 -- A.2.21 Shannon's Formula for Theoretical Limit to Transmission Channel Capacity, 674 -- A.3 Antennas (Far Field), 675 -- A.3.1 General Microwave Aperture Antenna (Far Field) Gain (dBi), 675 -- A.3.2 General Microwave Antenna (Far Field) Relative Gain (dBi), 675 -- A.3.3 Parabolic (Circular) Microwave Antenna (Far Field) Gain (dBi), 675 -- A.3.4 Parabolic (Circular) Microwave Antenna Illumination Efficiency, 676 -- A.3.5 Panel (Square) Microwave Antenna (Far Field) Gain (dBi), 676 -- A.3.6 Panel (Square) Microwave Antenna Illumination Efficiency, 676 -- A.3.7 Angle Between Incoming and Outgoing Radio Signal Paths, C, for a Passive Reflector, 677 -- A.3.8 Signal Polarization Rotation Through a Passive Reflector, 678 -- A.3.9 Signal Effects of Polarization Rotation, 678 -- A.3.10 Passive Reflector (Far Field) Two-Way (Reception and Retransmission) Gain (dBi), 678 -- A.3.11 Rectangular Passive Reflector 3-dB Beamwidth (Degrees, in Horizontal Plane), 678 -- A.3.12 Elliptical Passive Reflector 3-dB Beamwidth (Degrees), 679 -- A.3.13 Circular Parabolic Antenna 3-dB Beamwidth (Degrees), 679 -- A.3.14 Passive Reflector Far Field Radiation Pattern Envelopes, 680 -- A.3.15 Inner Radius for the Antenna Far-Field Region, 681 -- A.4 Near-Field Power Density, 682 -- A.4.1 Circular Antennas, 682 -- A.4.2 Square Antennas, 682 -- A.5 Antennas (Close Coupled), 683 -- A.5.1 Coupling Loss LNF (dB) Between Two Antennas in the Near Field, 683 -- A.5.2 Coupling Loss LNF (dB) Between Identical Antennas, 683 -- A.5.3 Coupling Loss LNF (dB) Between Different-Sized Circular Antennas, 684 -- A.5.4 Coupling Loss LNF (dB) Between Different-Sized Square Antennas (Both Antennas Aligned), 684 -- A.5.5 Coupling Loss LNF (dB) for Antenna and Square Reflector in the Near Field, 685 -- A.5.6 Coupling Loss LNF (dB) for Circular Antenna and Square Reflector, 685 -- A.5.7 Coupling Loss LNF (dB) for Square Antenna and Square Reflector (Both Aligned), 686.
A.5.8 Two Back-to-Back Square Reflectors Combined Gain, 687 -- A.6 Path Geometry, 687 -- A.6.1 Horizons (Normal Refractivity over Spherical Earth), 687 -- A.6.2 Earth Curvature (Height Adjustment Used on Path Profiles), 688 -- A.6.3 Reflection Point, 688 -- A.6.4 Fresnel Zone Radius (Perpendicular to the Radio Path), 690 -- A.6.5 Fresnel Zone Projected onto the Earth's Surface, 690 -- A.6.6 Reflection Path Additional Distance, 691 -- A.6.7 Reflection Path Additional Delay, 691 -- A.6.8 Reflection Path Relative Amplitude, 691 -- A.6.9 Antenna Launch Angle, 691 -- A.6.10 Antenna Height Difference, 692 -- A.6.11 K Factor (From Launch Angles), 692 -- A.6.12 Refractive Index and K Factor (From Atmospheric Values), 693 -- A.7 Obstruction Loss, 693 -- A.7.1 Knife-Edge Obstruction Loss, 693 -- A.7.2 Rounded-Edge Obstruction Path Loss, 694 -- A.7.3 Smooth-Earth Obstruction Loss, 695 -- A.7.4 Infinite Flat Reflective Plane Obstruction Loss, 695 -- A.7.5 Reflection (Earth Roughness Scattering) Coefficient, 695 -- A.7.6 Divergence Coefficient from Earth, 696 -- A.7.7 Divergence Factor for a Cylinder, 697 -- A.7.8 Divergence Factor for a Sphere, 697 -- A.7.9 Signal Reflected from Flat Earth, 697 -- A.7.10 Ducting, 697 -- A.8 Mapping, 698 -- A.8.1 Path Length and Bearing, 698 -- A.9 Towers, 700 -- A.9.1 Three-Point Guyed Towers, 700 -- A.9.2 Three-Leg Self-Supporting Tower, 701 -- A.9.3 Four-Leg Self-Supporting Tower, 701 -- A.10 Interpolation, 702 -- A.10.1 Two-Dimensional Interpolation, 702 -- A.10.2 Three-Dimensional Interpolation, 705 -- B Personnel and Equipment Safety Considerations 709 -- B.1 General Safety Guidelines, 709 -- B.2 Equipment Protection, 711 -- B.3 Equipment Considerations, 712 -- B.4 Personnel Protective Equipment, 713 -- B.5 Accident Prevention Signs, 713 -- B.6 Tower Climbing, 713 -- B.7 Hand Tools, 715 -- B.8 Electrical Powered Tools, 715 -- B.9 Soldering Irons, 715 -- B.10 Ladders, 716 -- B.11 Hoisting or Moving Equipment, 716 -- B.12 Batteries, 717 -- B.13 Laser Safety Guidelines, 717.
B.14 Safe Use of Lasers and LED in Optical Fiber Communication Systems, 718 -- B.15 Optical Fiber Communication System (OFCS) Service Groups (SGs), 718 -- B.16 Electrostatic Discharge (ESD), 719 -- B.17 Maximum Permissible Microwave Radio RF Exposure, 720 -- B.18 Protect Other Radio Users [FCC], 720 -- B.19 PAUSE (Prevent all Unplanned Service Events) and Ask Yourself (Verizon and AT&T Operations), 721 -- B.20 Protect Yourself (Bell System Operations), 721 -- B.21 Parting Comment, 721 -- Index 723.
Record Nr. UNINA-9910141726403321
Kizer George M (George Maurice), <1945->  
Hoboken, New Jersey : , : IEEE Press, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Autore Kizer George M (George Maurice), <1945->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , [2013]
Descrizione fisica 1 online resource (758 p.)
Disciplina 621.382
Soggetto topico Microwave communication systems
Digital communications
ISBN 1-118-63680-5
1-118-63674-0
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- Acknowledgments xvii -- About the Author xix -- 1 A Brief History of Microwave Radio Fixed Point-to-Point (Relay) Communication Systems 1 -- 1.1 In the Beginning, 1 -- 1.2 Microwave Telecommunications Companies, 7 -- 1.3 Practical Applications, 10 -- 1.4 The Beat Goes On, 14 -- References, 16 -- 2 Regulation of Microwave Radio Transmissions 20 -- 2.1 Radio Frequency Management, 21 -- 2.2 Testing for Interference, 28 -- 2.3 Radio Paths by FCC Frequency Band in the United States, 29 -- 2.4 Influences in Frequency Allocation and Utilization Policy within the Western Hemisphere, 30 -- 2.4.1 United States of America (USA), 30 -- 2.4.2 Canada, 36 -- 2.5 FCC Fixed Radio Services, 36 -- 2.6 Site Data Accuracy Requirements, 41 -- 2.7 FCC Antenna Registration System (ASR) Registration Requirements, 42 -- 2.8 Engineering Microwave Paths Near Airports and Heliports, 44 -- 2.8.1 Airport Guidelines, 46 -- References, 47 -- 3 Microwave Radio Overview 48 -- 3.1 Introduction, 48 -- 3.2 Digital Signaling, 50 -- 3.3 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 50 -- 3.4 Digital Pulse Amplitude Modulation (PAM), 53 -- 3.5 Radio Transmitters and Receivers, 58 -- 3.6 Modulation Format, 60 -- 3.7 QAM Digital Radios, 65 -- 3.8 Channel Equalization, 68 -- 3.9 Channel Coding, 70 -- 3.10 Trellis Coded Modulation (TCM), 72 -- 3.11 Orthogonal Frequency Division Multiplexing (OFDM), 75 -- 3.12 Radio Configurations, 76 -- 3.12.1 Cross-Polarization Interference Cancellation (XPIC), 78 -- 3.13 Frequency Diversity and Multiline Considerations, 82 -- 3.14 Transmission Latency, 85 -- 3.15 Automatic Transmitter Power Control (ATPC), 87 -- 3.16 Current Trends, 87 -- 3.16.1 TDM (or ATM) over IP, 87 -- 3.16.2 TDM Synchronization over IP, 88 -- 3.16.3 Adaptive Modulation, 89 -- 3.16.4 Quality of Service (QoS) [Grade of Service (GoS) in Europe], 89 -- References, 90 -- 4 Radio Network Performance Objectives 96 -- 4.1 Customer Service Objectives, 96 -- 4.2 Maintenance Objectives, 96.
4.3 Commissioning Objectives, 98 -- 4.4 Design Objectives, 98 -- 4.4.1 Quality, 98 -- 4.4.2 Availability, 98 -- 4.5 Differences Between North American and European Radio System Objectives, 99 -- 4.5.1 North American Radio Engineering Standards (Historical Bell System Oriented), 99 -- 4.5.2 European Radio Engineering Standards (ITU Oriented), 99 -- 4.6 North American Telecommunications System Design Objectives, 100 -- 4.7 International Telecommunications System Design Objectives, 100 -- 4.7.1 Legacy European Microwave Radio Standards, 102 -- 4.7.2 Modern European Microwave Radio Standards, 102 -- 4.8 Engineering Microwave Paths to Design Objectives, 102 -- 4.9 Accuracy of Path Availability Calculations, 106 -- 4.9.1 Rain Fading, 106 -- 4.9.2 Multipath Fading, 106 -- 4.9.3 Dispersive Fading Outage, 107 -- 4.9.4 Diversity Improvement Factor, 107 -- 4.10 Impact of Flat Multipath Variability, 108 -- 4.11 Impact of Outage Measurement Methodology, 108 -- 4.12 Impact of External Interference, 109 -- 4.13 Conclusion, 109 -- References, 110 -- 5 Radio System Components 114 -- 5.1 Microwave Signal Transmission Lines, 115 -- 5.2 Antenna Support Structures, 121 -- 5.2.1 Lattice Towers, 122 -- 5.2.2 Self-Supporting Towers, 122 -- 5.2.3 Guyed Towers, 122 -- 5.2.4 Monopoles, 124 -- 5.2.5 Architecturally Designed Towers, 125 -- 5.2.6 Building-Mounted Antennas, 126 -- 5.2.7 Camouflaged Structures, 126 -- 5.2.8 Temporary Structures, 126 -- 5.3 Tower Rigidity and Integrity, 127 -- 5.4 Transmission Line Management, 127 -- 5.5 Antennas, 127 -- 5.6 Near Field, 137 -- 5.7 Fundamental Antenna Limitations, 143 -- 5.8 Propagation, 143 -- 5.9 Radio System Performance as a Function of Radio Path Propagation, 145 -- 5.9.1 Flat Fading, 146 -- 5.9.2 Dispersive Fading, 148 -- 5.10 Radio System Performance as a Function of Radio Path Terrain, 149 -- 5.11 Antenna Placement, 153 -- 5.12 Frequency Band Characteristics, 155 -- 5.13 Path Distances, 157 -- 5.A Appendix, 159 -- 5.A.1 Antenna Isotropic Gain and Free Space Loss, 159.
5.A.2 Free Space Loss, 163 -- 5.A.3 Antenna Isotropic Gain, 164 -- 5.A.4 Circular (Parabolic) Antennas, 166 -- 5.A.5 Square (Panel) Antennas, 167 -- 5.A.6 11-GHz Two-foot Antennas, 168 -- 5.A.7 Tower Rigidity Requirements, 169 -- References, 172 -- 6 Designing and Operating Microwave Systems 175 -- 6.1 Why Microwave Radio? 175 -- 6.2 Radio System Design, 175 -- 6.3 Designing Low Frequency Radio Networks, 179 -- 6.4 Designing High Frequency Radio Networks, 182 -- 6.4.1 Hub and Spoke, 183 -- 6.4.2 Nested Rings, 184 -- 6.5 Field Measurements, 185 -- 6.6 User Data Interfaces, 185 -- 6.7 Operations and Maintenance, 202 -- 6.7.1 Fault Management, 203 -- 6.7.2 Alarms and Status, 206 -- 6.7.3 Performance Management, 207 -- 6.8 Maintaining the Network, 210 -- References, 217 -- 7 Hypothetical Reference Circuits 220 -- 7.1 North American (NA) Availability Objectives, 220 -- 7.1.1 NA Bell System Hypothetical Reference Circuit-Availability Objectives, 220 -- 7.1.2 NA Telcordia Hypothetical Reference Circuit-Availability Objectives, 222 -- 7.2 North American Quality Objectives, 225 -- 7.2.1 Residual BER, 225 -- 7.2.2 Burst Errored Seconds, 225 -- 7.2.3 DS1 Errored Seconds, 225 -- 7.2.4 DS3 Errored Seconds, 225 -- 7.3 International Objectives, 225 -- 7.3.1 International Telecommunication Union Availability Objectives, 228 -- 7.4 International Telecommunication Union Quality Objectives, 236 -- 7.4.1 Legacy Quality Objectives, 236 -- 7.4.2 Current Quality Objectives, 240 -- 7.5 Error-Performance Relationship Among BER, BBER, and SESs, 245 -- References, 247 -- 8 Microwave Antenna Theory 249 -- 8.1 Common Parameters, 251 -- 8.2 Passive Reflectors, 252 -- 8.2.1 Passive Reflector Far Field Radiation Pattern, 253 -- 8.2.2 Passive Reflector Near Field Power Density, 255 -- 8.3 Circular (Parabolic) Antennas, 256 -- 8.3.1 Circular (Parabolic) Antenna Far Field Radiation Pattern, 256 -- 8.3.2 Circular (Parabolic) Antenna Efficiency, 260 -- 8.3.3 Circular (Parabolic) Antenna Beamwidth, 261.
8.3.4 Circular (Parabolic) Antenna Near Field Power Density, 264 -- 8.3.5 General Near Field Power Density Calculations, 265 -- 8.3.6 Circular Antenna Near Field Power Density Transitions, 272 -- 8.3.7 Circular Antenna Far Field Reference Power, 273 -- 8.4 Square Flat Panel Antennas, 274 -- 8.4.1 Square Antenna Beamwidth, 276 -- 8.4.2 Square Near Field Power Density, 279 -- 8.4.3 Square Antenna Far Field Reference Power, 288 -- 8.4.4 Square Near Field Power Density Transitions, 289 -- 8.5 Regulatory Near Field Power Density Limits, 290 -- 8.6 Practical Near Field Power Calculations, 290 -- 8.6.1 A Parabolic Antenna Near Field Power Example Calculation, 293 -- 8.6.2 Safety Limits, 294 -- 8.7 Near Field Antenna Coupling Loss, 296 -- 8.7.1 Antenna to Antenna Near Field Coupling Loss, 296 -- 8.7.2 Coupling Loss between Identical Antennas, 300 -- 8.7.3 Coupling Loss between Different-Sized Circular Antennas, 300 -- 8.7.4 Coupling Loss between Different-Sized Square Antennas, 301 -- 8.7.5 Parabolic Antenna to Passive Reflector Near Field Coupling Loss, 302 -- 8.7.6 Coupling Loss for Circular Antenna and Square Reflector, 303 -- 8.7.7 Coupling Loss for Square Antenna and Square Reflector (Both Aligned), 305 -- 8.7.8 Back-to-Back Square Passive Reflector Near Field Coupling Loss, 306 -- 8.A Appendix, 307 -- 8.A.1 Circular Antenna Numerical Power Calculations, 307 -- 8.A.2 Square Antenna Numerical Power Calculations, 311 -- 8.A.3 Bessel Functions, 315 -- References, 318 -- 9 Multipath Fading 320 -- 9.1 Flat and Dispersive Fading, 329 -- 9.A Appendix, 338 -- 9.A.1 Fading Statistics, 338 -- 9.A.2 DFM Equation Derivation, 339 -- 9.A.3 Characteristics of Receiver Signature Curves and DFM, 342 -- References, 344 -- 10 Microwave Radio Diversity 348 -- 10.1 Space Diversity, 350 -- 10.2 Dual-Frequency Diversity, 354 -- 10.3 Quad (Space and Frequency) Diversity, 357 -- 10.4 Hybrid Diversity, 358 -- 10.5 Multiline Frequency Diversity, 358 -- 10.6 Crossband Multiline, 365 -- 10.7 Angle Diversity, 366.
10.7.1 Angle Diversity Configurations, 368 -- 10.7.2 Angle Diversity Performance, 371 -- 10.A Appendix, 372 -- 10.A.1 Optimizing Space Diversity Vertical Spacing, 372 -- 10.A.2 Additional Optimization, 377 -- References, 380 -- 11 Rain Fading 384 -- 11.1 Point (Single-Location) Rain Loss (Fade) Estimation, 386 -- 11.2 Path Rain-Fade Estimation, 390 -- 11.3 Point-to-Path Length Conversion Factor, 398 -- 11.4 Single-Location Rain Rate R, 398 -- 11.5 City Rain Rate Data for North America, 407 -- 11.6 New Rain Zones, 430 -- 11.7 Worst-Month Rain Rates, 430 -- 11.8 Point Rain Rate Variability, 439 -- 11.9 Examples of Rain-Loss-Dominated Path Designs, 441 -- 11.10 Conclusions, 444 -- 11.A Appendix, 446 -- 11.A.1 North American City Rain Data Index, 446 -- References, 458 -- 12 Ducting and Obstruction Fading 461 -- 12.1 Introduction, 461 -- 12.1.1 Power Fading, 463 -- 12.2 Superrefraction (Ducting), 465 -- 12.3 Subrefraction (Earth Bulge or Obstruction), 469 -- 12.4 Minimizing Obstruction Fading, 471 -- 12.4.1 Path Clearance (Antenna Vertical Placement) Criteria, 471 -- 12.5 Obstruction Fading Model, 477 -- 12.6 Obstruction Fading Estimation, 479 -- 12.7 Bell Labs Seasonal Parameter Charts, 483 -- 12.8 Refractivity Data Limitations, 484 -- 12.9 Reviewing the Bell Labs Seasonal Parameter Charts, 485 -- 12.10 Obstruction Fading Parameter Estimation, 486 -- 12.11 Evaluating Path Clearance Criteria, 487 -- 12.A Appendix: North American Refractivity Index Charts, 490 -- 12.B Appendix: Worldwide Obstruction Fading Data, 491 -- References, 511 -- 13 Reflections and Obstructions 514 -- 13.1 Theoretical Rough Earth Reflection Coefficient, 514 -- 13.1.1 Gaussian Model, 516 -- 13.1.2 Uniform Model, 517 -- 13.2 Scattering from Earth Terrain, 517 -- 13.3 Practical Earth Reflection Coefficient, 519 -- 13.4 Reflection Location, 519 -- 13.5 Smooth Earth Divergence Factor, 522 -- 13.6 Reflections from Objects Near a Path, 523 -- 13.7 Fresnel Zones, 525 -- 13.8 Antenna Launch Angle (Transmit or Receive Antenna Takeoff Angle), 527.
13.9 Grazing Angle, 527 -- 13.10 Additional Path Distance, 528 -- 13.11 Estimating the Effect of a Signal Reflected from the Earth, 528 -- 13.12 Flat Earth Obstruction Path Loss, 529 -- 13.13 Smooth Earth Obstruction Loss, 529 -- 13.14 Knife-Edge Obstruction Path Gain, 530 -- 13.15 Rounded-Edge Obstruction Path Gain, 531 -- 13.16 Complex Terrain Obstruction Losses, 532 -- 13.A Appendix, 536 -- 13.A.1 Smooth Earth Reflection Coefficient, 536 -- 13.A.2 Procedure for Calculating RH AND RV, 536 -- 13.A.3 Earth Parameters for Frequencies Between 100 kHz and 1 GHz, 538 -- 13.A.4 Earth Parameters for Frequencies Between 1 GHz and 100 GHz, 540 -- 13.A.5 Comments on Conductivity and Permittivity, 541 -- 13.A.6 Reflection Coefficients, 541 -- References, 555 -- 14 Digital Receiver Interference 559 -- 14.1 Composite Interference (T/T) Criterion, 559 -- 14.2 Carrier-to-Interference Ratio (C/I) Criterion, 560 -- 14.3 Measuring C/I, 560 -- 14.4 Estimating C/I, 561 -- 14.5 Threshold to Interference (T/I) Criterion, 562 -- 14.6 Why Estimate T/I, 563 -- 14.7 T/I Estimation-Method One, 564 -- 14.8 T/I Estimation-Method Two, 565 -- 14.9 Conclusion, 569 -- 14.A Appendix, 569 -- 14.A.1 Basic 10-6 Threshold for Gaussian (Radio Front End) Noise Only, 569 -- 14.A.2 Using a Spectrum Mask as a Default Spectrum Curve, 570 -- 14.B Appendix: Receiver Parameters, 571 -- References, 572 -- 15 Network Reliability Calculations 573 -- 15.1 Hardware Reliability, 574 -- 15.2 System Reliability, 577 -- 15.2.1 Equipment in Series, 577 -- 15.2.2 Multiple Equipment in Parallel, 578 -- 15.2.3 Nested Equipment, 579 -- 15.2.4 Meshed Duplex Configuration, 579 -- 15.3 Communication Systems, 579 -- 15.4 Application to Radio Configurations, 580 -- 15.5 Spare Unit Requirements, 580 -- 15.6 BER Estimation, 583 -- 15.6.1 Time to Transmit N Digits, 585 -- References, 585 -- 16 Path Performance Calculations 587 -- 16.1 Path Loss, 588 -- 16.2 Fade Margin, 589 -- 16.3 Path Performance, 589 -- 16.4 Allowance for Interference, 590.
16.5 North American (NA) Path Performance Calculations, 590 -- 16.5.1 Vigants-Barnett Multipath Fading (Barnett, 1972; Vigants, 1975)-NA, 591 -- 16.5.2 Cross-Polarization Discrimination Degradation Outages-NA, 596 -- 16.5.3 Space Diversity: Flat-Fading Improvement-NA, 596 -- 16.5.4 Space Diversity: Dispersive-Fading Improvement-NA, 599 -- 16.5.5 Dual Frequency Diversity: Flat-Fading Improvement-NA, 599 -- 16.5.6 Dual Frequency Diversity: Dispersive-Fading Improvement-NA, 600 -- 16.5.7 Quad (Space and Frequency) Diversity-NA, 601 -- 16.5.8 Hybrid Diversity-NA, 601 -- 16.5.9 Multiline Frequency Diversity-NA, 601 -- 16.5.10 Angle Diversity-NA, 602 -- 16.5.11 Upfading-NA, 603 -- 16.5.12 Shallow Flat Fading-NA, 603 -- 16.6 International Telecommunication Union-Radiocommunication Sector (ITU-R) Path Performance Calculations, 604 -- 16.6.1 Flat Fading-ITU-R, 605 -- 16.6.2 Dispersive Fading-ITU-R, 606 -- 16.6.3 Cross-Polarization Discrimination Degradation Outages-ITU-R, 608 -- 16.6.4 Upfading-ITU-R, 609 -- 16.6.5 Shallow Flat Fading-ITU-R, 609 -- 16.6.6 Space Diversity Improvement-ITU-R, 610 -- 16.6.7 Dual-Frequency Diversity Improvement-ITU-R, 611 -- 16.6.8 Quad (Space and Frequency) Diversity-ITU-R, 611 -- 16.6.9 Angle Diversity Improvement-ITU-R, 613 -- 16.6.10 Other Diversity Improvements-ITU-R, 614 -- 16.7 Rain Fading and Obstruction Fading (NA and ITU-R), 614 -- 16.8 Comparing the North American and the ITU-R Flat-Fading Estimates, 614 -- 16.8.1 Vigants-Barnett Flat-Fading Estimation for Bell Labs Path, 614 -- 16.8.2 ITU-R Flat-Fading Estimation for Bell Labs Path, 615 -- 16.9 Diffraction and Vegetation Attenuation, 621 -- 16.10 Fog Attenuation, 622 -- 16.11 Air Attenuation, 624 -- 16.A Appendix, 631 -- References, 649 -- A Microwave Formulas and Tables 653 -- A.1 General, 653 -- Table A.1 General, 653 -- Table A.2 Scientific and Engineering Notation, 654 -- Table A.3 Emission Designator, 655 -- Table A.4 Typical Commercial Parabolic Antenna Gain (dBi), 656 -- Table A.5 Typical Rectangular Waveguide, 656.
Table A.6 Typical Rectangular Waveguide Data, 657 -- Table A.7 Typical Copper Corrugated Elliptical Waveguide Loss, 657 -- Table A.8 Typical Copper Circular Waveguide Loss, 658 -- Table A.9 Rectangular Waveguide Attenuation Factors, 659 -- Table A.10 CommScope Elliptical Waveguide Attenuation Factors, 659 -- Table A.11 RFS Elliptical Waveguide Attenuation Factors, 660 -- Table A.12 Elliptical Waveguide Cutoff Frequencies, 660 -- Table A.13 Circular Waveguide Cutoff Frequencies, 661 -- Table A.14 Typical Coaxial Microwave Connectors, 663 -- Table A.15 Coaxial Cable Velocity Factors, 664 -- Table A.16 50 Ohm Coaxial Cable Attenuation Factors, 664 -- Table A.17 Frequency Bands, General Users, 665 -- Table A.18 Frequency Bands, Fixed Point to Point Operators, 665 -- Table A.19 Frequency Bands, Radar, Space and Satellite Operators, 666 -- Table A.20 Frequency Bands, Electronic Warfare Operators, 666 -- Table A.21 Frequency Bands, Great Britain Operators, 666 -- Table A.22 Signal-to-Noise Ratio for Demodulator 10-6 BER, 667 -- A.2 Radio Transmission, 668 -- A.2.1 Unit Conversions, 668 -- A.2.2 Free Space Propagation Absolute Delay, 669 -- A.2.3 Waveguide Propagation Absolute Delay, 669 -- A.2.4 Coaxial Cable Propagation Absolute Delay, 669 -- A.2.5 Free Space Propagation Wavelength, 669 -- A.2.6 Dielectric Medium Propagation Wavelength, 669 -- A.2.7 Free Space Loss (dB), 670 -- A.2.8 Effective Radiated Power (ERP) and Effective Isotropic Radiated Power (EIRP), 670 -- A.2.9 Voltage Reflection Coefficient, 670 -- A.2.10 Voltage Standing Wave Ratio Maximum, 670 -- A.2.11 Voltage Standing Wave Ratio Minimum, 670 -- A.2.12 Voltage Standing Wave Ratio, 670 -- A.2.13 Power Reflection Coefficient, 671 -- A.2.14 Reflection Loss, 671 -- A.2.15 Return Loss, 671 -- A.2.16 Q (Quality) Factor (Figure of Merit for Resonant Circuits or Cavities), 671 -- A.2.17 Q (Quality) Factor (Figure of Merit for Optical Receivers), 672 -- A.2.18 Typical Long-Term Interference Objectives, 672 -- A.2.19 Frequency Planning Carrier-to-Interference Ratio (C/I), 672.
A.2.20 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 672 -- A.2.21 Shannon's Formula for Theoretical Limit to Transmission Channel Capacity, 674 -- A.3 Antennas (Far Field), 675 -- A.3.1 General Microwave Aperture Antenna (Far Field) Gain (dBi), 675 -- A.3.2 General Microwave Antenna (Far Field) Relative Gain (dBi), 675 -- A.3.3 Parabolic (Circular) Microwave Antenna (Far Field) Gain (dBi), 675 -- A.3.4 Parabolic (Circular) Microwave Antenna Illumination Efficiency, 676 -- A.3.5 Panel (Square) Microwave Antenna (Far Field) Gain (dBi), 676 -- A.3.6 Panel (Square) Microwave Antenna Illumination Efficiency, 676 -- A.3.7 Angle Between Incoming and Outgoing Radio Signal Paths, C, for a Passive Reflector, 677 -- A.3.8 Signal Polarization Rotation Through a Passive Reflector, 678 -- A.3.9 Signal Effects of Polarization Rotation, 678 -- A.3.10 Passive Reflector (Far Field) Two-Way (Reception and Retransmission) Gain (dBi), 678 -- A.3.11 Rectangular Passive Reflector 3-dB Beamwidth (Degrees, in Horizontal Plane), 678 -- A.3.12 Elliptical Passive Reflector 3-dB Beamwidth (Degrees), 679 -- A.3.13 Circular Parabolic Antenna 3-dB Beamwidth (Degrees), 679 -- A.3.14 Passive Reflector Far Field Radiation Pattern Envelopes, 680 -- A.3.15 Inner Radius for the Antenna Far-Field Region, 681 -- A.4 Near-Field Power Density, 682 -- A.4.1 Circular Antennas, 682 -- A.4.2 Square Antennas, 682 -- A.5 Antennas (Close Coupled), 683 -- A.5.1 Coupling Loss LNF (dB) Between Two Antennas in the Near Field, 683 -- A.5.2 Coupling Loss LNF (dB) Between Identical Antennas, 683 -- A.5.3 Coupling Loss LNF (dB) Between Different-Sized Circular Antennas, 684 -- A.5.4 Coupling Loss LNF (dB) Between Different-Sized Square Antennas (Both Antennas Aligned), 684 -- A.5.5 Coupling Loss LNF (dB) for Antenna and Square Reflector in the Near Field, 685 -- A.5.6 Coupling Loss LNF (dB) for Circular Antenna and Square Reflector, 685 -- A.5.7 Coupling Loss LNF (dB) for Square Antenna and Square Reflector (Both Aligned), 686.
A.5.8 Two Back-to-Back Square Reflectors Combined Gain, 687 -- A.6 Path Geometry, 687 -- A.6.1 Horizons (Normal Refractivity over Spherical Earth), 687 -- A.6.2 Earth Curvature (Height Adjustment Used on Path Profiles), 688 -- A.6.3 Reflection Point, 688 -- A.6.4 Fresnel Zone Radius (Perpendicular to the Radio Path), 690 -- A.6.5 Fresnel Zone Projected onto the Earth's Surface, 690 -- A.6.6 Reflection Path Additional Distance, 691 -- A.6.7 Reflection Path Additional Delay, 691 -- A.6.8 Reflection Path Relative Amplitude, 691 -- A.6.9 Antenna Launch Angle, 691 -- A.6.10 Antenna Height Difference, 692 -- A.6.11 K Factor (From Launch Angles), 692 -- A.6.12 Refractive Index and K Factor (From Atmospheric Values), 693 -- A.7 Obstruction Loss, 693 -- A.7.1 Knife-Edge Obstruction Loss, 693 -- A.7.2 Rounded-Edge Obstruction Path Loss, 694 -- A.7.3 Smooth-Earth Obstruction Loss, 695 -- A.7.4 Infinite Flat Reflective Plane Obstruction Loss, 695 -- A.7.5 Reflection (Earth Roughness Scattering) Coefficient, 695 -- A.7.6 Divergence Coefficient from Earth, 696 -- A.7.7 Divergence Factor for a Cylinder, 697 -- A.7.8 Divergence Factor for a Sphere, 697 -- A.7.9 Signal Reflected from Flat Earth, 697 -- A.7.10 Ducting, 697 -- A.8 Mapping, 698 -- A.8.1 Path Length and Bearing, 698 -- A.9 Towers, 700 -- A.9.1 Three-Point Guyed Towers, 700 -- A.9.2 Three-Leg Self-Supporting Tower, 701 -- A.9.3 Four-Leg Self-Supporting Tower, 701 -- A.10 Interpolation, 702 -- A.10.1 Two-Dimensional Interpolation, 702 -- A.10.2 Three-Dimensional Interpolation, 705 -- B Personnel and Equipment Safety Considerations 709 -- B.1 General Safety Guidelines, 709 -- B.2 Equipment Protection, 711 -- B.3 Equipment Considerations, 712 -- B.4 Personnel Protective Equipment, 713 -- B.5 Accident Prevention Signs, 713 -- B.6 Tower Climbing, 713 -- B.7 Hand Tools, 715 -- B.8 Electrical Powered Tools, 715 -- B.9 Soldering Irons, 715 -- B.10 Ladders, 716 -- B.11 Hoisting or Moving Equipment, 716 -- B.12 Batteries, 717 -- B.13 Laser Safety Guidelines, 717.
B.14 Safe Use of Lasers and LED in Optical Fiber Communication Systems, 718 -- B.15 Optical Fiber Communication System (OFCS) Service Groups (SGs), 718 -- B.16 Electrostatic Discharge (ESD), 719 -- B.17 Maximum Permissible Microwave Radio RF Exposure, 720 -- B.18 Protect Other Radio Users [FCC], 720 -- B.19 PAUSE (Prevent all Unplanned Service Events) and Ask Yourself (Verizon and AT&T Operations), 721 -- B.20 Protect Yourself (Bell System Operations), 721 -- B.21 Parting Comment, 721 -- Index 723.
Record Nr. UNISA-996204494103316
Kizer George M (George Maurice), <1945->  
Hoboken, New Jersey : , : IEEE Press, , [2013]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Autore Kizer George M (George Maurice), <1945->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , [2013]
Descrizione fisica 1 online resource (758 p.)
Disciplina 621.382
Soggetto topico Microwave communication systems
Digital communications
ISBN 1-118-63680-5
1-118-63674-0
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- Acknowledgments xvii -- About the Author xix -- 1 A Brief History of Microwave Radio Fixed Point-to-Point (Relay) Communication Systems 1 -- 1.1 In the Beginning, 1 -- 1.2 Microwave Telecommunications Companies, 7 -- 1.3 Practical Applications, 10 -- 1.4 The Beat Goes On, 14 -- References, 16 -- 2 Regulation of Microwave Radio Transmissions 20 -- 2.1 Radio Frequency Management, 21 -- 2.2 Testing for Interference, 28 -- 2.3 Radio Paths by FCC Frequency Band in the United States, 29 -- 2.4 Influences in Frequency Allocation and Utilization Policy within the Western Hemisphere, 30 -- 2.4.1 United States of America (USA), 30 -- 2.4.2 Canada, 36 -- 2.5 FCC Fixed Radio Services, 36 -- 2.6 Site Data Accuracy Requirements, 41 -- 2.7 FCC Antenna Registration System (ASR) Registration Requirements, 42 -- 2.8 Engineering Microwave Paths Near Airports and Heliports, 44 -- 2.8.1 Airport Guidelines, 46 -- References, 47 -- 3 Microwave Radio Overview 48 -- 3.1 Introduction, 48 -- 3.2 Digital Signaling, 50 -- 3.3 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 50 -- 3.4 Digital Pulse Amplitude Modulation (PAM), 53 -- 3.5 Radio Transmitters and Receivers, 58 -- 3.6 Modulation Format, 60 -- 3.7 QAM Digital Radios, 65 -- 3.8 Channel Equalization, 68 -- 3.9 Channel Coding, 70 -- 3.10 Trellis Coded Modulation (TCM), 72 -- 3.11 Orthogonal Frequency Division Multiplexing (OFDM), 75 -- 3.12 Radio Configurations, 76 -- 3.12.1 Cross-Polarization Interference Cancellation (XPIC), 78 -- 3.13 Frequency Diversity and Multiline Considerations, 82 -- 3.14 Transmission Latency, 85 -- 3.15 Automatic Transmitter Power Control (ATPC), 87 -- 3.16 Current Trends, 87 -- 3.16.1 TDM (or ATM) over IP, 87 -- 3.16.2 TDM Synchronization over IP, 88 -- 3.16.3 Adaptive Modulation, 89 -- 3.16.4 Quality of Service (QoS) [Grade of Service (GoS) in Europe], 89 -- References, 90 -- 4 Radio Network Performance Objectives 96 -- 4.1 Customer Service Objectives, 96 -- 4.2 Maintenance Objectives, 96.
4.3 Commissioning Objectives, 98 -- 4.4 Design Objectives, 98 -- 4.4.1 Quality, 98 -- 4.4.2 Availability, 98 -- 4.5 Differences Between North American and European Radio System Objectives, 99 -- 4.5.1 North American Radio Engineering Standards (Historical Bell System Oriented), 99 -- 4.5.2 European Radio Engineering Standards (ITU Oriented), 99 -- 4.6 North American Telecommunications System Design Objectives, 100 -- 4.7 International Telecommunications System Design Objectives, 100 -- 4.7.1 Legacy European Microwave Radio Standards, 102 -- 4.7.2 Modern European Microwave Radio Standards, 102 -- 4.8 Engineering Microwave Paths to Design Objectives, 102 -- 4.9 Accuracy of Path Availability Calculations, 106 -- 4.9.1 Rain Fading, 106 -- 4.9.2 Multipath Fading, 106 -- 4.9.3 Dispersive Fading Outage, 107 -- 4.9.4 Diversity Improvement Factor, 107 -- 4.10 Impact of Flat Multipath Variability, 108 -- 4.11 Impact of Outage Measurement Methodology, 108 -- 4.12 Impact of External Interference, 109 -- 4.13 Conclusion, 109 -- References, 110 -- 5 Radio System Components 114 -- 5.1 Microwave Signal Transmission Lines, 115 -- 5.2 Antenna Support Structures, 121 -- 5.2.1 Lattice Towers, 122 -- 5.2.2 Self-Supporting Towers, 122 -- 5.2.3 Guyed Towers, 122 -- 5.2.4 Monopoles, 124 -- 5.2.5 Architecturally Designed Towers, 125 -- 5.2.6 Building-Mounted Antennas, 126 -- 5.2.7 Camouflaged Structures, 126 -- 5.2.8 Temporary Structures, 126 -- 5.3 Tower Rigidity and Integrity, 127 -- 5.4 Transmission Line Management, 127 -- 5.5 Antennas, 127 -- 5.6 Near Field, 137 -- 5.7 Fundamental Antenna Limitations, 143 -- 5.8 Propagation, 143 -- 5.9 Radio System Performance as a Function of Radio Path Propagation, 145 -- 5.9.1 Flat Fading, 146 -- 5.9.2 Dispersive Fading, 148 -- 5.10 Radio System Performance as a Function of Radio Path Terrain, 149 -- 5.11 Antenna Placement, 153 -- 5.12 Frequency Band Characteristics, 155 -- 5.13 Path Distances, 157 -- 5.A Appendix, 159 -- 5.A.1 Antenna Isotropic Gain and Free Space Loss, 159.
5.A.2 Free Space Loss, 163 -- 5.A.3 Antenna Isotropic Gain, 164 -- 5.A.4 Circular (Parabolic) Antennas, 166 -- 5.A.5 Square (Panel) Antennas, 167 -- 5.A.6 11-GHz Two-foot Antennas, 168 -- 5.A.7 Tower Rigidity Requirements, 169 -- References, 172 -- 6 Designing and Operating Microwave Systems 175 -- 6.1 Why Microwave Radio? 175 -- 6.2 Radio System Design, 175 -- 6.3 Designing Low Frequency Radio Networks, 179 -- 6.4 Designing High Frequency Radio Networks, 182 -- 6.4.1 Hub and Spoke, 183 -- 6.4.2 Nested Rings, 184 -- 6.5 Field Measurements, 185 -- 6.6 User Data Interfaces, 185 -- 6.7 Operations and Maintenance, 202 -- 6.7.1 Fault Management, 203 -- 6.7.2 Alarms and Status, 206 -- 6.7.3 Performance Management, 207 -- 6.8 Maintaining the Network, 210 -- References, 217 -- 7 Hypothetical Reference Circuits 220 -- 7.1 North American (NA) Availability Objectives, 220 -- 7.1.1 NA Bell System Hypothetical Reference Circuit-Availability Objectives, 220 -- 7.1.2 NA Telcordia Hypothetical Reference Circuit-Availability Objectives, 222 -- 7.2 North American Quality Objectives, 225 -- 7.2.1 Residual BER, 225 -- 7.2.2 Burst Errored Seconds, 225 -- 7.2.3 DS1 Errored Seconds, 225 -- 7.2.4 DS3 Errored Seconds, 225 -- 7.3 International Objectives, 225 -- 7.3.1 International Telecommunication Union Availability Objectives, 228 -- 7.4 International Telecommunication Union Quality Objectives, 236 -- 7.4.1 Legacy Quality Objectives, 236 -- 7.4.2 Current Quality Objectives, 240 -- 7.5 Error-Performance Relationship Among BER, BBER, and SESs, 245 -- References, 247 -- 8 Microwave Antenna Theory 249 -- 8.1 Common Parameters, 251 -- 8.2 Passive Reflectors, 252 -- 8.2.1 Passive Reflector Far Field Radiation Pattern, 253 -- 8.2.2 Passive Reflector Near Field Power Density, 255 -- 8.3 Circular (Parabolic) Antennas, 256 -- 8.3.1 Circular (Parabolic) Antenna Far Field Radiation Pattern, 256 -- 8.3.2 Circular (Parabolic) Antenna Efficiency, 260 -- 8.3.3 Circular (Parabolic) Antenna Beamwidth, 261.
8.3.4 Circular (Parabolic) Antenna Near Field Power Density, 264 -- 8.3.5 General Near Field Power Density Calculations, 265 -- 8.3.6 Circular Antenna Near Field Power Density Transitions, 272 -- 8.3.7 Circular Antenna Far Field Reference Power, 273 -- 8.4 Square Flat Panel Antennas, 274 -- 8.4.1 Square Antenna Beamwidth, 276 -- 8.4.2 Square Near Field Power Density, 279 -- 8.4.3 Square Antenna Far Field Reference Power, 288 -- 8.4.4 Square Near Field Power Density Transitions, 289 -- 8.5 Regulatory Near Field Power Density Limits, 290 -- 8.6 Practical Near Field Power Calculations, 290 -- 8.6.1 A Parabolic Antenna Near Field Power Example Calculation, 293 -- 8.6.2 Safety Limits, 294 -- 8.7 Near Field Antenna Coupling Loss, 296 -- 8.7.1 Antenna to Antenna Near Field Coupling Loss, 296 -- 8.7.2 Coupling Loss between Identical Antennas, 300 -- 8.7.3 Coupling Loss between Different-Sized Circular Antennas, 300 -- 8.7.4 Coupling Loss between Different-Sized Square Antennas, 301 -- 8.7.5 Parabolic Antenna to Passive Reflector Near Field Coupling Loss, 302 -- 8.7.6 Coupling Loss for Circular Antenna and Square Reflector, 303 -- 8.7.7 Coupling Loss for Square Antenna and Square Reflector (Both Aligned), 305 -- 8.7.8 Back-to-Back Square Passive Reflector Near Field Coupling Loss, 306 -- 8.A Appendix, 307 -- 8.A.1 Circular Antenna Numerical Power Calculations, 307 -- 8.A.2 Square Antenna Numerical Power Calculations, 311 -- 8.A.3 Bessel Functions, 315 -- References, 318 -- 9 Multipath Fading 320 -- 9.1 Flat and Dispersive Fading, 329 -- 9.A Appendix, 338 -- 9.A.1 Fading Statistics, 338 -- 9.A.2 DFM Equation Derivation, 339 -- 9.A.3 Characteristics of Receiver Signature Curves and DFM, 342 -- References, 344 -- 10 Microwave Radio Diversity 348 -- 10.1 Space Diversity, 350 -- 10.2 Dual-Frequency Diversity, 354 -- 10.3 Quad (Space and Frequency) Diversity, 357 -- 10.4 Hybrid Diversity, 358 -- 10.5 Multiline Frequency Diversity, 358 -- 10.6 Crossband Multiline, 365 -- 10.7 Angle Diversity, 366.
10.7.1 Angle Diversity Configurations, 368 -- 10.7.2 Angle Diversity Performance, 371 -- 10.A Appendix, 372 -- 10.A.1 Optimizing Space Diversity Vertical Spacing, 372 -- 10.A.2 Additional Optimization, 377 -- References, 380 -- 11 Rain Fading 384 -- 11.1 Point (Single-Location) Rain Loss (Fade) Estimation, 386 -- 11.2 Path Rain-Fade Estimation, 390 -- 11.3 Point-to-Path Length Conversion Factor, 398 -- 11.4 Single-Location Rain Rate R, 398 -- 11.5 City Rain Rate Data for North America, 407 -- 11.6 New Rain Zones, 430 -- 11.7 Worst-Month Rain Rates, 430 -- 11.8 Point Rain Rate Variability, 439 -- 11.9 Examples of Rain-Loss-Dominated Path Designs, 441 -- 11.10 Conclusions, 444 -- 11.A Appendix, 446 -- 11.A.1 North American City Rain Data Index, 446 -- References, 458 -- 12 Ducting and Obstruction Fading 461 -- 12.1 Introduction, 461 -- 12.1.1 Power Fading, 463 -- 12.2 Superrefraction (Ducting), 465 -- 12.3 Subrefraction (Earth Bulge or Obstruction), 469 -- 12.4 Minimizing Obstruction Fading, 471 -- 12.4.1 Path Clearance (Antenna Vertical Placement) Criteria, 471 -- 12.5 Obstruction Fading Model, 477 -- 12.6 Obstruction Fading Estimation, 479 -- 12.7 Bell Labs Seasonal Parameter Charts, 483 -- 12.8 Refractivity Data Limitations, 484 -- 12.9 Reviewing the Bell Labs Seasonal Parameter Charts, 485 -- 12.10 Obstruction Fading Parameter Estimation, 486 -- 12.11 Evaluating Path Clearance Criteria, 487 -- 12.A Appendix: North American Refractivity Index Charts, 490 -- 12.B Appendix: Worldwide Obstruction Fading Data, 491 -- References, 511 -- 13 Reflections and Obstructions 514 -- 13.1 Theoretical Rough Earth Reflection Coefficient, 514 -- 13.1.1 Gaussian Model, 516 -- 13.1.2 Uniform Model, 517 -- 13.2 Scattering from Earth Terrain, 517 -- 13.3 Practical Earth Reflection Coefficient, 519 -- 13.4 Reflection Location, 519 -- 13.5 Smooth Earth Divergence Factor, 522 -- 13.6 Reflections from Objects Near a Path, 523 -- 13.7 Fresnel Zones, 525 -- 13.8 Antenna Launch Angle (Transmit or Receive Antenna Takeoff Angle), 527.
13.9 Grazing Angle, 527 -- 13.10 Additional Path Distance, 528 -- 13.11 Estimating the Effect of a Signal Reflected from the Earth, 528 -- 13.12 Flat Earth Obstruction Path Loss, 529 -- 13.13 Smooth Earth Obstruction Loss, 529 -- 13.14 Knife-Edge Obstruction Path Gain, 530 -- 13.15 Rounded-Edge Obstruction Path Gain, 531 -- 13.16 Complex Terrain Obstruction Losses, 532 -- 13.A Appendix, 536 -- 13.A.1 Smooth Earth Reflection Coefficient, 536 -- 13.A.2 Procedure for Calculating RH AND RV, 536 -- 13.A.3 Earth Parameters for Frequencies Between 100 kHz and 1 GHz, 538 -- 13.A.4 Earth Parameters for Frequencies Between 1 GHz and 100 GHz, 540 -- 13.A.5 Comments on Conductivity and Permittivity, 541 -- 13.A.6 Reflection Coefficients, 541 -- References, 555 -- 14 Digital Receiver Interference 559 -- 14.1 Composite Interference (T/T) Criterion, 559 -- 14.2 Carrier-to-Interference Ratio (C/I) Criterion, 560 -- 14.3 Measuring C/I, 560 -- 14.4 Estimating C/I, 561 -- 14.5 Threshold to Interference (T/I) Criterion, 562 -- 14.6 Why Estimate T/I, 563 -- 14.7 T/I Estimation-Method One, 564 -- 14.8 T/I Estimation-Method Two, 565 -- 14.9 Conclusion, 569 -- 14.A Appendix, 569 -- 14.A.1 Basic 10-6 Threshold for Gaussian (Radio Front End) Noise Only, 569 -- 14.A.2 Using a Spectrum Mask as a Default Spectrum Curve, 570 -- 14.B Appendix: Receiver Parameters, 571 -- References, 572 -- 15 Network Reliability Calculations 573 -- 15.1 Hardware Reliability, 574 -- 15.2 System Reliability, 577 -- 15.2.1 Equipment in Series, 577 -- 15.2.2 Multiple Equipment in Parallel, 578 -- 15.2.3 Nested Equipment, 579 -- 15.2.4 Meshed Duplex Configuration, 579 -- 15.3 Communication Systems, 579 -- 15.4 Application to Radio Configurations, 580 -- 15.5 Spare Unit Requirements, 580 -- 15.6 BER Estimation, 583 -- 15.6.1 Time to Transmit N Digits, 585 -- References, 585 -- 16 Path Performance Calculations 587 -- 16.1 Path Loss, 588 -- 16.2 Fade Margin, 589 -- 16.3 Path Performance, 589 -- 16.4 Allowance for Interference, 590.
16.5 North American (NA) Path Performance Calculations, 590 -- 16.5.1 Vigants-Barnett Multipath Fading (Barnett, 1972; Vigants, 1975)-NA, 591 -- 16.5.2 Cross-Polarization Discrimination Degradation Outages-NA, 596 -- 16.5.3 Space Diversity: Flat-Fading Improvement-NA, 596 -- 16.5.4 Space Diversity: Dispersive-Fading Improvement-NA, 599 -- 16.5.5 Dual Frequency Diversity: Flat-Fading Improvement-NA, 599 -- 16.5.6 Dual Frequency Diversity: Dispersive-Fading Improvement-NA, 600 -- 16.5.7 Quad (Space and Frequency) Diversity-NA, 601 -- 16.5.8 Hybrid Diversity-NA, 601 -- 16.5.9 Multiline Frequency Diversity-NA, 601 -- 16.5.10 Angle Diversity-NA, 602 -- 16.5.11 Upfading-NA, 603 -- 16.5.12 Shallow Flat Fading-NA, 603 -- 16.6 International Telecommunication Union-Radiocommunication Sector (ITU-R) Path Performance Calculations, 604 -- 16.6.1 Flat Fading-ITU-R, 605 -- 16.6.2 Dispersive Fading-ITU-R, 606 -- 16.6.3 Cross-Polarization Discrimination Degradation Outages-ITU-R, 608 -- 16.6.4 Upfading-ITU-R, 609 -- 16.6.5 Shallow Flat Fading-ITU-R, 609 -- 16.6.6 Space Diversity Improvement-ITU-R, 610 -- 16.6.7 Dual-Frequency Diversity Improvement-ITU-R, 611 -- 16.6.8 Quad (Space and Frequency) Diversity-ITU-R, 611 -- 16.6.9 Angle Diversity Improvement-ITU-R, 613 -- 16.6.10 Other Diversity Improvements-ITU-R, 614 -- 16.7 Rain Fading and Obstruction Fading (NA and ITU-R), 614 -- 16.8 Comparing the North American and the ITU-R Flat-Fading Estimates, 614 -- 16.8.1 Vigants-Barnett Flat-Fading Estimation for Bell Labs Path, 614 -- 16.8.2 ITU-R Flat-Fading Estimation for Bell Labs Path, 615 -- 16.9 Diffraction and Vegetation Attenuation, 621 -- 16.10 Fog Attenuation, 622 -- 16.11 Air Attenuation, 624 -- 16.A Appendix, 631 -- References, 649 -- A Microwave Formulas and Tables 653 -- A.1 General, 653 -- Table A.1 General, 653 -- Table A.2 Scientific and Engineering Notation, 654 -- Table A.3 Emission Designator, 655 -- Table A.4 Typical Commercial Parabolic Antenna Gain (dBi), 656 -- Table A.5 Typical Rectangular Waveguide, 656.
Table A.6 Typical Rectangular Waveguide Data, 657 -- Table A.7 Typical Copper Corrugated Elliptical Waveguide Loss, 657 -- Table A.8 Typical Copper Circular Waveguide Loss, 658 -- Table A.9 Rectangular Waveguide Attenuation Factors, 659 -- Table A.10 CommScope Elliptical Waveguide Attenuation Factors, 659 -- Table A.11 RFS Elliptical Waveguide Attenuation Factors, 660 -- Table A.12 Elliptical Waveguide Cutoff Frequencies, 660 -- Table A.13 Circular Waveguide Cutoff Frequencies, 661 -- Table A.14 Typical Coaxial Microwave Connectors, 663 -- Table A.15 Coaxial Cable Velocity Factors, 664 -- Table A.16 50 Ohm Coaxial Cable Attenuation Factors, 664 -- Table A.17 Frequency Bands, General Users, 665 -- Table A.18 Frequency Bands, Fixed Point to Point Operators, 665 -- Table A.19 Frequency Bands, Radar, Space and Satellite Operators, 666 -- Table A.20 Frequency Bands, Electronic Warfare Operators, 666 -- Table A.21 Frequency Bands, Great Britain Operators, 666 -- Table A.22 Signal-to-Noise Ratio for Demodulator 10-6 BER, 667 -- A.2 Radio Transmission, 668 -- A.2.1 Unit Conversions, 668 -- A.2.2 Free Space Propagation Absolute Delay, 669 -- A.2.3 Waveguide Propagation Absolute Delay, 669 -- A.2.4 Coaxial Cable Propagation Absolute Delay, 669 -- A.2.5 Free Space Propagation Wavelength, 669 -- A.2.6 Dielectric Medium Propagation Wavelength, 669 -- A.2.7 Free Space Loss (dB), 670 -- A.2.8 Effective Radiated Power (ERP) and Effective Isotropic Radiated Power (EIRP), 670 -- A.2.9 Voltage Reflection Coefficient, 670 -- A.2.10 Voltage Standing Wave Ratio Maximum, 670 -- A.2.11 Voltage Standing Wave Ratio Minimum, 670 -- A.2.12 Voltage Standing Wave Ratio, 670 -- A.2.13 Power Reflection Coefficient, 671 -- A.2.14 Reflection Loss, 671 -- A.2.15 Return Loss, 671 -- A.2.16 Q (Quality) Factor (Figure of Merit for Resonant Circuits or Cavities), 671 -- A.2.17 Q (Quality) Factor (Figure of Merit for Optical Receivers), 672 -- A.2.18 Typical Long-Term Interference Objectives, 672 -- A.2.19 Frequency Planning Carrier-to-Interference Ratio (C/I), 672.
A.2.20 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 672 -- A.2.21 Shannon's Formula for Theoretical Limit to Transmission Channel Capacity, 674 -- A.3 Antennas (Far Field), 675 -- A.3.1 General Microwave Aperture Antenna (Far Field) Gain (dBi), 675 -- A.3.2 General Microwave Antenna (Far Field) Relative Gain (dBi), 675 -- A.3.3 Parabolic (Circular) Microwave Antenna (Far Field) Gain (dBi), 675 -- A.3.4 Parabolic (Circular) Microwave Antenna Illumination Efficiency, 676 -- A.3.5 Panel (Square) Microwave Antenna (Far Field) Gain (dBi), 676 -- A.3.6 Panel (Square) Microwave Antenna Illumination Efficiency, 676 -- A.3.7 Angle Between Incoming and Outgoing Radio Signal Paths, C, for a Passive Reflector, 677 -- A.3.8 Signal Polarization Rotation Through a Passive Reflector, 678 -- A.3.9 Signal Effects of Polarization Rotation, 678 -- A.3.10 Passive Reflector (Far Field) Two-Way (Reception and Retransmission) Gain (dBi), 678 -- A.3.11 Rectangular Passive Reflector 3-dB Beamwidth (Degrees, in Horizontal Plane), 678 -- A.3.12 Elliptical Passive Reflector 3-dB Beamwidth (Degrees), 679 -- A.3.13 Circular Parabolic Antenna 3-dB Beamwidth (Degrees), 679 -- A.3.14 Passive Reflector Far Field Radiation Pattern Envelopes, 680 -- A.3.15 Inner Radius for the Antenna Far-Field Region, 681 -- A.4 Near-Field Power Density, 682 -- A.4.1 Circular Antennas, 682 -- A.4.2 Square Antennas, 682 -- A.5 Antennas (Close Coupled), 683 -- A.5.1 Coupling Loss LNF (dB) Between Two Antennas in the Near Field, 683 -- A.5.2 Coupling Loss LNF (dB) Between Identical Antennas, 683 -- A.5.3 Coupling Loss LNF (dB) Between Different-Sized Circular Antennas, 684 -- A.5.4 Coupling Loss LNF (dB) Between Different-Sized Square Antennas (Both Antennas Aligned), 684 -- A.5.5 Coupling Loss LNF (dB) for Antenna and Square Reflector in the Near Field, 685 -- A.5.6 Coupling Loss LNF (dB) for Circular Antenna and Square Reflector, 685 -- A.5.7 Coupling Loss LNF (dB) for Square Antenna and Square Reflector (Both Aligned), 686.
A.5.8 Two Back-to-Back Square Reflectors Combined Gain, 687 -- A.6 Path Geometry, 687 -- A.6.1 Horizons (Normal Refractivity over Spherical Earth), 687 -- A.6.2 Earth Curvature (Height Adjustment Used on Path Profiles), 688 -- A.6.3 Reflection Point, 688 -- A.6.4 Fresnel Zone Radius (Perpendicular to the Radio Path), 690 -- A.6.5 Fresnel Zone Projected onto the Earth's Surface, 690 -- A.6.6 Reflection Path Additional Distance, 691 -- A.6.7 Reflection Path Additional Delay, 691 -- A.6.8 Reflection Path Relative Amplitude, 691 -- A.6.9 Antenna Launch Angle, 691 -- A.6.10 Antenna Height Difference, 692 -- A.6.11 K Factor (From Launch Angles), 692 -- A.6.12 Refractive Index and K Factor (From Atmospheric Values), 693 -- A.7 Obstruction Loss, 693 -- A.7.1 Knife-Edge Obstruction Loss, 693 -- A.7.2 Rounded-Edge Obstruction Path Loss, 694 -- A.7.3 Smooth-Earth Obstruction Loss, 695 -- A.7.4 Infinite Flat Reflective Plane Obstruction Loss, 695 -- A.7.5 Reflection (Earth Roughness Scattering) Coefficient, 695 -- A.7.6 Divergence Coefficient from Earth, 696 -- A.7.7 Divergence Factor for a Cylinder, 697 -- A.7.8 Divergence Factor for a Sphere, 697 -- A.7.9 Signal Reflected from Flat Earth, 697 -- A.7.10 Ducting, 697 -- A.8 Mapping, 698 -- A.8.1 Path Length and Bearing, 698 -- A.9 Towers, 700 -- A.9.1 Three-Point Guyed Towers, 700 -- A.9.2 Three-Leg Self-Supporting Tower, 701 -- A.9.3 Four-Leg Self-Supporting Tower, 701 -- A.10 Interpolation, 702 -- A.10.1 Two-Dimensional Interpolation, 702 -- A.10.2 Three-Dimensional Interpolation, 705 -- B Personnel and Equipment Safety Considerations 709 -- B.1 General Safety Guidelines, 709 -- B.2 Equipment Protection, 711 -- B.3 Equipment Considerations, 712 -- B.4 Personnel Protective Equipment, 713 -- B.5 Accident Prevention Signs, 713 -- B.6 Tower Climbing, 713 -- B.7 Hand Tools, 715 -- B.8 Electrical Powered Tools, 715 -- B.9 Soldering Irons, 715 -- B.10 Ladders, 716 -- B.11 Hoisting or Moving Equipment, 716 -- B.12 Batteries, 717 -- B.13 Laser Safety Guidelines, 717.
B.14 Safe Use of Lasers and LED in Optical Fiber Communication Systems, 718 -- B.15 Optical Fiber Communication System (OFCS) Service Groups (SGs), 718 -- B.16 Electrostatic Discharge (ESD), 719 -- B.17 Maximum Permissible Microwave Radio RF Exposure, 720 -- B.18 Protect Other Radio Users [FCC], 720 -- B.19 PAUSE (Prevent all Unplanned Service Events) and Ask Yourself (Verizon and AT&T Operations), 721 -- B.20 Protect Yourself (Bell System Operations), 721 -- B.21 Parting Comment, 721 -- Index 723.
Record Nr. UNINA-9910831187403321
Kizer George M (George Maurice), <1945->  
Hoboken, New Jersey : , : IEEE Press, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Digital microwave communication : engineering point-to-point microwave systems / / George Kizer
Autore Kizer George M (George Maurice), <1945->
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc., 2013
Descrizione fisica 1 online resource (758 p.)
Disciplina 621.382
Soggetto topico Microwave communication systems
Digital communication
ISBN 1-118-63680-5
1-118-63674-0
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: General Concepts1 N A Brief History of Microwave Radio2 K Regulation of Microwave Radio Networks3 N Microwave Radio Overview4 J Radio Network Performance Objectives5 N Radio System Components6 M Care and Feeding of MW SystemsDetails7 F Hypothetical Reference Circuits8 L Antennas9 P Multipath Fading10 H Path Diversity11 T Rain Fading12 P Ducting and Obstruction Fading13 N Reflections and Obstructions14 L Digital Receiver Interference15 H Network Reliability Calculations16 S Path Performance CalculationsAppendix 1 U Microwave Formulas and TablesAppendix 2 G Safety Considerations.
Record Nr. UNINA-9910877803603321
Kizer George M (George Maurice), <1945->  
Hoboken, N.J., : John Wiley & Sons, Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Microwave Component Measurements [[electronic resource] ] : with Advanced VNA Techniques
Handbook of Microwave Component Measurements [[electronic resource] ] : with Advanced VNA Techniques
Autore Dunsmore Joel P
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2012
Descrizione fisica 1 online resource (637 p.)
Disciplina 537.5344
621.3813
Soggetto topico Microwave devices - Testing
Microwave devices -- Testing
TECHNOLOGY & ENGINEERING / Microwaves
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-283-54976-X
9786613862211
1-118-39125-X
1-118-39124-1
1-118-39132-2
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HANDBOOK OFMICROWAVE COMPONENTMEASUREMENTS; Contents; Foreword; Preface; Acknowledgments; List of Acronyms; 1 Introduction to Microwave Measurements; 1.1 Modern Measurement Process; 1.2 A Practical Measurement Focus; 1.3 Definition of Microwave Parameters; 1.3.1 S-Parameter Primer; 1.3.2 Phase Response of Networks; 1.4 Power Parameters; 1.4.1 Incident and Reflected Power; 1.4.2 Available Power; 1.4.3 Delivered Power; 1.4.4 Power Available from a Network; 1.4.5 Available Gain; 1.5 Noise Figure and Noise Parameters; 1.5.1 Noise Temperature; 1.5.2 Effective or Excess Input Noise Temperature
1.5.3 Excess Noise Power and Operating Temperature1.5.4 Noise Power Density; 1.5.5 Noise Parameters; 1.6 Distortion Parameters; 1.6.1 Harmonics; 1.6.2 Second-Order Intercept; 1.6.3 Two-Tone Intermodulation Distortion; 1.7 Characteristics of Microwave Components; 1.8 Passive Microwave Components; 1.8.1 Cables, Connectors and Transmission Lines; 1.8.2 Connectors; 1.8.3 Non-Coaxial Transmission Lines; 1.9 Filters; 1.10 Directional Couplers; 1.11 Circulators and Isolators; 1.12 Antennas; 1.13 PCB Components; 1.13.1 SMT Resistors; 1.13.2 SMT Capacitors; 1.13.3 SMT Inductors; 1.13.4 PCB Vias
1.14 Active Microwave Components1.14.1 Linear and Non-Linear; 1.14.2 Amplifiers: System, Low Noise, High Power; 1.14.3 Mixers and Frequency Converters; 1.14.4 Frequency Multipliers and Limiters and Dividers; 1.14.5 Oscillators; 1.15 Measurement Instrumentation; 1.15.1 Power Meters; 1.15.2 Signal Sources; 1.15.3 Spectrum Analyzers; 1.15.4 Vector Signal Analyzers; 1.15.5 Noise Figure Analyzers; 1.15.6 Network Analyzers; References; 2 VNA Measurement Systems; 2.1 Introduction; 2.2 VNA Block Diagrams; 2.2.1 VNA Source; 2.2.2 Understanding Source Match; 2.2.3 VNA Test Set
2.2.4 Directional Devices2.2.5 VNA Receivers; 2.2.6 IF and Data Processing; 2.2.7 Multiport Extensions; 2.2.8 High Power Test Systems; 2.3 VNA Measurement of Linear Microwave Parameters; 2.3.1 Linear Measurements Methods for S-Parameters; 2.3.2 Power Measurements with a VNA; 2.3.3 Other Measurement Limitations of the VNA; 2.3.4 Limitations Due to External Components; 2.4 Measurements Derived from S-Parameters; 2.4.1 The Smith Chart; 2.4.2 Transforming S-Parameters to Other Impedances; 2.4.3 Concatenating Circuits and T-Parameters; 2.5 Modeling Circuits Using Y and Z Conversion
2.5.1 Reflection Conversion2.5.2 Transmission Conversion; 2.6 Other Linear Parameters; 2.6.1 Z-Parameters, or Open-Circuit Impedance Parameters; 2.6.2 Y-Parameters, or Short-Circuit Admittance Parameters; 2.6.3 ABCD Parameters; 2.6.4 H-Parameters or Hybrid Parameters; 2.6.5 Complex Conversions and Non-Equal Reference Impedances; References; 3 Calibration and Vector Error Correction; 3.1 Introduction; 3.2 Basic Error Correction for S-Parameters: Cal Application; 3.2.1 Twelve-Term Error Model; 3.2.2 One-Port Error Model; 3.2.3 Eight-Term Error Model
3.3 Determining Error Terms: Cal Acquisition for 12-Term Models
Record Nr. UNINA-9910791706103321
Dunsmore Joel P  
Hoboken, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Microwave Component Measurements : with Advanced VNA Techniques
Handbook of Microwave Component Measurements : with Advanced VNA Techniques
Autore Dunsmore Joel P
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2012
Descrizione fisica 1 online resource (637 p.)
Disciplina 537.5344
621.3813
Soggetto topico Microwave devices - Testing
Microwave devices -- Testing
TECHNOLOGY & ENGINEERING / Microwaves
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-283-54976-X
9786613862211
1-118-39125-X
1-118-39124-1
1-118-39132-2
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HANDBOOK OFMICROWAVE COMPONENTMEASUREMENTS; Contents; Foreword; Preface; Acknowledgments; List of Acronyms; 1 Introduction to Microwave Measurements; 1.1 Modern Measurement Process; 1.2 A Practical Measurement Focus; 1.3 Definition of Microwave Parameters; 1.3.1 S-Parameter Primer; 1.3.2 Phase Response of Networks; 1.4 Power Parameters; 1.4.1 Incident and Reflected Power; 1.4.2 Available Power; 1.4.3 Delivered Power; 1.4.4 Power Available from a Network; 1.4.5 Available Gain; 1.5 Noise Figure and Noise Parameters; 1.5.1 Noise Temperature; 1.5.2 Effective or Excess Input Noise Temperature
1.5.3 Excess Noise Power and Operating Temperature1.5.4 Noise Power Density; 1.5.5 Noise Parameters; 1.6 Distortion Parameters; 1.6.1 Harmonics; 1.6.2 Second-Order Intercept; 1.6.3 Two-Tone Intermodulation Distortion; 1.7 Characteristics of Microwave Components; 1.8 Passive Microwave Components; 1.8.1 Cables, Connectors and Transmission Lines; 1.8.2 Connectors; 1.8.3 Non-Coaxial Transmission Lines; 1.9 Filters; 1.10 Directional Couplers; 1.11 Circulators and Isolators; 1.12 Antennas; 1.13 PCB Components; 1.13.1 SMT Resistors; 1.13.2 SMT Capacitors; 1.13.3 SMT Inductors; 1.13.4 PCB Vias
1.14 Active Microwave Components1.14.1 Linear and Non-Linear; 1.14.2 Amplifiers: System, Low Noise, High Power; 1.14.3 Mixers and Frequency Converters; 1.14.4 Frequency Multipliers and Limiters and Dividers; 1.14.5 Oscillators; 1.15 Measurement Instrumentation; 1.15.1 Power Meters; 1.15.2 Signal Sources; 1.15.3 Spectrum Analyzers; 1.15.4 Vector Signal Analyzers; 1.15.5 Noise Figure Analyzers; 1.15.6 Network Analyzers; References; 2 VNA Measurement Systems; 2.1 Introduction; 2.2 VNA Block Diagrams; 2.2.1 VNA Source; 2.2.2 Understanding Source Match; 2.2.3 VNA Test Set
2.2.4 Directional Devices2.2.5 VNA Receivers; 2.2.6 IF and Data Processing; 2.2.7 Multiport Extensions; 2.2.8 High Power Test Systems; 2.3 VNA Measurement of Linear Microwave Parameters; 2.3.1 Linear Measurements Methods for S-Parameters; 2.3.2 Power Measurements with a VNA; 2.3.3 Other Measurement Limitations of the VNA; 2.3.4 Limitations Due to External Components; 2.4 Measurements Derived from S-Parameters; 2.4.1 The Smith Chart; 2.4.2 Transforming S-Parameters to Other Impedances; 2.4.3 Concatenating Circuits and T-Parameters; 2.5 Modeling Circuits Using Y and Z Conversion
2.5.1 Reflection Conversion2.5.2 Transmission Conversion; 2.6 Other Linear Parameters; 2.6.1 Z-Parameters, or Open-Circuit Impedance Parameters; 2.6.2 Y-Parameters, or Short-Circuit Admittance Parameters; 2.6.3 ABCD Parameters; 2.6.4 H-Parameters or Hybrid Parameters; 2.6.5 Complex Conversions and Non-Equal Reference Impedances; References; 3 Calibration and Vector Error Correction; 3.1 Introduction; 3.2 Basic Error Correction for S-Parameters: Cal Application; 3.2.1 Twelve-Term Error Model; 3.2.2 One-Port Error Model; 3.2.3 Eight-Term Error Model
3.3 Determining Error Terms: Cal Acquisition for 12-Term Models
Record Nr. UNINA-9910808339803321
Dunsmore Joel P  
Hoboken, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF and microwave power amplifiers / / edited by John L.B. Walker [[electronic resource]]
Handbook of RF and microwave power amplifiers / / edited by John L.B. Walker [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiii, 687 pages) : digital, PDF file(s)
Disciplina 621.384/12
Collana The Cambridge RF and microwave engineering series
Soggetto topico Power amplifiers
Amplifiers, Radio frequency
Microwave amplifiers
ISBN 1-107-22450-0
1-139-15259-9
1-283-34222-7
9786613342225
1-139-16002-8
1-139-16102-4
1-139-15546-6
1-139-15721-3
1-139-01534-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon LDMOS and VDMOS transistors : physics, design, and technology / Wayne Burger and Christopher P. Dragon -- GaAs FETs : physics, design, and models / Rob Davis -- Wide band gap transistors -- SiC and GaN : physics, design and models / Robert J. Trew -- Amplifier classes, A-S / Steve C. Cripps -- Computer-aided design of power amplifiers / Steven Maas -- Practical HF/VHF/UHF RF power amplifier realization / Daniel P. Myer -- Microwave hybrid amplifier realization / Dominic FitzPatrick -- Monolithic power amplifiers / Inder J. Bahl -- RF power amplifier thermal design / Mali Mahalingam -- Reliability / Bill Roesch -- Power amplifier applications / Mustafa Akkul and Wolfgang Bösch -- Amplifier measurements / Michael G. Hiebel.
Altri titoli varianti Handbook of RF & Microwave Power Amplifiers
Record Nr. UNINA-9910781867803321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF and microwave power amplifiers / / edited by John L.B. Walker [[electronic resource]]
Handbook of RF and microwave power amplifiers / / edited by John L.B. Walker [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiii, 687 pages) : digital, PDF file(s)
Disciplina 621.384/12
Collana The Cambridge RF and microwave engineering series
Soggetto topico Power amplifiers
Amplifiers, Radio frequency
Microwave amplifiers
ISBN 1-107-22450-0
1-139-15259-9
1-283-34222-7
9786613342225
1-139-16002-8
1-139-16102-4
1-139-15546-6
1-139-15721-3
1-139-01534-6
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon LDMOS and VDMOS transistors : physics, design, and technology / Wayne Burger and Christopher P. Dragon -- GaAs FETs : physics, design, and models / Rob Davis -- Wide band gap transistors -- SiC and GaN : physics, design and models / Robert J. Trew -- Amplifier classes, A-S / Steve C. Cripps -- Computer-aided design of power amplifiers / Steven Maas -- Practical HF/VHF/UHF RF power amplifier realization / Daniel P. Myer -- Microwave hybrid amplifier realization / Dominic FitzPatrick -- Monolithic power amplifiers / Inder J. Bahl -- RF power amplifier thermal design / Mali Mahalingam -- Reliability / Bill Roesch -- Power amplifier applications / Mustafa Akkul and Wolfgang Bösch -- Amplifier measurements / Michael G. Hiebel.
Altri titoli varianti Handbook of RF & Microwave Power Amplifiers
Record Nr. UNINA-9910827956603321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui