top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biosurfaces : a materials science and engineering perspective / / edited by Kantesh Balani [and three others] ; contributors, Arvind Agarwal [and seventeen others]
Biosurfaces : a materials science and engineering perspective / / edited by Kantesh Balani [and three others] ; contributors, Arvind Agarwal [and seventeen others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (397 p.)
Disciplina 620/.44
Soggetto topico Surfaces (Technology)
Biomedical materials
ISBN 1-118-95064-X
1-118-95062-3
1-118-95063-1
Classificazione TEC021000SCI013050TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Foreword; Preface; Contributors; Chapter 1 INTRODUCTION TO BIOMATERIALS; 1.1 Introduction; 1.2 Classification of Biomaterials; 1.2.1 Polymers; 1.2.2 Silicone Biomaterials; 1.2.3 Metals; 1.2.4 Ceramics; 1.2.5 Mechanical Properties of Ceramics; 1.3 Summary; Questions; References; Chapter 2 TISSUE INTERACTION WITH BIOMATERIALS; 2.1 Introduction; 2.2 Protein Adsorption and Cell Adhesion; 2.2.1 Cell Adhesion; 2.3 Cell Migration; 2.4 Controlled Cell Deposition; 2.4.1 Hydrophobicity; 2.4.2 Material Chemistry and Surface Charge; 2.4.3 Surface Topography and Roughness
2.5 Extracellular Matrix2.6 Biomineralization; 2.6.1 Inorganic Structure of Life; 2.6.2 The Major Groups of Biominerals; 2.6.3 Types of Biomineralization; 2.6.4 Biomineral Types and Functions; Questions; References; Chapter 3 HOST RESPONSE OF IMPLANTED BIOMATERIALS; 3.1 Immune Response to Implanted Biomaterials; 3.1.1 Introduction; 3.1.2 Activation of the Immune System; 3.1.3 Cells of the Immune System; 3.1.4 Antibodies; 3.1.5 Antigens; 3.1.6 Antigen Processing and Presentation; 3.2 Transplant Immunology; 3.3 Biocompatibility; 3.3.1 Definition; 3.3.2 In vitro and in vivo Tests; Exercises
ReferencesChapter 4 FUNDAMENTALS OF SURFACE MODIFICATION; 4.1 Preamble; 4.2 Introduction; 4.3 Surface Properties of Biomaterials; 4.3.1 Protein Adsorption; 4.3.2 Cell Adhesion Ability; 4.3.3 Biocompatibility; 4.3.4 Biomimetics; 4.3.5 Biodegradation; 4.3.6 Hydrophobic and Hydrophilic Surfaces; 4.4 Surface Modifications; 4.4.1 Objectives of Surface Modification of Biomaterials; 4.4.2 Methods of Surface Modifications; 4.5 Applications; Questions; References; Chapter 5 MULTI-LENGTH SCALE HIERARCHY IN NATURAL MATERIALS; 5.1 Introduction; 5.2 Multi-Length-Scale Hierarchy; 5.3 Human Bone
5.4 Turtle Shell5.5 Wood; 5.6 Silk; 5.7 Nacre; 5.8 Gecko-Feet; 5.8.1 Synthesis of Gecko-Foot-Like Adhesives; 5.9 Lotus Leaf; 5.9.1 Mimicking Lotus Leaf Structure; Questions; References; Chapter 6 SUPERHYDROPHOBIC SURFACES; 6.1 Introduction; 6.2 Surfaces and Superhydrophobicity in Nature; 6.3 Classification of Surfaces; 6.3.1 Learning from Nature; 6.3.2 Role of Chemical Composition and Two-Level Roughness; 6.3.3 Mechanical Aspects of Surfaces; 6.4 Mechanics and Nature of Wetting; 6.5 Fabrication of Artificial Superhydrophobic Surfaces; 6.5.1 Soft Lithographic Imprinting; 6.5.2 Plasma Treatment
6.5.3 Sol-Gel Technique6.5.4 Combination Based on Chemical Vapor Deposition; 6.5.5 Electrospinning; 6.6 Preparation of Metallic Superhydrophobic Surfaces; 6.7 Controlled Wettability Surfaces (CWS); 6.8 Conclusions; Questions; References; Chapter 7 SURFACE ENGINEERING AND MODIFICATION FOR BIOMEDICAL APPLICATIONS; 7.1 Corrosion of Biomaterials and Need for Surface Coating for Biomedical Applications; 7.2 Surface Reactivity and Body Cell Response; 7.3 Key Requirements of Surface Coating; 7.3.1 Surface Roughness; 7.3.2 Porosity; 7.3.3 Cell Adhesion and Growth; 7.3.4 Contamination/Leaching
7.3.5 Coating Thickness and Microstructure
Record Nr. UNINA-9910140490103321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosurfaces : a materials science and engineering perspective / / edited by Kantesh Balani [and three others] ; contributors, Arvind Agarwal [and seventeen others]
Biosurfaces : a materials science and engineering perspective / / edited by Kantesh Balani [and three others] ; contributors, Arvind Agarwal [and seventeen others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (397 p.)
Disciplina 620/.44
Soggetto topico Surfaces (Technology)
Biomedical materials
ISBN 1-118-95064-X
1-118-95062-3
1-118-95063-1
Classificazione TEC021000SCI013050TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Foreword; Preface; Contributors; Chapter 1 INTRODUCTION TO BIOMATERIALS; 1.1 Introduction; 1.2 Classification of Biomaterials; 1.2.1 Polymers; 1.2.2 Silicone Biomaterials; 1.2.3 Metals; 1.2.4 Ceramics; 1.2.5 Mechanical Properties of Ceramics; 1.3 Summary; Questions; References; Chapter 2 TISSUE INTERACTION WITH BIOMATERIALS; 2.1 Introduction; 2.2 Protein Adsorption and Cell Adhesion; 2.2.1 Cell Adhesion; 2.3 Cell Migration; 2.4 Controlled Cell Deposition; 2.4.1 Hydrophobicity; 2.4.2 Material Chemistry and Surface Charge; 2.4.3 Surface Topography and Roughness
2.5 Extracellular Matrix2.6 Biomineralization; 2.6.1 Inorganic Structure of Life; 2.6.2 The Major Groups of Biominerals; 2.6.3 Types of Biomineralization; 2.6.4 Biomineral Types and Functions; Questions; References; Chapter 3 HOST RESPONSE OF IMPLANTED BIOMATERIALS; 3.1 Immune Response to Implanted Biomaterials; 3.1.1 Introduction; 3.1.2 Activation of the Immune System; 3.1.3 Cells of the Immune System; 3.1.4 Antibodies; 3.1.5 Antigens; 3.1.6 Antigen Processing and Presentation; 3.2 Transplant Immunology; 3.3 Biocompatibility; 3.3.1 Definition; 3.3.2 In vitro and in vivo Tests; Exercises
ReferencesChapter 4 FUNDAMENTALS OF SURFACE MODIFICATION; 4.1 Preamble; 4.2 Introduction; 4.3 Surface Properties of Biomaterials; 4.3.1 Protein Adsorption; 4.3.2 Cell Adhesion Ability; 4.3.3 Biocompatibility; 4.3.4 Biomimetics; 4.3.5 Biodegradation; 4.3.6 Hydrophobic and Hydrophilic Surfaces; 4.4 Surface Modifications; 4.4.1 Objectives of Surface Modification of Biomaterials; 4.4.2 Methods of Surface Modifications; 4.5 Applications; Questions; References; Chapter 5 MULTI-LENGTH SCALE HIERARCHY IN NATURAL MATERIALS; 5.1 Introduction; 5.2 Multi-Length-Scale Hierarchy; 5.3 Human Bone
5.4 Turtle Shell5.5 Wood; 5.6 Silk; 5.7 Nacre; 5.8 Gecko-Feet; 5.8.1 Synthesis of Gecko-Foot-Like Adhesives; 5.9 Lotus Leaf; 5.9.1 Mimicking Lotus Leaf Structure; Questions; References; Chapter 6 SUPERHYDROPHOBIC SURFACES; 6.1 Introduction; 6.2 Surfaces and Superhydrophobicity in Nature; 6.3 Classification of Surfaces; 6.3.1 Learning from Nature; 6.3.2 Role of Chemical Composition and Two-Level Roughness; 6.3.3 Mechanical Aspects of Surfaces; 6.4 Mechanics and Nature of Wetting; 6.5 Fabrication of Artificial Superhydrophobic Surfaces; 6.5.1 Soft Lithographic Imprinting; 6.5.2 Plasma Treatment
6.5.3 Sol-Gel Technique6.5.4 Combination Based on Chemical Vapor Deposition; 6.5.5 Electrospinning; 6.6 Preparation of Metallic Superhydrophobic Surfaces; 6.7 Controlled Wettability Surfaces (CWS); 6.8 Conclusions; Questions; References; Chapter 7 SURFACE ENGINEERING AND MODIFICATION FOR BIOMEDICAL APPLICATIONS; 7.1 Corrosion of Biomaterials and Need for Surface Coating for Biomedical Applications; 7.2 Surface Reactivity and Body Cell Response; 7.3 Key Requirements of Surface Coating; 7.3.1 Surface Roughness; 7.3.2 Porosity; 7.3.3 Cell Adhesion and Growth; 7.3.4 Contamination/Leaching
7.3.5 Coating Thickness and Microstructure
Record Nr. UNINA-9910812902703321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui