top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Diode lasers and photonic integrated circuits [[electronic resource] /] / Larry A. Coldren, Scott W. Corzine, Milan L. Mas̆anović
Diode lasers and photonic integrated circuits [[electronic resource] /] / Larry A. Coldren, Scott W. Corzine, Milan L. Mas̆anović
Autore Coldren L. A (Larry A.)
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (xxiii, 709 p. ) : ill
Disciplina 621.382/7
Altri autori (Persone) CorzineS. W (Scott W.)
MashanovitchMilan <1974->
Collana Wiley series in microwave and optical engineering
Soggetto topico Semiconductor lasers
Integrated circuits
ISBN 1-118-14816-9
9786613618047
1-280-58821-7
1-118-14819-3
1-118-14818-5
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910791205603321
Coldren L. A (Larry A.)  
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diode lasers and photonic integrated circuits / / Larry A. Coldren, Scott W. Corzine, Milan L. Masanovic
Diode lasers and photonic integrated circuits / / Larry A. Coldren, Scott W. Corzine, Milan L. Masanovic
Autore Coldren L. A (Larry A.)
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (xxiii, 709 p. ) : ill
Disciplina 621.382/7
Altri autori (Persone) CorzineS. W (Scott W.)
MashanovitchMilan <1974->
Collana Wiley series in microwave and optical engineering
Soggetto topico Semiconductor lasers
Integrated circuits
ISBN 9786613618047
9781118148167
1118148169
9781280588211
1280588217
9781118148198
1118148193
9781118148181
1118148185
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- List of Fundamental Constants -- Chapter 1 Ingredients -- 1.1 Introduction -- 1.2 Energy Levels and Bands in Solids -- 1.3 Spontaneous and Stimulated Transitions: The Creation of Light -- 1.4 Transverse Confinement of Carriers and Photons in Diode Lasers: The Double Heterostructure -- 1.5 Semiconductor Materials for Diode Lasers -- 1.6 Epitaxial Growth Technology -- 1.7 Lateral Confinement of Current, Carriers, and Photons for Practical Lasers -- 1.8 Practical Laser Examples -- References -- Reading List -- Problems -- Chapter 2 A Phenomenological Approach to Diode Lasers -- 2.1 Introduction -- 2.2 Carrier Generation and Recombination in Active Regions -- 2.3 Spontaneous Photon Generation and LEDs -- 2.4 Photon Generation and Loss in Laser Cavities -- 2.5 Threshold or Steady-State Gain in Lasers -- 2.6 Threshold Current and Power Out Versus Current -- 2.6.1 Basic P-I Characteristics -- 2.6.2 Gain Models and Their Use in Designing Lasers -- 2.7 Relaxation Resonance and Frequency Response -- 2.8 Characterizing Real Diode Lasers -- 2.8.1 Internal Parameters for In-Plane Lasers: áaiñ, ni, and g versus J -- 2.8.2 Internal Parameters for VCSELs: ni and g versus J, áaiñ, and am -- 2.8.3 Efficiency and Heat Flow -- 2.8.4 Temperature Dependence of Drive Current -- 2.8.5 Derivative Analysis -- References -- Reading List -- Problems -- Chapter 3 Mirrors and Resonators for Diode Lasers -- 3.1 Introduction -- 3.2 Scattering Theory -- 3.3 S and T Matrices for Some Common Elements -- 3.3.1 The Dielectric Interface -- 3.3.2 Transmission Line with No Discontinuities -- 3.3.3 Dielectric Segment and the Fabry-Perot Etalon -- 3.3.4 S-Parameter Computation Using Mason's Rule -- 3.3.5 Fabry-Perot Laser -- 3.4 Three- and Four-Mirror Laser Cavities -- 3.4.1 Three-Mirror Lasers.
3.4.2 Four-Mirror Lasers -- 3.5 Gratings -- 3.5.1 Introduction -- 3.5.2 Transmission Matrix Theory of Gratings -- 3.5.3 Effective Mirror Model for Gratings -- 3.6 Lasers Based on DBR Mirrors -- 3.6.1 Introduction -- 3.6.2 Threshold Gain and Power Out -- 3.6.3 Mode Selection in DBR-Based Lasers -- 3.6.4 VCSEL Design -- 3.6.5 In-Plane DBR Lasers and Tunability -- 3.6.6 Mode Suppression Ratio in DBR Laser -- 3.7 DFB Lasers -- 3.7.1 Introduction -- 3.7.2 Calculation of the Threshold Gains and Wavelengths -- 3.7.3 On Mode Suppression in DFB Lasers -- References -- Reading List -- Problems -- Chapter 4 Gain and Current Relations -- 4.1 Introduction -- 4.2 Radiative Transitions -- 4.2.1 Basic Definitions and Fundamental Relationships -- 4.2.2 Fundamental Description of the Radiative Transition Rate -- 4.2.3 Transition Matrix Element -- 4.2.4 Reduced Density of States -- 4.2.5 Correspondence with Einstein's Stimulated Rate Constant -- 4.3 Optical Gain -- 4.3.1 General Expression for Gain -- 4.3.2 Lineshape Broadening -- 4.3.3 General Features of the Gain Spectrum -- 4.3.4 Many-Body Effects -- 4.3.5 Polarization and Piezoelectricity -- 4.4 Spontaneous Emission -- 4.4.1 Single-Mode Spontaneous Emission Rate -- 4.4.2 Total Spontaneous Emission Rate -- 4.4.3 Spontaneous Emission Factor -- 4.4.4 Purcell Effect -- 4.5 Nonradiative Transitions -- 4.5.1 Defect and Impurity Recombination -- 4.5.2 Surface and Interface Recombination -- 4.5.3 Auger Recombination -- 4.6 Active Materials and Their Characteristics -- 4.6.1 Strained Materials and Doped Materials -- 4.6.2 Gain Spectra of Common Active Materials -- 4.6.3 Gain versus Carrier Density -- 4.6.4 Spontaneous Emission Spectra and Current versus Carrier Density -- 4.6.5 Gain versus Current Density -- 4.6.6 Experimental Gain Curves -- 4.6.7 Dependence on Well Width, Doping, and Temperature -- References.
Reading List -- Problems -- Chapter 5 Dynamic Effects -- 5.1 Introduction -- 5.2 Review of Chapter 2 -- 5.2.1 The Rate Equations -- 5.2.2 Steady-State Solutions -- Case (i): Well Below Threshold -- Case (ii): Above Threshold -- Case (iii): Below and Above Threshold -- 5.2.3 Steady-State Multimode Solutions -- 5.3 Differential Analysis of the Rate Equations -- 5.3.1 Small-Signal Frequency Response -- 5.3.2 Small-Signal Transient Response -- 5.3.3 Small-Signal FM Response or Frequency Chirping -- 5.4 Large-Signal Analysis -- 5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode Rate Equations -- 5.4.2 Mode Locking -- 5.4.3 Turn-On Delay -- 5.4.4 Large-Signal Frequency Chirping -- 5.5 Relative Intensity Noise and Linewidth -- 5.5.1 General Definition of RIN and the Spectral Density Function -- 5.5.2 The Schawlow-Townes Linewidth -- 5.5.3 The Langevin Approach -- 5.5.4 Langevin Noise Spectral Densities and RIN -- 5.5.5 Frequency Noise -- 5.5.6 Linewidth -- 5.6 Carrier Transport Effects -- 5.7 Feedback Effects and Injection Locking -- 5.7.1 Optical Feedback Effects-Static Characteristics -- 5.7.2 Injection Locking-Static Characteristics -- 5.7.3 Injection and Feedback Dynamic Characteristics and Stability -- 5.7.4 Feedback Effects on Laser Linewidth -- References -- Reading List -- Problems -- Chapter 6 Perturbation, Coupled-Mode Theory, Modal Excitations, and Applications -- 6.1 Introduction -- 6.2 Guided-Mode Power and Effective Width -- 6.3 Perturbation Theory -- 6.4 Coupled-Mode Theory: Two-Mode Coupling -- 6.4.1 Contradirectional Coupling: Gratings -- 6.4.2 DFB Lasers -- 6.4.3 Codirectional Coupling: Directional Couplers -- 6.4.4 Codirectional Coupler Filters and Electro-optic Switches -- 6.5 Modal Excitation -- 6.6 Two Mode Interference and Multimode Interference -- 6.7 Star Couplers.
6.8 Photonic Multiplexers, Demultiplexers and Routers -- 6.8.1 Arrayed Waveguide Grating De/Multiplexers and Routers -- 6.8.2 Echelle Grating based De/Multiplexers and Routers -- 6.9 Conclusions -- References -- Reading List -- Problems -- Chapter 7 Dielectric Waveguides -- 7.1 Introduction -- 7.2 Plane Waves Incident on a Planar Dielectric Boundary -- 7.3 Dielectric Waveguide Analysis Techniques -- 7.3.1 Standing Wave Technique -- 7.3.2 Transverse Resonance -- 7.3.3 WKB Method for Arbitrary Waveguide Profiles -- 7.3.4 2-D Effective Index Technique for Buried Rib Waveguides -- 7.3.5 Analysis of Curved Optical Waveguides using Conformal Mapping -- 7.3.6 Numerical Mode Solving Methods for Arbitrary Waveguide Profiles -- 7.4 Numerical Techniques for Analyzing PICs -- 7.4.1 Introduction -- 7.4.2 Implicit Finite-Difference Beam-Propagation Method -- 7.4.3 Calculation of Propagation Constants in a z-invariant Waveguide from a Beam Propagation Solution -- 7.4.4 Calculation of Eigenmode Profile from a Beam Propagation Solution -- 7.5 Goos-Hanchen Effect and Total Internal Reflection Components -- 7.5.1 Total Internal Reflection Mirrors -- 7.6 Losses in Dielectric Waveguides -- 7.6.1 Absorption Losses in Dielectric Waveguides -- 7.6.2 Scattering Losses in Dielectric Waveguides -- 7.6.3 Radiation Losses for Nominally Guided Modes -- References -- Reading List -- Problems -- Chapter 8 Photonic Integrated Circuits -- 8.1 Introduction -- 8.2 Tunable, Widely Tunable, and Externally Modulated Lasers -- 8.2.1 Two- and Three-Section In-plane DBR Lasers -- 8.2.2 Widely Tunable Diode Lasers -- 8.2.3 Other Extended Tuning Range Diode Laser Implementations -- 8.2.4 Externally Modulated Lasers -- 8.2.5 Semiconductor Optical Amplifiers -- 8.2.6 Transmitter Arrays -- 8.3 Advanced PICs -- 8.3.1 Waveguide Photodetectors.
8.3.2 Transceivers/Wavelength Converters and Triplexers -- 8.4 PICs for Coherent Optical Communications -- 8.4.1 Coherent Optical Communications Primer -- 8.4.2 Coherent Detection -- 8.4.3 Coherent Receiver Implementations -- 8.4.4 Vector Transmitters -- References -- Reading List -- Problems -- Appendix 1 Review of Elementary Solid-State Physics -- A1.1 A Quantum Mechanics Primer -- A1.1.1 Introduction -- A1.1.2 Potential Wells and Bound Electrons -- A1.2 Elements of Solid-State Physics -- A1.2.1 Electrons in Crystals and Energy Bands -- A1.2.2 Effective Mass -- A1.2.3 Density of States Using a Free-Electron (Effective Mass) Theory -- References -- Reading List -- Appendix 2 Relationships between Fermi Energy and Carrier Density and Leakage -- A2.1 General Relationships -- A2.2 Approximations for Bulk Materials -- A2.3 Carrier Leakage Over Heterobarriers -- A2.4 Internal Quantum Efficiency -- References -- Reading List -- Appendix 3 Introduction to Optical Waveguiding in Simple Double-Heterostructures -- A3.1 Introduction -- A3.2 Three-Layer Slab Dielectric Waveguide -- A3.2.1 Symmetric Slab Case -- A3.2.2 General Asymmetric Slab Case -- A3.2.3 Transverse Confinement Factor, Gx -- A3.3 Effective Index Technique for Two-Dimensional Waveguides -- A3.4 Far Fields -- References -- Reading List -- Appendix 4 Density of Optical Modes, Blackbody Radiation, and Spontaneous Emission Factor -- A4.1 Optical Cavity Modes -- A4.2 Blackbody Radiation -- A4.3 Spontaneous Emission Factor, bsp Reading List -- Appendix 5 Modal Gain, Modal Loss, and Confinement Factors -- A5.1 Introduction -- A5.2 Classical Definition of Modal Gain -- A5.3 Modal Gain and Confinement Factors -- A5.4 Internal Modal Loss -- A5.5 More Exact Analysis of the Active/Passive Section Cavity -- A5.5.1 Axial Confinement Factor -- A5.5.2 Threshold Condition and Differential Efficiency.
A5.6 Effects of Dispersion on Modal Gain.
Record Nr. UNINA-9910956328303321
Coldren L. A (Larry A.)  
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Autore McAulay Alastair D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2011]
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.4/46
623.446
Soggetto topico Lasers - Military applications
Laser weapons
Soggetto genere / forma Electronic books.
ISBN 1-283-37443-9
9786613374431
1-118-01954-7
1-118-01953-9
1-118-01955-5
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS
1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ́e Sphere; 2.2.4 Finding Point on Poincar ́e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION
3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING
3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm
4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence
5.2.3 Atmospheric Temporal Statistics
Record Nr. UNINA-9910130871403321
McAulay Alastair D.  
Hoboken, New Jersey : , : Wiley, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Autore McAulay Alastair D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2011]
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.4/46
623.446
Soggetto topico Lasers - Military applications
Laser weapons
ISBN 1-283-37443-9
9786613374431
1-118-01954-7
1-118-01953-9
1-118-01955-5
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS
1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ́e Sphere; 2.2.4 Finding Point on Poincar ́e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION
3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING
3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm
4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence
5.2.3 Atmospheric Temporal Statistics
Record Nr. UNINA-9910830703603321
McAulay Alastair D.  
Hoboken, New Jersey : , : Wiley, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Autore McAulay Alastair D
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2011
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.4/46
Soggetto topico Lasers - Military applications
Laser weapons
ISBN 9786613374431
9781283374439
1283374439
9781118019542
1118019547
9781118019535
1118019539
9781118019559
1118019555
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS
1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ́e Sphere; 2.2.4 Finding Point on Poincar ́e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION
3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING
3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm
4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence
5.2.3 Atmospheric Temporal Statistics
Record Nr. UNINA-9911020248003321
McAulay Alastair D  
Hoboken, NJ, : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photonics . Volume III Photonics technology and instrumentation : scientific foundations, technology and applications / / edited by David L. Andrews, School of Chemical Sciences, University of East Anglia Norwich, UK ; contributors, Ann Bui [and thirty one others]
Photonics . Volume III Photonics technology and instrumentation : scientific foundations, technology and applications / / edited by David L. Andrews, School of Chemical Sciences, University of East Anglia Norwich, UK ; contributors, Ann Bui [and thirty one others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (544 p.)
Disciplina 621.36/5
Collana Photonics Technology and Intrumentation
Soggetto topico Optoelectronic devices
Photonics - Equipment and supplies
ISBN 1-119-01177-9
1-119-01178-7
1-119-01176-0
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Photonics; Contents; List of Contributors; Preface; 1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems; 1.1 A Brief History of SSL [1]; 1.1.1 Stepping Stones: Red and Blue LEDs; 1.1.2 State-of-the-Art SSL Device Architecture: InGaN Blue LED + Green/Red Phosphors; 1.1.3 State-of-the-Art SSL Lamp Architectures; 1.1.4 SSL Applications; 1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL; 1.2.1 Characteristics: Multicolor Electroluminescence, Narrowband Spectra, High Modulation Speed; 1.2.2 Potential Future System Applications
1.2.3 Benefits: "Effective" Efficiency, Consumption of Light, and GDP1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence; 1.3.1 Blue Materials and Devices; 1.3.2 Green Materials and Devices; 1.3.3 Red Materials and Devices; 1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space; 1.4.1 Optical Integration: Mixing Colors While Maintaining Low Etendue; 1.4.2 Optoelectronic Integration: Reliability, Functionality, and Cost; 1.4.3 Optomechanical Integration: Control of Flux in Space; 1.5 Summary and Conclusions; Acknowledgments
References2 Integrated Optics Using High Contrast Gratings; 2.1 Introduction; 2.2 Physics of Near-Wavelength Grating; 2.2.1 Overview of the Underlying Principles; 2.2.2 Analytical Formulation; 2.2.3 HCG Supermodes and Their Interferences; 2.2.4 HCG Band Diagram; 2.3 Applications of HCGs; 2.3.1 High-Contrast-Grating-Based VCSELs; 2.3.2 All-Pass Optical Filter Array as Optical Phase Array; 2.3.3 Planar High Numerical Aperture Focusing Reflectors and Lenses; 2.3.4 Resonator with Surface-Normal Optical Coupling; 2.3.5 HCG for High-Precision Metrology
2.3.6 High Contrast Grating Hollow-Core Waveguide2.3.7 HCG Photon Cage; 2.3.8 Vertical-to-in-Plane Optical Coupler; 2.4 Summary; Acknowledgments; References; 3 Plasmonic Crystals: Controlling Light With Periodically Structured Metal Films; 3.1 Introduction; 3.2 Surface Plasmon Polaritons; 3.3 Basics of Surface Plasmon Polaritonic Crystals; 3.3.1 Bloch Mode Structure; 3.3.2 Enhanced Optical Transmission Through Plasmonic Crystals; 3.3.3 Improving Surface Transparency of Dielectrics with Nanostructured Metal; 3.4 Polarization and Wavelength Management with Plasmonic Crystals
3.4.1 Polarization Properties of Plasmonic Crystals with Rectangular Basis3.4.2 Birefringence of Plasmonic Crystals with Elliptical Basis; 3.4.3 Polarization Superprism Effect; 3.4.4 Four-Level Polarization Discriminator Based on SPPCs; 3.4.5 Wavelength Demultiplexing with Plasmonic Crystals; 3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals; 3.6 Active Control of Light with Plasmonic Crystals; 3.6.1 Electronically Controlled SPP Dispersion; 3.6.2 Magneto-Optical Control of Plasmonic Crystal Transmission
3.6.3 Acoustic Effects in Plasmonic Crystals
Record Nr. UNINA-9910132268503321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photonics . Volume III Photonics technology and instrumentation : scientific foundations, technology and applications / / edited by David L. Andrews, School of Chemical Sciences, University of East Anglia Norwich, UK ; contributors, Ann Bui [and thirty one others]
Photonics . Volume III Photonics technology and instrumentation : scientific foundations, technology and applications / / edited by David L. Andrews, School of Chemical Sciences, University of East Anglia Norwich, UK ; contributors, Ann Bui [and thirty one others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (544 p.)
Disciplina 621.36/5
Collana Photonics Technology and Intrumentation
Soggetto topico Optoelectronic devices
Photonics - Equipment and supplies
ISBN 1-119-01177-9
1-119-01178-7
1-119-01176-0
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Photonics; Contents; List of Contributors; Preface; 1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems; 1.1 A Brief History of SSL [1]; 1.1.1 Stepping Stones: Red and Blue LEDs; 1.1.2 State-of-the-Art SSL Device Architecture: InGaN Blue LED + Green/Red Phosphors; 1.1.3 State-of-the-Art SSL Lamp Architectures; 1.1.4 SSL Applications; 1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL; 1.2.1 Characteristics: Multicolor Electroluminescence, Narrowband Spectra, High Modulation Speed; 1.2.2 Potential Future System Applications
1.2.3 Benefits: "Effective" Efficiency, Consumption of Light, and GDP1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence; 1.3.1 Blue Materials and Devices; 1.3.2 Green Materials and Devices; 1.3.3 Red Materials and Devices; 1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space; 1.4.1 Optical Integration: Mixing Colors While Maintaining Low Etendue; 1.4.2 Optoelectronic Integration: Reliability, Functionality, and Cost; 1.4.3 Optomechanical Integration: Control of Flux in Space; 1.5 Summary and Conclusions; Acknowledgments
References2 Integrated Optics Using High Contrast Gratings; 2.1 Introduction; 2.2 Physics of Near-Wavelength Grating; 2.2.1 Overview of the Underlying Principles; 2.2.2 Analytical Formulation; 2.2.3 HCG Supermodes and Their Interferences; 2.2.4 HCG Band Diagram; 2.3 Applications of HCGs; 2.3.1 High-Contrast-Grating-Based VCSELs; 2.3.2 All-Pass Optical Filter Array as Optical Phase Array; 2.3.3 Planar High Numerical Aperture Focusing Reflectors and Lenses; 2.3.4 Resonator with Surface-Normal Optical Coupling; 2.3.5 HCG for High-Precision Metrology
2.3.6 High Contrast Grating Hollow-Core Waveguide2.3.7 HCG Photon Cage; 2.3.8 Vertical-to-in-Plane Optical Coupler; 2.4 Summary; Acknowledgments; References; 3 Plasmonic Crystals: Controlling Light With Periodically Structured Metal Films; 3.1 Introduction; 3.2 Surface Plasmon Polaritons; 3.3 Basics of Surface Plasmon Polaritonic Crystals; 3.3.1 Bloch Mode Structure; 3.3.2 Enhanced Optical Transmission Through Plasmonic Crystals; 3.3.3 Improving Surface Transparency of Dielectrics with Nanostructured Metal; 3.4 Polarization and Wavelength Management with Plasmonic Crystals
3.4.1 Polarization Properties of Plasmonic Crystals with Rectangular Basis3.4.2 Birefringence of Plasmonic Crystals with Elliptical Basis; 3.4.3 Polarization Superprism Effect; 3.4.4 Four-Level Polarization Discriminator Based on SPPCs; 3.4.5 Wavelength Demultiplexing with Plasmonic Crystals; 3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals; 3.6 Active Control of Light with Plasmonic Crystals; 3.6.1 Electronically Controlled SPP Dispersion; 3.6.2 Magneto-Optical Control of Plasmonic Crystal Transmission
3.6.3 Acoustic Effects in Plasmonic Crystals
Record Nr. UNINA-9910824785003321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui