Advanced structural damage detection [[electronic resource] ] : from theory to engineering applications / / Tadeusz Stepinski, Tadeusz Uhl, Wieslaw Staszewski |
Autore | Stepinski Tadeusz |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons, 2013 |
Descrizione fisica | 1 online resource (348 p.) |
Disciplina | 624.1/76 |
Altri autori (Persone) |
UhlTadeusz
StaszewskiW. J |
Soggetto topico |
Structural health monitoring
Structural failures Materials - Testing |
ISBN |
1-118-53612-6
1-118-53614-2 1-118-53611-8 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Structural Damage Detection: From Theory to Engineering Applications; Copyright; Contents; List of Contributors; Preface; Acknowledgments; 1 Introduction; 1.1 Introduction; 1.2 Structural Damage and Structural Damage Detection; 1.3 SHM as an Evolutionary Step of NDT; 1.4 Interdisciplinary Nature of SHM; 1.5 Structure of SHM Systems; 1.5.1 Local SHM Methods; 1.5.2 Global SHM Methods; 1.6 Aspects Related to SHM Systems Design; 1.6.1 Design Principles; References; 2 Numerical Simulation of Elastic Wave Propagation; 2.1 Introduction; 2.2 Modelling Methods; 2.2.1 Finite Difference Method
2.2.2 Finite Element Method 2.2.3 Spectral Element Method; 2.2.4 Boundary Element Method; 2.2.5 Finite Volume Method; 2.2.6 Other Numerical Methods; 2.2.7 Time Discretization; 2.3 Hybrid and Multiscale Modelling; 2.4 The LISA Method; 2.4.1 GPU Implementation; 2.4.2 Developed GPU-Based LISA Software Package; 2.4.3 cuLISA3D Solver's Performance; 2.5 Coupling Scheme; 2.6 Damage Modelling; 2.7 Absorbing Boundary Conditions for Wave Propagation; 2.8 Conclusions; References; 3 Model Assisted Probability of Detection in Structural Health Monitoring; 3.1 Introduction; 3.2 Probability of Detection 3.3 Theoretical Aspects of POD 3.3.1 Hit/Miss Analysis; 3.3.2 Signal Response Analysis; 3.3.3 Confidence Bounds; 3.3.4 Probability of False Alarm; 3.4 From POD to MAPOD; 3.5 POD for SHM; 3.6 MAPOD of an SHM System Considering Flaw GeometryUncertainty; 3.6.1 SHM System; 3.6.2 Simulation Framework; 3.6.3 Reliability Assessment; 3.7 Conclusions; References; 4 Nonlinear Acoustics; 4.1 Introduction; 4.2 Theoretical Background; 4.2.1 Contact Acoustics Nonlinearity; 4.2.2 Nonlinear Resonance; 4.2.3 Frequency Mixing; 4.3 Damage Detection Methods and Applications 4.3.1 Nonlinear Acoustics for Damage Detection 4.4 Conclusions; References; 5 Piezocomposite Transducers for Guided Waves; 5.1 Introduction; 5.2 Piezoelectric Transducers for Guided Waves; 5.2.1 Piezoelectric Patches; 5.2.2 Piezocomposite Based Transducers; 5.2.3 Interdigital Transducers; 5.3 Novel Type of IDT-DS Based on MFC; 5.4 Generation of Lamb Waves using Piezocomposite Transducers; 5.4.1 Numerical Simulations; 5.4.2 Experimental Verification; 5.4.3 Numerical and Experimental Results; 5.4.4 Discussion; 5.5 Lamb Wave Sensing Characteristics of the IDT-DS4; 5.5.1 Numerical Simulations 5.5.2 Experimental Verification 5.6 Conclusions; Appendix; References; 6 Electromechanical Impedance Method; 6.1 Introduction; 6.2 Theoretical Background; 6.2.1 Definition of the Electromechanical Impedance; 6.2.2 Measurement Techniques; 6.2.3 Damage Detection Algorithms; 6.3 Numerical Simulations; 6.3.1 Modelling Electromechanical Impedance with the use of FEM; 6.3.2 Uncertainty and Sensitivity Analyses; 6.3.3 Discussion; 6.4 The Developed SHM System; 6.5 Laboratory Tests; 6.5.1 Experiments Performed for Plate Structures; 6.5.2 Condition Monitoring of a Pipeline Section; 6.5.3 Discussion 6.6 Verification of the Method on Aircraft Structures |
Record Nr. | UNINA-9910141604903321 |
Stepinski Tadeusz | ||
Chichester, West Sussex, U.K., : John Wiley & Sons, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced structural damage detection : from theory to engineering applications / / Tadeusz Stepinski, Tadeusz Uhl, Wieslaw Staszewski |
Autore | Stepinski Tadeusz |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons, 2013 |
Descrizione fisica | 1 online resource (348 p.) |
Disciplina | 624.1/76 |
Altri autori (Persone) |
UhlTadeusz
StaszewskiW. J |
Soggetto topico |
Structural health monitoring
Structural failures Materials - Testing |
ISBN |
1-118-53612-6
1-118-53614-2 1-118-53611-8 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Structural Damage Detection: From Theory to Engineering Applications; Copyright; Contents; List of Contributors; Preface; Acknowledgments; 1 Introduction; 1.1 Introduction; 1.2 Structural Damage and Structural Damage Detection; 1.3 SHM as an Evolutionary Step of NDT; 1.4 Interdisciplinary Nature of SHM; 1.5 Structure of SHM Systems; 1.5.1 Local SHM Methods; 1.5.2 Global SHM Methods; 1.6 Aspects Related to SHM Systems Design; 1.6.1 Design Principles; References; 2 Numerical Simulation of Elastic Wave Propagation; 2.1 Introduction; 2.2 Modelling Methods; 2.2.1 Finite Difference Method
2.2.2 Finite Element Method 2.2.3 Spectral Element Method; 2.2.4 Boundary Element Method; 2.2.5 Finite Volume Method; 2.2.6 Other Numerical Methods; 2.2.7 Time Discretization; 2.3 Hybrid and Multiscale Modelling; 2.4 The LISA Method; 2.4.1 GPU Implementation; 2.4.2 Developed GPU-Based LISA Software Package; 2.4.3 cuLISA3D Solver's Performance; 2.5 Coupling Scheme; 2.6 Damage Modelling; 2.7 Absorbing Boundary Conditions for Wave Propagation; 2.8 Conclusions; References; 3 Model Assisted Probability of Detection in Structural Health Monitoring; 3.1 Introduction; 3.2 Probability of Detection 3.3 Theoretical Aspects of POD 3.3.1 Hit/Miss Analysis; 3.3.2 Signal Response Analysis; 3.3.3 Confidence Bounds; 3.3.4 Probability of False Alarm; 3.4 From POD to MAPOD; 3.5 POD for SHM; 3.6 MAPOD of an SHM System Considering Flaw GeometryUncertainty; 3.6.1 SHM System; 3.6.2 Simulation Framework; 3.6.3 Reliability Assessment; 3.7 Conclusions; References; 4 Nonlinear Acoustics; 4.1 Introduction; 4.2 Theoretical Background; 4.2.1 Contact Acoustics Nonlinearity; 4.2.2 Nonlinear Resonance; 4.2.3 Frequency Mixing; 4.3 Damage Detection Methods and Applications 4.3.1 Nonlinear Acoustics for Damage Detection 4.4 Conclusions; References; 5 Piezocomposite Transducers for Guided Waves; 5.1 Introduction; 5.2 Piezoelectric Transducers for Guided Waves; 5.2.1 Piezoelectric Patches; 5.2.2 Piezocomposite Based Transducers; 5.2.3 Interdigital Transducers; 5.3 Novel Type of IDT-DS Based on MFC; 5.4 Generation of Lamb Waves using Piezocomposite Transducers; 5.4.1 Numerical Simulations; 5.4.2 Experimental Verification; 5.4.3 Numerical and Experimental Results; 5.4.4 Discussion; 5.5 Lamb Wave Sensing Characteristics of the IDT-DS4; 5.5.1 Numerical Simulations 5.5.2 Experimental Verification 5.6 Conclusions; Appendix; References; 6 Electromechanical Impedance Method; 6.1 Introduction; 6.2 Theoretical Background; 6.2.1 Definition of the Electromechanical Impedance; 6.2.2 Measurement Techniques; 6.2.3 Damage Detection Algorithms; 6.3 Numerical Simulations; 6.3.1 Modelling Electromechanical Impedance with the use of FEM; 6.3.2 Uncertainty and Sensitivity Analyses; 6.3.3 Discussion; 6.4 The Developed SHM System; 6.5 Laboratory Tests; 6.5.1 Experiments Performed for Plate Structures; 6.5.2 Condition Monitoring of a Pipeline Section; 6.5.3 Discussion 6.6 Verification of the Method on Aircraft Structures |
Record Nr. | UNINA-9910817906403321 |
Stepinski Tadeusz | ||
Chichester, West Sussex, U.K., : John Wiley & Sons, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic identification and estimation methods in feedback control systems / / Hebertt Sira-ramírez |
Autore | Sira-ramírez Herbett J. |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, , 2014 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina | 629.8/301512 |
Collana | Wiley Series in Dynamics and Control of Electromechanical Systems |
Soggetto topico |
Feedback control systems - Mathematical models
Control theory - Mathematics Differential algebra |
ISBN |
1-118-73058-5
1-118-73059-3 1-118-73057-7 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Series Preface; Preface; Chapter 1 Introduction; 1.1 Feedback Control of Dynamic Systems; 1.1.1 Feedback; 1.1.2 Why Do We Need Feedback?; 1.2 The Parameter Identification Problem; 1.2.1 Identifying a System; 1.3 A Brief Survey on Parameter Identification; 1.4 The State Estimation Problem; 1.4.1 Observers; 1.4.2 Reconstructing the State via Time Derivative Estimation; 1.5 Algebraic Methods in Control Theory: Differences from Existing Methodologies; 1.6 Outline of the Book; References; Chapter 2 Algebraic Parameter Identification in Linear Systems
2.1 Introduction 2.1.1 The Parameter-Estimation Problem in Linear Systems; 2.2 Introductory Examples; 2.2.1 Dragging an Unknown Mass in Open Loop; 2.2.2 A Perturbed First-Order System; 2.2.3 The Visual Servoing Problem; 2.2.4 Balancing of the Plane Rotor; 2.2.5 On the Control of the Linear Motor; 2.2.6 Double-Bridge Buck Converter; 2.2.7 Closed-Loop Behavior; 2.2.8 Control of an unknown variable gain motor; 2.2.9 Identifying Classical Controller Parameters; 2.3 A Case Study Introducing a ""Sentinel'' Criterion; 2.3.1 A Suspension System Model; 2.4 Remarks; References Chapter 3 Algebraic Parameter Identification in Nonlinear Systems 3.1 Introduction; 3.2 Algebraic Parameter Identification for Nonlinear Systems; 3.2.1 Controlling an Uncertain Pendulum; 3.2.2 A Block-Driving Problem; 3.2.3 The Fully Actuated Rigid Body; 3.2.4 Parameter Identification Under Sliding Motions; 3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor; 3.2.6 Identification and Control of a Convey Crane; 3.2.7 Identification of a Magnetic Levitation System; 3.3 An Alternative Construction of the System of Linear Equations; 3.3.1 Genesio-Tesi Chaotic System 3.3.2 The Ueda Oscillator 3.3.3 Identification and Control of an Uncertain Brushless DC Motor; 3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel Pendulum; 3.3.5 Algebraic Parameter Identification for Induction Motors; 3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index; 3.4 Remarks; References; Chapter 4 Algebraic Parameter Identification in Discrete-Time Systems; 4.1 Introduction; 4.2 Algebraic Parameter Identification in Discrete-Time Systems; 4.2.1 Main Purpose of the Chapter; 4.2.2 Problem Formulation and Assumptions 4.2.3 An Introductory Example 4.2.4 Samuelson's Model of the National Economy; 4.2.5 Heating of a Slab from Two Boundary Points; 4.2.6 An Exact Backward Shift Reconstructor; 4.3 A Nonlinear Filtering Scheme; 4.3.1 Hénon System; 4.3.2 A Hard Disk Drive; 4.3.3 The Visual Servo Tracking Problem; 4.3.4 A Shape Control Problem in a Rolling Mill; 4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of Exact Discretization; 4.4 Algebraic Identification in Fast-Sampled Linear Systems; 4.4.1 The Delta-Operator Approach: A Theoretical Framework; 4.4.2 Delta-Transform Properties 4.4.3 A DC Motor Example |
Record Nr. | UNINA-9910140271903321 |
Sira-ramírez Herbett J. | ||
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic identification and estimation methods in feedback control systems / / Hebertt Sira-ramírez |
Autore | Sira-ramírez Herbett J. |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, , 2014 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina | 629.8/301512 |
Collana | Wiley Series in Dynamics and Control of Electromechanical Systems |
Soggetto topico |
Feedback control systems - Mathematical models
Control theory - Mathematics Differential algebra |
ISBN |
1-118-73058-5
1-118-73059-3 1-118-73057-7 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Series Preface; Preface; Chapter 1 Introduction; 1.1 Feedback Control of Dynamic Systems; 1.1.1 Feedback; 1.1.2 Why Do We Need Feedback?; 1.2 The Parameter Identification Problem; 1.2.1 Identifying a System; 1.3 A Brief Survey on Parameter Identification; 1.4 The State Estimation Problem; 1.4.1 Observers; 1.4.2 Reconstructing the State via Time Derivative Estimation; 1.5 Algebraic Methods in Control Theory: Differences from Existing Methodologies; 1.6 Outline of the Book; References; Chapter 2 Algebraic Parameter Identification in Linear Systems
2.1 Introduction 2.1.1 The Parameter-Estimation Problem in Linear Systems; 2.2 Introductory Examples; 2.2.1 Dragging an Unknown Mass in Open Loop; 2.2.2 A Perturbed First-Order System; 2.2.3 The Visual Servoing Problem; 2.2.4 Balancing of the Plane Rotor; 2.2.5 On the Control of the Linear Motor; 2.2.6 Double-Bridge Buck Converter; 2.2.7 Closed-Loop Behavior; 2.2.8 Control of an unknown variable gain motor; 2.2.9 Identifying Classical Controller Parameters; 2.3 A Case Study Introducing a ""Sentinel'' Criterion; 2.3.1 A Suspension System Model; 2.4 Remarks; References Chapter 3 Algebraic Parameter Identification in Nonlinear Systems 3.1 Introduction; 3.2 Algebraic Parameter Identification for Nonlinear Systems; 3.2.1 Controlling an Uncertain Pendulum; 3.2.2 A Block-Driving Problem; 3.2.3 The Fully Actuated Rigid Body; 3.2.4 Parameter Identification Under Sliding Motions; 3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor; 3.2.6 Identification and Control of a Convey Crane; 3.2.7 Identification of a Magnetic Levitation System; 3.3 An Alternative Construction of the System of Linear Equations; 3.3.1 Genesio-Tesi Chaotic System 3.3.2 The Ueda Oscillator 3.3.3 Identification and Control of an Uncertain Brushless DC Motor; 3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel Pendulum; 3.3.5 Algebraic Parameter Identification for Induction Motors; 3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index; 3.4 Remarks; References; Chapter 4 Algebraic Parameter Identification in Discrete-Time Systems; 4.1 Introduction; 4.2 Algebraic Parameter Identification in Discrete-Time Systems; 4.2.1 Main Purpose of the Chapter; 4.2.2 Problem Formulation and Assumptions 4.2.3 An Introductory Example 4.2.4 Samuelson's Model of the National Economy; 4.2.5 Heating of a Slab from Two Boundary Points; 4.2.6 An Exact Backward Shift Reconstructor; 4.3 A Nonlinear Filtering Scheme; 4.3.1 Hénon System; 4.3.2 A Hard Disk Drive; 4.3.3 The Visual Servo Tracking Problem; 4.3.4 A Shape Control Problem in a Rolling Mill; 4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of Exact Discretization; 4.4 Algebraic Identification in Fast-Sampled Linear Systems; 4.4.1 The Delta-Operator Approach: A Theoretical Framework; 4.4.2 Delta-Transform Properties 4.4.3 A DC Motor Example |
Record Nr. | UNINA-9910808943903321 |
Sira-ramírez Herbett J. | ||
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Cavitation and bubble dynamics / / Christopher E. Brennen, California Institute of Technology [[electronic resource]] |
Autore | Brennen Christopher E (Christopher Earls), <1941-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2014 |
Descrizione fisica | 1 online resource (xvii, 249 pages) : digital, PDF file(s) |
Disciplina | 532/.597 |
Soggetto topico | Bubbles - Dynamics |
ISBN |
1-107-50324-8
1-139-89546-X 1-107-50418-X 1-107-49768-X 1-107-51725-7 1-107-50145-8 1-107-50683-2 1-107-33876-X |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Phase change, nucleation, and cavitation -- Spherical bubble dynamics -- Cavitation bubble collapse -- Dynamics of oscillating bubbles -- Translation of bubbles -- Homogeneous bubbly flows -- Cavitating flows -- Free streamline flows. |
Altri titoli varianti | Cavitation & Bubble Dynamics |
Record Nr. | UNINA-9910787770903321 |
Brennen Christopher E (Christopher Earls), <1941-> | ||
Cambridge : , : Cambridge University Press, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Cavitation and bubble dynamics / / Christopher E. Brennen, California Institute of Technology |
Autore | Brennen Christopher E (Christopher Earls), <1941-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2014 |
Descrizione fisica | 1 online resource (xvii, 249 pages) : digital, PDF file(s) |
Disciplina | 532/.597 |
Soggetto topico | Bubbles - Dynamics |
ISBN |
1-107-50324-8
1-139-89546-X 1-107-50418-X 1-107-49768-X 1-107-51725-7 1-107-50145-8 1-107-50683-2 1-107-33876-X |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Phase change, nucleation, and cavitation -- Spherical bubble dynamics -- Cavitation bubble collapse -- Dynamics of oscillating bubbles -- Translation of bubbles -- Homogeneous bubbly flows -- Cavitating flows -- Free streamline flows. |
Altri titoli varianti | Cavitation & Bubble Dynamics |
Record Nr. | UNINA-9910816166203321 |
Brennen Christopher E (Christopher Earls), <1941-> | ||
Cambridge : , : Cambridge University Press, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Engineering risk assessment and design with subset simulation / / Siu-Kui Au, Yu Wang |
Autore | Au Siu-Kui |
Pubbl/distr/stampa | Singapore : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (337 p.) |
Disciplina | 519.2 |
Soggetto topico |
Risk assessment - Mathematics
Engineering design - Mathematics Set theory |
ISBN |
1-118-39807-6
1-118-39805-X 1-118-39806-8 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ENGINEERING RISK ASSESSMENT WITH SUBSET SIMULATION; Contents; About the Authors; Preface; Acknowledgements; Nomenclature; 1 Introduction; 1.1 Formulation; 1.2 Context; 1.3 Extreme Value Theory; 1.4 Exclusion; 1.5 Organization of this Book; 1.6 Remarks on the Use of Risk Analysis; 1.7 Conventions; References; 2 A Line of Thought; 2.1 Numerical Integration; 2.2 Perturbation; 2.3 Gaussian Approximation; 2.3.1 Single Design Point; 2.3.2 Multiple Design Points; 2.4 First/Second-Order Reliability Method; 2.4.1 Context; 2.4.2 Design Point; 2.4.3 FORM; 2.4.4 SORM
2.4.5 Connection with Gaussian Approximation 2.5 Direct Monte Carlo; 2.5.1 Unbiasedness; 2.5.2 Mean-Square Convergence; 2.5.3 Asymptotic Distribution (Central Limit Theorem); 2.5.4 Almost Sure Convergence (Strong Law of Large Numbers); 2.5.5 Failure Probability Estimation; 2.5.6 CCDF Perspective; 2.5.7 Rare Event Problems; 2.5.8 Variance Reduction by Conditioning; 2.6 Importance Sampling; 2.6.1 Optimal Sampling Density; 2.6.2 Failure Probability Estimation; 2.6.3 Shifting Distribution; 2.6.4 Benefits and Side-Effects; 2.6.5 Bias; 2.6.6 Curse of Dimension; 2.6.7 CCDF Perspective 2.7 Subset Simulation 2.8 Remarks on Reliability Methods; 2A.1 Appendix: Laplace Type Integrals; References; 3 Simulation of Standard Random Variable and Process; 3.1 Pseudo-Random Number; 3.2 Inversion Principle; 3.2.1 Continuous Random Variable; 3.2.2 Discrete Random Variables; 3.3 Mixing Principle; 3.4 Rejection Principle; 3.4.1 Acceptance Probability; 3.5 Samples of Standard Distribution; 3.6 Dependent Gaussian Variables; 3.6.1 Cholesky Factorization; 3.6.2 Eigenvector Factorization; 3.7 Dependent Non-Gaussian Variables; 3.7.1 Nataf Transformation; 3.7.2 Copula 3.8 Correlation through Constraint 3.8.1 Uniform in Sphere; 3.8.2 Gaussian on Hyper-plane; 3.9 Stationary Gaussian Process; 3.9.1 Autocorrelation Function and Power Spectral Density; 3.9.2 Discrete-Time Process; 3.9.3 Sample Autocorrelation Function and Periodogram; 3.9.4 Time Domain Representation; 3.9.5 The ARMA Process; 3.9.6 Frequency Domain Representation; 3.9.7 Remarks; 3A.1 Appendix: Variance of Linear System Driven by White Noise; 3A.2 Appendix: Verification of Spectral Formula; References; 4 Markov Chain Monte Carlo; 4.1 Problem Context; 4.2 Metropolis Algorithm; 4.2.1 Proposal PDF 4.2.2 Statistical Properties 4.2.3 Detailed Balance; 4.2.4 Biased Rejection; 4.2.5 Reversible Chain; 4.3 Metropolis-Hastings Algorithm; 4.3.1 Detailed Balance; 4.3.2 Independent Proposal and Importance Sampling; 4.4 Statistical Estimation; 4.4.1 Properties of Estimator; 4.4.2 Chain Correlation; 4.4.3 Ergodicity; 4.5 Generation of Conditional Samples; 4.5.1 Curse of Dimension; 4.5.2 Independent Component MCMC; References; 5 Subset Simulation; 5.1 Standard Algorithm; 5.1.1 Simulation Level 0 (Direct Monte Carlo); 5.1.2 Simulation Level (MCMC); 5.2 Understanding the Algorithm 5.2.1 Direct Monte Carlo Indispensible |
Record Nr. | UNINA-9910132215503321 |
Au Siu-Kui | ||
Singapore : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Engineering risk assessment and design with subset simulation / / Siu-Kui Au, Yu Wang |
Autore | Au Siu-Kui |
Pubbl/distr/stampa | Singapore : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (337 p.) |
Disciplina | 519.2 |
Soggetto topico |
Risk assessment - Mathematics
Engineering design - Mathematics Set theory |
ISBN |
1-118-39807-6
1-118-39805-X 1-118-39806-8 |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ENGINEERING RISK ASSESSMENT WITH SUBSET SIMULATION; Contents; About the Authors; Preface; Acknowledgements; Nomenclature; 1 Introduction; 1.1 Formulation; 1.2 Context; 1.3 Extreme Value Theory; 1.4 Exclusion; 1.5 Organization of this Book; 1.6 Remarks on the Use of Risk Analysis; 1.7 Conventions; References; 2 A Line of Thought; 2.1 Numerical Integration; 2.2 Perturbation; 2.3 Gaussian Approximation; 2.3.1 Single Design Point; 2.3.2 Multiple Design Points; 2.4 First/Second-Order Reliability Method; 2.4.1 Context; 2.4.2 Design Point; 2.4.3 FORM; 2.4.4 SORM
2.4.5 Connection with Gaussian Approximation 2.5 Direct Monte Carlo; 2.5.1 Unbiasedness; 2.5.2 Mean-Square Convergence; 2.5.3 Asymptotic Distribution (Central Limit Theorem); 2.5.4 Almost Sure Convergence (Strong Law of Large Numbers); 2.5.5 Failure Probability Estimation; 2.5.6 CCDF Perspective; 2.5.7 Rare Event Problems; 2.5.8 Variance Reduction by Conditioning; 2.6 Importance Sampling; 2.6.1 Optimal Sampling Density; 2.6.2 Failure Probability Estimation; 2.6.3 Shifting Distribution; 2.6.4 Benefits and Side-Effects; 2.6.5 Bias; 2.6.6 Curse of Dimension; 2.6.7 CCDF Perspective 2.7 Subset Simulation 2.8 Remarks on Reliability Methods; 2A.1 Appendix: Laplace Type Integrals; References; 3 Simulation of Standard Random Variable and Process; 3.1 Pseudo-Random Number; 3.2 Inversion Principle; 3.2.1 Continuous Random Variable; 3.2.2 Discrete Random Variables; 3.3 Mixing Principle; 3.4 Rejection Principle; 3.4.1 Acceptance Probability; 3.5 Samples of Standard Distribution; 3.6 Dependent Gaussian Variables; 3.6.1 Cholesky Factorization; 3.6.2 Eigenvector Factorization; 3.7 Dependent Non-Gaussian Variables; 3.7.1 Nataf Transformation; 3.7.2 Copula 3.8 Correlation through Constraint 3.8.1 Uniform in Sphere; 3.8.2 Gaussian on Hyper-plane; 3.9 Stationary Gaussian Process; 3.9.1 Autocorrelation Function and Power Spectral Density; 3.9.2 Discrete-Time Process; 3.9.3 Sample Autocorrelation Function and Periodogram; 3.9.4 Time Domain Representation; 3.9.5 The ARMA Process; 3.9.6 Frequency Domain Representation; 3.9.7 Remarks; 3A.1 Appendix: Variance of Linear System Driven by White Noise; 3A.2 Appendix: Verification of Spectral Formula; References; 4 Markov Chain Monte Carlo; 4.1 Problem Context; 4.2 Metropolis Algorithm; 4.2.1 Proposal PDF 4.2.2 Statistical Properties 4.2.3 Detailed Balance; 4.2.4 Biased Rejection; 4.2.5 Reversible Chain; 4.3 Metropolis-Hastings Algorithm; 4.3.1 Detailed Balance; 4.3.2 Independent Proposal and Importance Sampling; 4.4 Statistical Estimation; 4.4.1 Properties of Estimator; 4.4.2 Chain Correlation; 4.4.3 Ergodicity; 4.5 Generation of Conditional Samples; 4.5.1 Curse of Dimension; 4.5.2 Independent Component MCMC; References; 5 Subset Simulation; 5.1 Standard Algorithm; 5.1.1 Simulation Level 0 (Direct Monte Carlo); 5.1.2 Simulation Level (MCMC); 5.2 Understanding the Algorithm 5.2.1 Direct Monte Carlo Indispensible |
Record Nr. | UNINA-9910829294603321 |
Au Siu-Kui | ||
Singapore : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Flexible multibody dynamics : efficient formulations and applications / / Arun K. Banerjee |
Autore | Banerjee Arun K. |
Pubbl/distr/stampa | West Sussex, England : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (339 p.) |
Disciplina | 621.8/11 |
Soggetto topico |
Machinery, Dynamics of
Multibody systems - Mathematical models |
ISBN |
1-119-01561-8
1-119-01560-X |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright; Dedication; Preface; 1 Derivation of Equations of Motion; 1.1 Available Analytical Methods and the Reason for Choosing Kane's Method; 1.2 Kane's Method of Deriving Equations of Motion; 1.3 Comparison to Derivation of Equations of Motion by Lagrange's Method; 1.4 Kane's Method of Direct Derivation of Linearized Dynamical Equation; 1.5 Prematurely Linearized Equations and a Posteriori Correction by ad hoc Addition of Geometric Stiffness due to Inertia Loads; 1.6 Kane's Equations with Undetermined Multipliers for Constrained Motion
1.7 Summary of the Equations of Motion with Undetermined Multipliers for Constraints 1.8 A Simple Application; Appendix 1. A Guidelines for Choosing Efficient Motion Variables in Kane's Method; Problem Set 1; References; 2 Deployment, Station-Keeping, and Retrieval of a Flexible Tether Connecting a Satellite to the Shuttle; 2.1 Equations of Motion of a Tethered Satellite Deployment from the Space Shuttle; 2.2 Thruster-Augmented Retrieval of a Tethered Satellite to the Orbiting Shuttle; 2.3 Dynamics and Control of Station-Keeping of the Shuttle-Tethered Satellite Appendix 2.A Sliding Impact of a Nose Cap with a Package of Parachute Used for Recovery of a Booster Launching Satellites Appendix 2.B Formation Flying with Multiple Tethered Satellites; Appendix 2.C Orbit Boosting of Tethered Satellite Systems by Electrodynamic Forces; Problem Set 2; References; 3 Kane's Method of Linearization Applied to the Dynamics of a Beam in Large Overall Motion; 3.1 Nonlinear Beam Kinematics with Neutral Axis Stretch, Shear, and Torsion; 3.2 Nonlinear Partial Velocities and Partial Angular Velocities for Correct Linearization 3.3 Use of Kane's Method for Direct Derivation of Linearized Dynamical Equations 3.4 Simulation Results for a Space-Based Robotic Manipulator; 3.5 Erroneous Results Obtained Using Vibration Modes in Conventional Analysis; Problem Set 3; References; 4 Dynamics of a Plate in Large Overall Motion; 4.1 Motivating Results of a Simulation; 4.2 Application of Kane's Methodology for Proper Linearization; 4.3 Simulation Algorithm; 4.4 Conclusion; Appendix 4.A Specialized Modal Integrals; Problem Set 4; References; 5 Dynamics of an Arbitrary Flexible Body in Large Overall Motion 5.1 Dynamical Equations with the Use of Vibration Modes 5.2 Compensating for Premature Linearization by Geometric Stiffness due to Inertia Loads; 5.3 Summary of the Algorithm; 5.4 Crucial Test and Validation of the Theory in Application; Appendix 5.A Modal Integrals for an Arbitrary Flexible Body [2]; Problem Set 5; References; 6 Flexible Multibody Dynamics: Dense Matrix Formulation; 6.1 Flexible Body System in a Tree Topology; 6.2 Kinematics of a Joint in a Flexible Multibody Body System; 6.3 Kinematics and Generalized Inertia Forces for a Flexible Multibody System 6.4 Kinematical Recurrence Relations Pertaining to a Body and Its Inboard Body |
Record Nr. | UNINA-9910136820003321 |
Banerjee Arun K. | ||
West Sussex, England : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Flexible multibody dynamics : efficient formulations and applications / / Arun K. Banerjee |
Autore | Banerjee Arun K. |
Pubbl/distr/stampa | West Sussex, England : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (339 p.) |
Disciplina | 621.8/11 |
Soggetto topico |
Machinery, Dynamics of
Multibody systems - Mathematical models |
ISBN |
1-119-01561-8
1-119-01560-X |
Classificazione | TEC009070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright; Dedication; Preface; 1 Derivation of Equations of Motion; 1.1 Available Analytical Methods and the Reason for Choosing Kane's Method; 1.2 Kane's Method of Deriving Equations of Motion; 1.3 Comparison to Derivation of Equations of Motion by Lagrange's Method; 1.4 Kane's Method of Direct Derivation of Linearized Dynamical Equation; 1.5 Prematurely Linearized Equations and a Posteriori Correction by ad hoc Addition of Geometric Stiffness due to Inertia Loads; 1.6 Kane's Equations with Undetermined Multipliers for Constrained Motion
1.7 Summary of the Equations of Motion with Undetermined Multipliers for Constraints 1.8 A Simple Application; Appendix 1. A Guidelines for Choosing Efficient Motion Variables in Kane's Method; Problem Set 1; References; 2 Deployment, Station-Keeping, and Retrieval of a Flexible Tether Connecting a Satellite to the Shuttle; 2.1 Equations of Motion of a Tethered Satellite Deployment from the Space Shuttle; 2.2 Thruster-Augmented Retrieval of a Tethered Satellite to the Orbiting Shuttle; 2.3 Dynamics and Control of Station-Keeping of the Shuttle-Tethered Satellite Appendix 2.A Sliding Impact of a Nose Cap with a Package of Parachute Used for Recovery of a Booster Launching Satellites Appendix 2.B Formation Flying with Multiple Tethered Satellites; Appendix 2.C Orbit Boosting of Tethered Satellite Systems by Electrodynamic Forces; Problem Set 2; References; 3 Kane's Method of Linearization Applied to the Dynamics of a Beam in Large Overall Motion; 3.1 Nonlinear Beam Kinematics with Neutral Axis Stretch, Shear, and Torsion; 3.2 Nonlinear Partial Velocities and Partial Angular Velocities for Correct Linearization 3.3 Use of Kane's Method for Direct Derivation of Linearized Dynamical Equations 3.4 Simulation Results for a Space-Based Robotic Manipulator; 3.5 Erroneous Results Obtained Using Vibration Modes in Conventional Analysis; Problem Set 3; References; 4 Dynamics of a Plate in Large Overall Motion; 4.1 Motivating Results of a Simulation; 4.2 Application of Kane's Methodology for Proper Linearization; 4.3 Simulation Algorithm; 4.4 Conclusion; Appendix 4.A Specialized Modal Integrals; Problem Set 4; References; 5 Dynamics of an Arbitrary Flexible Body in Large Overall Motion 5.1 Dynamical Equations with the Use of Vibration Modes 5.2 Compensating for Premature Linearization by Geometric Stiffness due to Inertia Loads; 5.3 Summary of the Algorithm; 5.4 Crucial Test and Validation of the Theory in Application; Appendix 5.A Modal Integrals for an Arbitrary Flexible Body [2]; Problem Set 5; References; 6 Flexible Multibody Dynamics: Dense Matrix Formulation; 6.1 Flexible Body System in a Tree Topology; 6.2 Kinematics of a Joint in a Flexible Multibody Body System; 6.3 Kinematics and Generalized Inertia Forces for a Flexible Multibody System 6.4 Kinematical Recurrence Relations Pertaining to a Body and Its Inboard Body |
Record Nr. | UNINA-9910826042303321 |
Banerjee Arun K. | ||
West Sussex, England : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|