top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
519.54
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
Soggetto genere / forma Electronic books.
ISBN 1-283-20383-9
9786613203830
1-118-06367-8
1-118-06368-6
1-118-06366-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9910139630803321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups [[electronic resource] ] : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
519.54
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
ISBN 1-283-20383-9
9786613203830
1-118-06367-8
1-118-06368-6
1-118-06366-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9910830144103321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Comparing groups : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Comparing groups : randomization and bootstrap methods using R / / Andrew S. Zieffler, Jeffrey R. Harring, Jeffrey D. Long
Autore Zieffler Andrew <1974->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (332 p.)
Disciplina 519.5/4
Altri autori (Persone) HarringJeffrey <1964->
LongJeffrey D. <1964->
Soggetto topico Bootstrap (Statistics)
Random data (Statistics)
Psychology - Data processing
R (Computer program language)
Distribution (Probability theory)
ISBN 9786613203830
9781283203838
1283203839
9781118063675
1118063678
9781118063682
1118063686
9781118063668
111806366X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Comparing Groups: Randomization and Bootstrap Methods Using R; CONTENTS; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; 1 An Introduction to R; 1.1 Getting Started; 1.1.1 Windows OS; 1.1.2 Mac OS; 1.1.3 Add-On Packages; 1.2 Arithmetic: R as a Calculator; 1.3 Computations in R: Functions; 1.4 Connecting Computations; 1.4.1 Naming Conventions; 1.5 Data Structures: Vectors; 1.5.1 Creating Vectors in R; 1.5.2 Computation with Vectors; 1.5.3 Character and Logical Vectors; 1.6 Getting Help; 1.7 Alternative Ways to Run R; 1.8 Extension: Matrices and Matrix Operations
1.8.1 Computation with Matrices1.9 Further Reading; Problems; 2 Data Representation and Preparation; 2.1 Tabular Data; 2.1.1 External Formats for Storing Tabular Data; 2.2 Data Entry; 2.2.1 Data Codebooks; 2.3 Reading Delimited Data into R; 2.3.1 Identifying the Location of a File; 2.3.2 Examining the Data in a Text Editor; 2.3.3 Reading Delimited Separated Data: An Example; 2.4 Data Structure: Data Frames; 2.4.1 Examining the Data Read into R; 2.5 Recording Syntax using Script Files; 2.5.1 Documentation File; 2.6 Simple Graphing in R
2.6.1 Saving Graphics to Insert into a Word-Processing File2.7 Extension: Logical Expressions and Graphs for Categorical Variables; 2.7.1 Logical Operators; 2.7.2 Measurement Level and Analysis; 2.7.3 Categorical Data; 2.7.4 Plotting Categorical Data; 2.8 Further Reading; Problems; 3 Data Exploration: One Variable; 3.1 Reading In the Data; 3.2 Nonparametric Density Estimation; 3.2.1 Graphically Summarizing the Distribution; 3.2.2 Histograms; 3.2.3 Kernel Density Estimators; 3.2.4 Controlling the Density Estimation; 3.2.5 Plotting the Estimated Density; 3.3 Summarizing the Findings
3.3.1 Creating a Plot for Publication3.3.2 Writing Up the Results for Publication; 3.4 Extension: Variability Bands for Kernel Densities; 3.5 Further Reading; Problems; 4 Exploration of Multivariate Data: Comparing Two Groups; 4.1 Graphically Summarizing the Marginal Distribution; 4.2 Graphically Summarizing Conditional Distributions; 4.2.1 Indexing: Accessing Individuals or Subsets; 4.2.2 Indexing Using a Logical Expression; 4.2.3 Density Plots of the Conditional Distributions; 4.2.4 Side-by-Side Box-and-Whiskers Plots; 4.3 Numerical Summaries of Data: Estimates of the Population Parameters
4.3.1 Measuring Central Tendency4.3.2 Measuring Variation; 4.3.3 Measuring Skewness; 4.3.4 Kurtosis; 4.4 Summarizing the Findings; 4.4.1 Creating a Plot for Publication; 4.4.2 Using Color; 4.4.3 Selecting a Color Palette; 4.5 Extension: Robust Estimation; 4.5.1 Robust Estimate of Location: The Trimmed Mean; 4.5.2 Robust Estimate of Variation: The Winsorized Variance; 4.6 Further Reading; Problems; 5 Exploration of Multivariate Data: Comparing Many Groups; 5.1 Graphing Many Conditional Distributions; 5.1.1 Panel Plots; 5.1.2 Side-by-Side Box-and-Whiskers Plots
5.2 Numerically Summarizing the Data
Record Nr. UNINA-9911019130503321
Zieffler Andrew <1974->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental methods in survey research : techniques that combine random sampling with random assignment / / edited by Paul J. Lavrakas [and five others]
Experimental methods in survey research : techniques that combine random sampling with random assignment / / edited by Paul J. Lavrakas [and five others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2019]
Descrizione fisica 1 online resource (xxix, 510 pages)
Disciplina 300.723
Collana Wiley series in survey methodology
Soggetto topico Social surveys
ISBN 1-119-08376-1
1-119-08375-3
1-119-08377-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probability survey-based experimentation and the balancing of internal and external validity concerns -- Within-household selection methods: a critical review and experimental examination -- Measuring within-household contamination: the challenge of interviewing more than one member of a household.
Record Nr. UNINA-9910555122403321
Hoboken, New Jersey : , : Wiley, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental methods in survey research : techniques that combine random sampling with random assignment / / edited by Paul J. Lavrakas [and five others]
Experimental methods in survey research : techniques that combine random sampling with random assignment / / edited by Paul J. Lavrakas [and five others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2019]
Descrizione fisica 1 online resource (xxix, 510 pages)
Disciplina 300.723
Collana Wiley series in survey methodology
Soggetto topico Social surveys
ISBN 1-119-08376-1
1-119-08375-3
1-119-08377-X
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probability survey-based experimentation and the balancing of internal and external validity concerns -- Within-household selection methods: a critical review and experimental examination -- Measuring within-household contamination: the challenge of interviewing more than one member of a household.
Record Nr. UNINA-9910820802003321
Hoboken, New Jersey : , : Wiley, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Structural equation modeling [[electronic resource] ] : applications using Mplus / / Jichuan Wang, Xiaoqian Wang
Structural equation modeling [[electronic resource] ] : applications using Mplus / / Jichuan Wang, Xiaoqian Wang
Autore Wang Jichuan
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, : Wiley, 2012
Descrizione fisica 1 online resource (479 p.)
Disciplina 519.5/3
Altri autori (Persone) WangXiaoqian
Collana Wiley series in probability and statistics
Soggetto topico Multivariate analysis - Data processing
Social sciences - Statistical methods - Data processing
Structural equation modeling - Data processing
ISBN 1-283-55059-8
9786613863041
1-118-35629-2
1-118-35625-X
1-118-35631-4
Classificazione SOC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Structural Equation Modeling: Applications Using Mplus; Contents; Preface; 1 Introduction; 1.1 Model formulation; 1.1.1 Measurement model; 1.1.2 Structural model; 1.1.3 Model formulation in equations; 1.2 Model identification; 1.3 Model estimation; 1.4 Model evaluation; 1.5 Model modification; 1.6 Computer programs for SEM; Appendix 1.A Expressing variances and covariances among observed variables as functions of model parameters; Appendix 1.B Maximum likelihood function for SEM; 2 Confirmatory factor analysis; 2.1 Basics of CFA model; 2.2 CFA model with continuous indicators
2.3 CFA model with non-normal and censored continuous indicators2.3.1 Testing non-normality; 2.3.2 CFA model with non-normal indicators; 2.3.3 CFA model with censored data; 2.4 CFA model with categorical indicators; 2.4.1 CFA model with binary indicators; 2.4.2 CFA model with ordered categorical indicators; 2.5 Higher order CFA model; Appendix 2.A BSI-18 instrument; Appendix 2.B Item reliability; Appendix 2.C Cronbach's alpha coefficient; Appendix 2.D Calculating probabilities using PROBIT regression coefficients; 3 Structural equations with latent variables; 3.1 MIMIC model
3.2 Structural equation model3.3 Correcting for measurement errors in single indicator variables; 3.4 Testing interactions involving latent variables; Appendix 3.A Influence of measurement errors; 4 Latent growth models for longitudinal data analysis; 4.1 Linear LGM; 4.2 Nonlinear LGM; 4.3 Multi-process LGM; 4.4 Two-part LGM; 4.5 LGM with categorical outcomes; 5 Multi-group modeling; 5.1 Multi-group CFA model; 5.1.1 Multi-group first-order CFA; 5.1.2 Multi-group second-order CFA; 5.2 Multi-group SEM model; 5.3 Multi-group LGM; 6 Mixture modeling; 6.1 LCA model; 6.1.1 Example of LCA
6.1.2 Example of LCA model with covariates6.2 LTA model; 6.2.1 Example of LTA; 6.3 Growth mixture model; 6.3.1 Example of GMM; 6.4 Factor mixture model; Appendix 6.A Including covariate in the LTA model; 7 Sample size for structural equation modeling; 7.1 The rules of thumb for sample size needed for SEM; 7.2 Satorra and Saris's method for sample size estimation; 7.2.1 Application of Satorra and Saris's method to CFA model; 7.2.2 Application of Satorra and Saris's method to LGM; 7.3 Monte Carlo simulation for sample size estimation; 7.3.1 Application of Monte Carlo simulation to CFA model
7.3.2 Application of Monte Carlo simulation to LGM7.3.3 Application of Monte Carlo simulation to LGM with covariate; 7.3.4 Application of Monte Carlo simulation to LGM with missing values; 7.4 Estimate sample size for SEM based on model fit indices; 7.4.1 Application of MacCallum, Browne and Sugawara's method; 7.4.2 Application of Kim's method; References; Index; Series
Record Nr. UNINA-9910791707803321
Wang Jichuan  
Chichester, West Sussex, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui