Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon
| Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon |
| Autore | Simon Barry <1946-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2010 |
| Descrizione fisica | 1 online resource (663 p.) |
| Disciplina | 515/.55 |
| Collana | Porter Lectures |
| Soggetto topico |
Spectral theory (Mathematics)
Orthogonal polynomials |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-82115-6
9786612821158 1-4008-3705-7 |
| Classificazione | SK 680 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Gems of Spectral Theory -- Chapter Two. Szegő's Theorem -- Chapter Three The Killip-Simon Theorem: Szegő for OPRL -- Chapter Four. Sum Rules and Consequences for Matrix Orthogonal Polynomials -- Chapter Five. Periodic OPRL -- Chapter Six. Toda Flows and Symplectic Structures -- Chapter Seven. Right Limits -- Chapter Eight. Szegő and Killip-Simon Theorems for Periodic OPRL -- Chapter Nine. Szegő's Theorem for Finite Gap OPRL -- Chapter Ten. A.C. Spectrum for Bethe-Cayley Trees -- Bibliography -- Author Index -- Subject Index |
| Record Nr. | UNINA-9910459123003321 |
Simon Barry <1946->
|
||
| Princeton, N.J., : Princeton University Press, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon
| Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon |
| Autore | Simon Barry <1946-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2010 |
| Descrizione fisica | 1 online resource (663 p.) |
| Disciplina | 515/.55 |
| Collana | Porter Lectures |
| Soggetto topico |
Spectral theory (Mathematics)
Orthogonal polynomials |
| ISBN |
1-282-82115-6
9786612821158 1-4008-3705-7 |
| Classificazione | SK 680 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Gems of Spectral Theory -- Chapter Two. Szegő's Theorem -- Chapter Three The Killip-Simon Theorem: Szegő for OPRL -- Chapter Four. Sum Rules and Consequences for Matrix Orthogonal Polynomials -- Chapter Five. Periodic OPRL -- Chapter Six. Toda Flows and Symplectic Structures -- Chapter Seven. Right Limits -- Chapter Eight. Szegő and Killip-Simon Theorems for Periodic OPRL -- Chapter Nine. Szegő's Theorem for Finite Gap OPRL -- Chapter Ten. A.C. Spectrum for Bethe-Cayley Trees -- Bibliography -- Author Index -- Subject Index |
| Record Nr. | UNINA-9910785480703321 |
Simon Barry <1946->
|
||
| Princeton, N.J., : Princeton University Press, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Szegö's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon
| Szegö's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon |
| Autore | Simon Barry <1946-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2010 |
| Descrizione fisica | 1 online resource (663 p.) |
| Disciplina | 515/.55 |
| Collana | Porter Lectures |
| Soggetto topico |
Spectral theory (Mathematics)
Orthogonal polynomials |
| ISBN |
9786612821158
9781282821156 1282821156 9781400837052 1400837057 |
| Classificazione | SK 680 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Gems of Spectral Theory -- Chapter Two. Szegő's Theorem -- Chapter Three The Killip-Simon Theorem: Szegő for OPRL -- Chapter Four. Sum Rules and Consequences for Matrix Orthogonal Polynomials -- Chapter Five. Periodic OPRL -- Chapter Six. Toda Flows and Symplectic Structures -- Chapter Seven. Right Limits -- Chapter Eight. Szegő and Killip-Simon Theorems for Periodic OPRL -- Chapter Nine. Szegő's Theorem for Finite Gap OPRL -- Chapter Ten. A.C. Spectrum for Bethe-Cayley Trees -- Bibliography -- Author Index -- Subject Index |
| Record Nr. | UNINA-9910955132303321 |
Simon Barry <1946->
|
||
| Princeton, N.J., : Princeton University Press, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||