Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
Autore | Pajitnov Andrei V |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
Descrizione fisica | 1 online resource (464 pages) |
Disciplina | 514/.74 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Morse theory
Manifolds (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
Record Nr. | UNINA-9910454619003321 |
Pajitnov Andrei V
![]() |
||
Berlin ; ; New York, : De Gruyter, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
Autore | Pajitnov Andrei V |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
Descrizione fisica | 1 online resource (464 pages) |
Disciplina | 514/.74 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Morse theory
Manifolds (Mathematics) |
Soggetto non controllato |
Differential geometry
Morse theory |
ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
Record Nr. | UNINA-9910782523503321 |
Pajitnov Andrei V
![]() |
||
Berlin ; ; New York, : De Gruyter, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Infinite dimensional groups and manifolds [[electronic resource] /] / editor Tilmann Wurzbacher |
Pubbl/distr/stampa | Berlin ; ; New York, : Walter de Gruyter, c2004 |
Descrizione fisica | 1 online resource (260 p.) |
Disciplina | 512/.55 |
Altri autori (Persone) | WurzbacherTilman <1961-> |
Collana | IRMA lectures in mathematics and theoretical physics |
Soggetto topico |
Infinite-dimensional manifolds
Infinite dimensional Lie algebras Differential equations, Partial Quantum field theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-39668-8
9786613396686 3-11-916250-7 3-11-020001-5 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Table of Contents -- Lie groups of germs of analytic mappings -- The flow completion of the Burgers equation -- Enumerative geometry and knot invariants -- Gerbes, (twisted) K-theory, and the supersymmetric WZW model -- Current groups for non-compact manifolds and their central extensions -- Traces and characteristic classes on loop spaces -- New classical limits of quantum theories |
Record Nr. | UNINA-9910451663803321 |
Berlin ; ; New York, : Walter de Gruyter, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Infinite dimensional groups and manifolds [[electronic resource] /] / editor Tilmann Wurzbacher |
Pubbl/distr/stampa | Berlin ; ; New York, : Walter de Gruyter, c2004 |
Descrizione fisica | 1 online resource (260 p.) |
Disciplina | 512/.55 |
Altri autori (Persone) | WurzbacherTilman <1961-> |
Collana | IRMA lectures in mathematics and theoretical physics |
Soggetto topico |
Infinite-dimensional manifolds
Infinite dimensional Lie algebras Differential equations, Partial Quantum field theory |
ISBN |
1-283-39668-8
9786613396686 3-11-916250-7 3-11-020001-5 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Table of Contents -- Lie groups of germs of analytic mappings -- The flow completion of the Burgers equation -- Enumerative geometry and knot invariants -- Gerbes, (twisted) K-theory, and the supersymmetric WZW model -- Current groups for non-compact manifolds and their central extensions -- Traces and characteristic classes on loop spaces -- New classical limits of quantum theories |
Record Nr. | UNINA-9910778377003321 |
Berlin ; ; New York, : Walter de Gruyter, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Norm derivatives and characterizations of inner product spaces [[electronic resource] /] / Claudi Alsina, Justyna Sikorska, M. Santos Tomás |
Autore | Alsina Claudi |
Pubbl/distr/stampa | Singapore, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (190 p.) |
Disciplina | 515.732 |
Altri autori (Persone) |
SikorskaJustyna
TomásM. Santos |
Soggetto topico |
Normed linear spaces
Inner product spaces |
ISBN |
1-282-76147-1
9786612761478 981-4287-27-X |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Norm Derivatives; Characterizations of Inner Product Spaces; Orthogonality Relations; Norm Derivatives and Heights; Perpendicular Bisectors in Real Normed Spaces; Bisectrices in Real Normed Spaces; Areas of Triangles in Normed Real Spaces. |
Record Nr. | UNINA-9910780894003321 |
Alsina Claudi
![]() |
||
Singapore, : World Scientific, c2010 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Reidemeister torsion of 3-manifolds [[electronic resource] /] / Liviu I. Nicolaescu |
Autore | Nicolaescu Liviu I |
Pubbl/distr/stampa | Berlin ; ; New York, : Walter de Gruyter, 2003 |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 514/.3 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Three-manifolds (Topology)
Reidemeister torsion |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-19435-6
9786612194351 3-11-916192-6 3-11-019810-X |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Chapter 1. Algebraic preliminaries -- Chapter 2. The Reidemeister torsion -- Chapter 3. Turaev's refined torsion -- Chapter 4. Alternative interpretations of the Reidemeister torsion -- Appendix A. Algebra -- Appendix B. Topology -- Back matter |
Altri titoli varianti | Reidemeister torsion of three-manifolds |
Record Nr. | UNINA-9910451757903321 |
Nicolaescu Liviu I
![]() |
||
Berlin ; ; New York, : Walter de Gruyter, 2003 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Reidemeister torsion of 3-manifolds [[electronic resource] /] / Liviu I. Nicolaescu |
Autore | Nicolaescu Liviu I |
Pubbl/distr/stampa | Berlin ; ; New York, : Walter de Gruyter, 2003 |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 514/.3 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Three-manifolds (Topology)
Reidemeister torsion |
ISBN |
1-282-19435-6
9786612194351 3-11-916192-6 3-11-019810-X |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Chapter 1. Algebraic preliminaries -- Chapter 2. The Reidemeister torsion -- Chapter 3. Turaev's refined torsion -- Chapter 4. Alternative interpretations of the Reidemeister torsion -- Appendix A. Algebra -- Appendix B. Topology -- Back matter |
Altri titoli varianti | Reidemeister torsion of three-manifolds |
Record Nr. | UNINA-9910782193603321 |
Nicolaescu Liviu I
![]() |
||
Berlin ; ; New York, : Walter de Gruyter, 2003 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Seminar on Atiyah-Singer Index Theorem. (AM-57), Volume 57 / / Richard S. Palais |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (379 pages) |
Disciplina | 513.83 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Atiyah-Singer index theorem
Differential topology Homology theory |
Soggetto non controllato |
Addition
Adjoint Algebraic topology Algebraic variety Almost complex manifold Arf invariant Asymptotic expansion Atiyah–Singer index theorem Automorphism Axiom Banach space Big O notation Boundary value problem Bounded operator Characteristic class Chern class Cohomology Cokernel Compact operator Complex vector bundle Computation Connected component (graph theory) Coordinate system Corollary Cotangent bundle Differentiable function Differentiable manifold Differential operator Dimension (vector space) Dimension Disjoint union Division by zero Elliptic operator Elliptic partial differential equation Equivalence class Euclidean space Euler class Exact sequence Existential quantification Fiber bundle Formal power series Fourier transform Fredholm operator Functional analysis Gelfand Grothendieck group H-cobordism Hilbert space Hodge theory Homogeneous polynomial Homomorphism Homotopy Indeterminate (variable) Injective function Integer Isomorphism class Jet bundle K-theory L-theory Linear map Manifold Michael Atiyah Natural transformation Normal bundle Orientability Pairing Partial differential equation Polynomial ring Polynomial Principal bundle Projection (mathematics) Riemann–Roch theorem Ring (mathematics) Robert M. Solovay Sign convention Singular integral Sobolev inequality Spanning tree Special case Subgroup Submanifold Subring Suggestion Summation Surjective function Symmetric bilinear form Symmetric function Tangent bundle Tangent space Tensor product Theorem Todd class Topological vector space Uniqueness theorem Vector bundle Vector space |
ISBN | 1-4008-8204-4 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- PREFACE / Palais, Richard S. -- CHAPTER I. STATEMENT OF THE THEOREM OUTLINE OF THE PROOF / Borel, A. -- CHAPTER II. REVIEW OF K-THEORY / Solovay, Robert -- CHAPTER III. THE TOPOLOGICAL INDEX OF AN OPERATOR ASSOCIATED TO A G-STRUCTURE / Solovay, Robert -- CHAPTER IV. DIFFERENTIAL OPERATORS ON VECTOR BUNDLES / Palais, Richard S. -- CHAPTER V. ANALYTICAL INDICES OF SOME CONCRETE OPERATORS / Solovay, Robert M. -- CHAPTER VI. REVIEW OF FUNCTIONAL ANALYSIS / Palais, Richard S. -- CHAPTER VII. FREDHDIM OPERATORS / Palais, Richard S. -- CHAPTER VIII. CHAINS OP HILBERTIAN SPACES / Palais, Richard S. -- CHAPTER IX. THE DISCRETE SOBOLEV CHAIN OF A VECTOR BUNDLE / Palais, Richard S. -- CHAPTER X. THE CONTINUOUS SOBOLEV CHAIN OF A VECTOR BUNDLE / Palais, Richard S. -- CHAPTER XI. THE SEELEY ALGEBRA / Palais, Richard S. -- CHAPTER XII. HOMOTOPY INVARIANCE OF THE INDEX / Palaie, Richard S. -- CHAPTER XIII. WHITNEY SUMS / Palais, Richard S. -- CHAPTER XIV. TENSOR PRODUCTS / Palais, Richard S. -- CHAPTER XV. DEFINITION OF ia AND it ON K(M) / Solovay, Robert M. -- CHAPTER XVI. CONSTRUCTION OF Intk / Palais, R. S. / Seeley, R. T. -- CHAPTER XVII. COBORDISM INVARIANCE OP THE ANALYTICAL INDEX / Palais, R. S. / Seeley, R. T. -- CHAPTER XVIII. BORDISM GROUPS OF BUNDLES / Floyd, E. E. -- CHAPTER XIX. THE INDEX THEOREM: APPLICATIONS / Solovay, Robert M. -- APPENDIX I. THE INDEX THEOREM FOR MANIFOLDS WITH BOUNDARY / Atiyah, M. F. -- APPENDIX II. NON-STABLE CHARACTERISTIC CLASSES AND THE TOPOLOGICAL INDEX OP CLASSICAL ELLIPTIC OPERATORS / Shih, Weishu -- Backmatter |
Record Nr. | UNINA-9910154746103321 |
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Spherical CR geometry and Dehn surgery / / Richard Evan Schwartz |
Autore | Schwartz Richard Evan |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton : , : Princeton University Press, , 2007 |
Descrizione fisica | 1 online resource (199 p.) |
Disciplina | 516.3/6 |
Collana | Annals of mathematics studies |
Soggetto topico |
CR submanifolds
Dehn surgery (Topology) Three-manifolds (Topology) |
Soggetto non controllato |
Arc (geometry)
Automorphism Ball (mathematics) Bijection Bump function CR manifold Calculation Canonical basis Cartesian product Clifford torus Combinatorics Compact space Conjugacy class Connected space Contact geometry Convex cone Convex hull Coprime integers Coset Covering space Dehn surgery Dense set Diagram (category theory) Diameter Diffeomorphism Differential geometry of surfaces Discrete group Double coset Eigenvalues and eigenvectors Equation Equivalence class Equivalence relation Euclidean distance Four-dimensional space Function (mathematics) Fundamental domain Geometry and topology Geometry Harmonic function Hexagonal tiling Holonomy Homeomorphism Homology (mathematics) Homotopy Horosphere Hyperbolic 3-manifold Hyperbolic Dehn surgery Hyperbolic geometry Hyperbolic manifold Hyperbolic space Hyperbolic triangle Hypersurface I0 Ideal triangle Intermediate value theorem Intersection (set theory) Isometry group Isometry Limit point Limit set Manifold Mathematical induction Metric space Möbius transformation Parameter Parity (mathematics) Partial derivative Partition of unity Permutation Polyhedron Projection (linear algebra) Projectivization Quotient space (topology) R-factor (crystallography) Real projective space Right angle Sard's theorem Seifert fiber space Set (mathematics) Siegel domain Simply connected space Solid torus Special case Sphere Stereographic projection Subgroup Subsequence Subset Tangent space Tangent vector Tetrahedron Theorem Topology Torus Transversality (mathematics) Triangle group Union (set theory) Unit disk Unit sphere Unit tangent bundle |
ISBN |
1-4008-3719-7
0-691-12810-3 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Part 1. Basic Material -- Part 2. Proof of the HST -- Part 3. The Applications -- Part 4. Structure of Ideal Triangle Groups -- Bibliography -- Index |
Record Nr. | UNINA-9910791746703321 |
Schwartz Richard Evan
![]() |
||
Princeton : , : Princeton University Press, , 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Spherical CR geometry and Dehn surgery / / Richard Evan Schwartz |
Autore | Schwartz Richard Evan |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton : , : Princeton University Press, , 2007 |
Descrizione fisica | 1 online resource (199 p.) |
Disciplina | 516.3/6 |
Collana | Annals of mathematics studies |
Soggetto topico |
CR submanifolds
Dehn surgery (Topology) Three-manifolds (Topology) |
Soggetto non controllato |
Arc (geometry)
Automorphism Ball (mathematics) Bijection Bump function CR manifold Calculation Canonical basis Cartesian product Clifford torus Combinatorics Compact space Conjugacy class Connected space Contact geometry Convex cone Convex hull Coprime integers Coset Covering space Dehn surgery Dense set Diagram (category theory) Diameter Diffeomorphism Differential geometry of surfaces Discrete group Double coset Eigenvalues and eigenvectors Equation Equivalence class Equivalence relation Euclidean distance Four-dimensional space Function (mathematics) Fundamental domain Geometry and topology Geometry Harmonic function Hexagonal tiling Holonomy Homeomorphism Homology (mathematics) Homotopy Horosphere Hyperbolic 3-manifold Hyperbolic Dehn surgery Hyperbolic geometry Hyperbolic manifold Hyperbolic space Hyperbolic triangle Hypersurface I0 Ideal triangle Intermediate value theorem Intersection (set theory) Isometry group Isometry Limit point Limit set Manifold Mathematical induction Metric space Möbius transformation Parameter Parity (mathematics) Partial derivative Partition of unity Permutation Polyhedron Projection (linear algebra) Projectivization Quotient space (topology) R-factor (crystallography) Real projective space Right angle Sard's theorem Seifert fiber space Set (mathematics) Siegel domain Simply connected space Solid torus Special case Sphere Stereographic projection Subgroup Subsequence Subset Tangent space Tangent vector Tetrahedron Theorem Topology Torus Transversality (mathematics) Triangle group Union (set theory) Unit disk Unit sphere Unit tangent bundle |
ISBN |
1-4008-3719-7
0-691-12810-3 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Part 1. Basic Material -- Part 2. Proof of the HST -- Part 3. The Applications -- Part 4. Structure of Ideal Triangle Groups -- Bibliography -- Index |
Record Nr. | UNINA-9910815312903321 |
Schwartz Richard Evan
![]() |
||
Princeton : , : Princeton University Press, , 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|