top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lebensversicherungstechnik Algebraisch Verstehen : Grundstruktur der Kalkulation Von Lebensversicherungsverträgen
Lebensversicherungstechnik Algebraisch Verstehen : Grundstruktur der Kalkulation Von Lebensversicherungsverträgen
Autore Recht Peter
Pubbl/distr/stampa Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021
Descrizione fisica 1 online resource (332 pages)
Altri autori (Persone) SchadePhilipp
Collana De Gruyter Studium
Soggetto topico BUSINESS & ECONOMICS / Insurance / Life
Soggetto non controllato Insurance mathematics
calculating policies
calculating rates
commutation values
insurance and linear algebra
life insurance calculations
life insurance techniques
orthogonality
principle of equivalence in insurance mathematics
ISBN 9783110740905
3110740907
Classificazione QP 890
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Intro -- Inhalt -- Einleitung -- Teil I: Technische Kalkulation von Lebensversicherungsverträgen -- Einführung -- 1 Profile als technische Grundlage der Kalkulation -- 2 Bewertung von Beitrags- und Leistungsprofilen -- das Äquivalenzprinzip -- 3 Erstkalkulation eines Versicherungsvertrages -- 4 Kalkulationen während der Laufzeit eines Versicherungsvertrages -- 5 Klassische Kommutationswerte und Barwertfaktoren -- Teil II: Ein strukturelles Fundament der Kalkulation -- Einführung -- 6 Algebraische Grundlagen -- 7 φ-Orthogonalität -- 8 Algebraische Verallgemeinerung des Äquivalenzprinzips -- 9 Unterjährige Bewertung von Profilen -- m-Expansionen von φ -- 10 Verallgemeinerte Kommutationswerte und Barwertfaktoren -- Epilog -- Literatur -- Stichwortverzeichnis.
Record Nr. UNINA-9910554227803321
Recht Peter  
Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Autore Huynh Huu Tue
Pubbl/distr/stampa Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (356 p.)
Disciplina 332.01/51923
332.0151923
Altri autori (Persone) LaiVan Son
SoumaréIssouf
Collana Wiley finance
Soggetto topico Finance - Mathematical models
Stochastic models
ISBN 1-283-37237-1
9786613372376
1-118-46737-X
0-470-72213-4
Classificazione DAT 306f
MAT 605f
QP 890
ST 601 M35
WIR 160f
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors
2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables
4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC)
4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations
5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations
Record Nr. UNINA-9910139741303321
Huynh Huu Tue  
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic simulation and applications in finance with MATLAB programs / / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Stochastic simulation and applications in finance with MATLAB programs / / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Autore Huynh Huu Tue
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (356 p.)
Disciplina 332.01/51923
332.0151923
Altri autori (Persone) LaiVan Son
SoumaréIssouf
Collana Wiley finance
Soggetto topico Finance - Mathematical models
Stochastic models
ISBN 9786613372376
9781283372374
1283372371
9781118467374
111846737X
9780470722138
0470722134
Classificazione DAT 306f
MAT 605f
QP 890
ST 601 M35
WIR 160f
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors
2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables
4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC)
4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations
5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations
Record Nr. UNINA-9910814678603321
Huynh Huu Tue  
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...