Lebensversicherungstechnik Algebraisch Verstehen : Grundstruktur der Kalkulation Von Lebensversicherungsverträgen |
Autore | Recht Peter |
Pubbl/distr/stampa | Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021 |
Descrizione fisica | 1 online resource (332 pages) |
Altri autori (Persone) | SchadePhilipp |
Collana | De Gruyter Studium |
Soggetto topico | BUSINESS & ECONOMICS / Insurance / Life |
Soggetto non controllato |
Insurance mathematics
calculating policies calculating rates commutation values insurance and linear algebra life insurance calculations life insurance techniques orthogonality principle of equivalence in insurance mathematics |
ISBN | 3-11-074090-7 |
Classificazione | QP 890 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto | Intro -- Inhalt -- Einleitung -- Teil I: Technische Kalkulation von Lebensversicherungsverträgen -- Einführung -- 1 Profile als technische Grundlage der Kalkulation -- 2 Bewertung von Beitrags- und Leistungsprofilen -- das Äquivalenzprinzip -- 3 Erstkalkulation eines Versicherungsvertrages -- 4 Kalkulationen während der Laufzeit eines Versicherungsvertrages -- 5 Klassische Kommutationswerte und Barwertfaktoren -- Teil II: Ein strukturelles Fundament der Kalkulation -- Einführung -- 6 Algebraische Grundlagen -- 7 φ-Orthogonalität -- 8 Algebraische Verallgemeinerung des Äquivalenzprinzips -- 9 Unterjährige Bewertung von Profilen -- m-Expansionen von φ -- 10 Verallgemeinerte Kommutationswerte und Barwertfaktoren -- Epilog -- Literatur -- Stichwortverzeichnis. |
Record Nr. | UNINA-9910554227803321 |
Recht Peter | ||
Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré |
Autore | Huynh Huu Tue |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008 |
Descrizione fisica | 1 online resource (356 p.) |
Disciplina |
332.01/51923
332.0151923 |
Altri autori (Persone) |
LaiVan Son
SoumaréIssouf |
Collana | Wiley finance |
Soggetto topico |
Finance - Mathematical models
Stochastic models |
ISBN |
1-283-37237-1
9786613372376 1-118-46737-X 0-470-72213-4 |
Classificazione |
DAT 306f
MAT 605f QP 890 ST 601 M35 WIR 160f |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors 2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables 4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC) 4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations 5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations |
Record Nr. | UNINA-9910139741303321 |
Huynh Huu Tue | ||
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré |
Autore | Huynh Huu Tue |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008 |
Descrizione fisica | 1 online resource (356 p.) |
Disciplina |
332.01/51923
332.0151923 |
Altri autori (Persone) |
LaiVan Son
SoumaréIssouf |
Collana | Wiley finance |
Soggetto topico |
Finance - Mathematical models
Stochastic models |
ISBN |
1-283-37237-1
9786613372376 1-118-46737-X 0-470-72213-4 |
Classificazione |
DAT 306f
MAT 605f QP 890 ST 601 M35 WIR 160f |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors 2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables 4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC) 4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations 5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations |
Record Nr. | UNINA-9910814678603321 |
Huynh Huu Tue | ||
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|