Evolutionary optimization algorithms [[electronic resource] ] : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon
| Evolutionary optimization algorithms [[electronic resource] ] : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon |
| Autore | Simon Dan <1960-> |
| Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (776 p.) |
| Disciplina | 006.3 |
| Soggetto topico |
Evolutionary computation
Computer algorithms Biologically-inspired computing |
| ISBN |
1-118-65956-2
1-118-65950-3 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing
2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming5.4 The Prisoner's Dilemma; 5.5 The Artificial Ant Problem; 5.6 Conclusion; Problems; 6 Evolution Strategies; 6.1 The (1+1) Evolution Strategy; 6.2 The 1/5 Rule: A Derivation; 6.3 The (μ+l) Evolution Strategy; 6.4 (μ + λ) and (μ, λ) Evolution Strategies; 6.5 Self-Adaptive Evolution Strategies; 6.6 Conclusion; Problems; 7 Genetic Programming; 7.1 Lisp: The Language of Genetic Programming; 7.2 The Fundamentals of Genetic Programming; 7.2.1 Fitness Measure; 7.2.2 Termination Criteria; 7.2.3 Terminal Set; 7.2.4 Function Set; 7.2.5 Initialization 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination |
| Record Nr. | UNINA-9910786845303321 |
Simon Dan <1960->
|
||
| Hoboken, NJ, : John Wiley & Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Evolutionary optimization algorithms : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon
| Evolutionary optimization algorithms : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon |
| Autore | Simon Dan <1960-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (776 p.) |
| Disciplina | 006.3 |
| Soggetto topico |
Evolutionary computation
Computer algorithms Natural computation |
| ISBN |
9781118659564
1118659562 9781118659502 1118659503 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing
2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming5.4 The Prisoner's Dilemma; 5.5 The Artificial Ant Problem; 5.6 Conclusion; Problems; 6 Evolution Strategies; 6.1 The (1+1) Evolution Strategy; 6.2 The 1/5 Rule: A Derivation; 6.3 The (μ+l) Evolution Strategy; 6.4 (μ + λ) and (μ, λ) Evolution Strategies; 6.5 Self-Adaptive Evolution Strategies; 6.6 Conclusion; Problems; 7 Genetic Programming; 7.1 Lisp: The Language of Genetic Programming; 7.2 The Fundamentals of Genetic Programming; 7.2.1 Fitness Measure; 7.2.2 Termination Criteria; 7.2.3 Terminal Set; 7.2.4 Function Set; 7.2.5 Initialization 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination |
| Record Nr. | UNINA-9910965280003321 |
Simon Dan <1960->
|
||
| Hoboken, NJ, : John Wiley & Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Graph edge coloring [[electronic resource] ] : Vizing's theorem and Goldberg's conjecture / / Michael Stiebitz ... [et al.]
| Graph edge coloring [[electronic resource] ] : Vizing's theorem and Goldberg's conjecture / / Michael Stiebitz ... [et al.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (339 p.) |
| Disciplina | 511/.56 |
| Altri autori (Persone) | StiebitzMichael <1954-> |
| Collana | Wiley series in discrete mathematics and optimization |
| Soggetto topico |
Graph coloring
Graph theory |
| ISBN |
1-118-20559-6
1-280-59161-7 9786613621443 1-118-20556-1 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture; CONTENTS; Preface; 1 Introduction; 1.1 Graphs; 1.2 Coloring Preliminaries; 1.3 Critical Graphs; 1.4 Lower Bounds and Elementary Graphs; 1.5 Upper Bounds and Coloring Algorithms; 1.6 Notes; 2 Vizing Fans; 2.1 The Fan Equation and the Classical Bounds; 2.2 Adjacency Lemmas; 2.3 The Second Fan Equation; 2.4 The Double Fan; 2.5 The Fan Number; 2.6 Notes; 3 Kierstead Paths; 3.1 Kierstead's Method; 3.2 Short Kierstead's Paths; 3.3 Notes; 4 Simple Graphs and Line Graphs; 4.1 Class One and Class Two Graphs
4.2 Graphs whose Core has Maximum Degree Two4.3 Simple Overfull Graphs; 4.4 Adjacency Lemmas for Critical Class Two Graphs; 4.5 Average Degree of Critical Class Two Graphs; 4.6 Independent Vertices in Critical Class Two Graphs; 4.7 Constructions of Critical Class Two Graphs; 4.8 Hadwiger's Conjecture for Line Graphs; 4.9 Simple Graphs on Surfaces; 4.10 Notes; 5 Tashkinov Trees; 5.1 Tashkinov's Method; 5.2 Extended Tashkinov Trees; 5.3 Asymptotic Bounds; 5.4 Tashkinov's Coloring Algorithm; 5.5 Polynomial Time Algorithms; 5.6 Notes; 6 Goldberg's Conjecture 6.1 Density and Fractional Chromatic Index6.2 Balanced Tashkinov Trees; 6.3 Obstructions; 6.4 Approximation Algorithms; 6.5 Goldberg's Conjecture for Small Graphs; 6.6 Another Classification Problem for Graphs; 6.7 Notes; 7 Extreme Graphs; 7.1 Shannon's Bound and Ring Graphs; 7.2 Vizing's Bound and Extreme Graphs; 7.3 Extreme Graphs and Elementary Graphs; 7.4 Upper Bounds for χ' Depending on Δ and μ; 7.5 Notes; 8 Generalized Edge Colorings of Graphs; 8.1 Equitable and Balanced Edge Colorings; 8.2 Full Edge Colorings and the Cover Index; 8.3 Edge Colorings of Weighted Graphs 8.4 The Fan Equation for the Chromatic Index χ'f8.5 Decomposing Graphs into Simple Graphs; 8.6 Notes; 9 Twenty Pretty Edge Coloring Conjectures; Appendix A: Vizing's Two Fundamental Papers; A.1 On an Estimate of the Chromatic Class of a p-Graph; References; A.2 Critical Graphs with a Given Chromatic Class; References; Appendix B: Fractional Edge Colorings; B.1 The Fractional Chromatic Index; B.2 The Matching Polytope; B.3 A Formula for χ'f*; References; Symbol Index; Name Index; Subject Index |
| Record Nr. | UNINA-9910790016103321 |
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Graph edge coloring : Vizing's theorem and Goldberg's conjecture / / Michael Stiebitz ... [et al.]
| Graph edge coloring : Vizing's theorem and Goldberg's conjecture / / Michael Stiebitz ... [et al.] |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (339 p.) |
| Disciplina | 511/.56 |
| Altri autori (Persone) | StiebitzMichael <1954-> |
| Collana | Wiley series in discrete mathematics and optimization |
| Soggetto topico |
Graph coloring
Graph theory |
| ISBN |
9786613621443
9781118205594 1118205596 9781280591617 1280591617 9781118205563 1118205561 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture; CONTENTS; Preface; 1 Introduction; 1.1 Graphs; 1.2 Coloring Preliminaries; 1.3 Critical Graphs; 1.4 Lower Bounds and Elementary Graphs; 1.5 Upper Bounds and Coloring Algorithms; 1.6 Notes; 2 Vizing Fans; 2.1 The Fan Equation and the Classical Bounds; 2.2 Adjacency Lemmas; 2.3 The Second Fan Equation; 2.4 The Double Fan; 2.5 The Fan Number; 2.6 Notes; 3 Kierstead Paths; 3.1 Kierstead's Method; 3.2 Short Kierstead's Paths; 3.3 Notes; 4 Simple Graphs and Line Graphs; 4.1 Class One and Class Two Graphs
4.2 Graphs whose Core has Maximum Degree Two4.3 Simple Overfull Graphs; 4.4 Adjacency Lemmas for Critical Class Two Graphs; 4.5 Average Degree of Critical Class Two Graphs; 4.6 Independent Vertices in Critical Class Two Graphs; 4.7 Constructions of Critical Class Two Graphs; 4.8 Hadwiger's Conjecture for Line Graphs; 4.9 Simple Graphs on Surfaces; 4.10 Notes; 5 Tashkinov Trees; 5.1 Tashkinov's Method; 5.2 Extended Tashkinov Trees; 5.3 Asymptotic Bounds; 5.4 Tashkinov's Coloring Algorithm; 5.5 Polynomial Time Algorithms; 5.6 Notes; 6 Goldberg's Conjecture 6.1 Density and Fractional Chromatic Index6.2 Balanced Tashkinov Trees; 6.3 Obstructions; 6.4 Approximation Algorithms; 6.5 Goldberg's Conjecture for Small Graphs; 6.6 Another Classification Problem for Graphs; 6.7 Notes; 7 Extreme Graphs; 7.1 Shannon's Bound and Ring Graphs; 7.2 Vizing's Bound and Extreme Graphs; 7.3 Extreme Graphs and Elementary Graphs; 7.4 Upper Bounds for χ' Depending on Δ and μ; 7.5 Notes; 8 Generalized Edge Colorings of Graphs; 8.1 Equitable and Balanced Edge Colorings; 8.2 Full Edge Colorings and the Cover Index; 8.3 Edge Colorings of Weighted Graphs 8.4 The Fan Equation for the Chromatic Index χ'f8.5 Decomposing Graphs into Simple Graphs; 8.6 Notes; 9 Twenty Pretty Edge Coloring Conjectures; Appendix A: Vizing's Two Fundamental Papers; A.1 On an Estimate of the Chromatic Class of a p-Graph; References; A.2 Critical Graphs with a Given Chromatic Class; References; Appendix B: Fractional Edge Colorings; B.1 The Fractional Chromatic Index; B.2 The Matching Polytope; B.3 A Formula for χ'f*; References; Symbol Index; Name Index; Subject Index |
| Record Nr. | UNINA-9910954453803321 |
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to combinatorics / / Martin J. Erickson
| Introduction to combinatorics / / Martin J. Erickson |
| Autore | Erickson Martin J. <1963-> |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2013 |
| Descrizione fisica | 1 online resource (410 p.) |
| Disciplina | 511/.6 |
| Collana | Wiley Series in Discrete Mathematics and Optimization |
| Soggetto topico | Combinatorial analysis |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-64021-7
1-118-63758-5 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Preface xi1 Basic Counting Methods 11.1 The multiplication principle 11.2 Permutations 41.3 Combinations 61.4 Binomial coefficient identities 101.5 Distributions 191.6 The principle of inclusion and exclusion 231.7 Fibonacci numbers 311.8 Linear recurrence relations 331.9 Special recurrence relations 411.10 Counting and number theory 45Notes 502 Generating Functions 532.1 Rational generating functions 532.2 Special generating functions 632.3 Partition numbers 762.4 Labeled and unlabeled sets 802.5 Counting with symmetry 862.6 Cycle indexes 932.7 Polya's theorem 962.8 The number of graphs 982.9 Symmetries in domain and range 1022.10 Asymmetric graphs 103Notes 1053 The Pigeonhole Principle 1073.1 Simple examples 1073.2 Lattice points, the Gitterpunktproblem, and SET(r) 1103.3 Graphs 1153.4 Colorings of the plane 1183.5 Sequences and partial orders 1193.6 Subsets 124Notes 1264 Ramsey Theory 1314.1 Ramsey's theorem 1314.2 Generalizations of Ramsey's theorem 1354.3 Ramsey numbers, bounds, and asymptotics 1394.4 The probabilistic method 1434.5 Sums 1454.6 Van der Waerden's theorem 146Notes 1505 Codes 1535.1 Binary codes 1535.2 Perfect codes 1565.3 Hamming codes 1585.4 The Fano Configuration 162Notes 1686 Designs 1716.1 t-designs 171CONTENTS ix6.2 Block designs 1756.3 Projective planes 1806.4 Latin squares 1826.5 MOLS and OODs 1856.6 Hadamard matrices 1886.7 The Golay code and S(5, 8, 24) 1946.8 Lattices and sphere packings 1976.9 Leech's lattice 199Notes 201A Web Resources 205B Notation 207Exercise Solutions 211References 225Index 227. |
| Record Nr. | UNINA-9910463174803321 |
Erickson Martin J. <1963->
|
||
| Hoboken, New Jersey : , : Wiley, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
An introduction to optimization / / Edwin K. P. Chong, Stanislaw H. Żak
| An introduction to optimization / / Edwin K. P. Chong, Stanislaw H. Żak |
| Autore | Chong Edwin Kah Pin |
| Edizione | [Fourth edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2013 |
| Descrizione fisica | 1 online resource (1007 p.) |
| Disciplina | 519.6 |
| Collana | Wiley Series in Discrete Mathematics and Optimization |
| Soggetto topico | Mathematical optimization |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-52369-5
1-118-51515-3 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Half Title page; Title page; Copyright page; Dedication; Preface; Part I: Mathematical Review; Chapter 1: Methods of Proof and Some Notation; 1.1 Methods of Proof; 1.2 Notation; Exercises; Chapter 2: Vector Spaces and Matrices; 2.1 Vector and Matrix; 2.2 Rank of a Matrix; 2.3 Linear Equations; 2.4 Inner Products and Norms; Exercises; Chapter 3: Transformations; 3.1 Linear Transformations; 3.2 Eigenvalues and Eigenvectors; 3.3 Orthogonal Projections; 3.4 Quadratic Forms; 3.5 Matrix Norms; Exercises; Chapter 4: Concepts from Geometry; 4.1 Line Segments
4.2 Hyperplanes and Linear Varieties4.3 Convex Sets; 4.4 Neighborhoods; 4.5 Polytopes and Polyhedra; Exercises; Chapter 5: Elements of Calculus; 5.1 Sequences and Limits; 5.2 Differentiability; 5.3 The Derivative Matrix; 5.4 Differentiation Rules; 5.5 Level Sets and Gradients; 5.6 Taylor Series; Exercises; Part II: Unconstrained Optimization; Chapter 6: Basics of Set-Constrained and Unconstrained Optimization; 6.1 Introduction; 6.2 Conditions for Local Minimizers; Exercises; Chapter 7: One-Dimensional Search Methods; 7.1 Introduction; 7.2 Golden Section Search; 7.3 Fibonacci Method 7.4 Bisection Method7.5 Newton's Method; 7.6 Secant Method; 7.7 Bracketing; 7.8 Line Search in Multidimensional Optimization; Exercises; Chapter 8: Gradient Methods; 8.1 Introduction; 8.2 The Method of Steepest Descent; 8.3 Analysis of Gradient Methods; Exercises; Chapter 9: Newton's Method; 9.1 Introduction; 9.2 Analysis of Newton's Method; 9.3 Levenberg-Marquardt Modification; 9.4 Newton's Method for Nonlinear Least Squares; Exercises; Chapter 10: Conjugate Direction Methods; 10.1 Introduction; 10.2 The Conjugate Direction Algorithm; 10.3 The Conjugate Gradient Algorithm 10.4 The Conjugate Gradient Algorithm for Nonquadratic ProblemsExercises; Chapter 11: Quasi-Newton Methods; 11.1 Introduction; 11.2 Approximating the Inverse Hessian; 11.3 The Rank One Correction Formula; 11.4 The DFP Algorithm; 11.5 The BFGS Algorithm; Exercises; Chapter 12: Solving Linear Equations; 12.1 Least-Squares Analysis; 12.2 The Recursive Least-Squares Algorithm; 12.3 Solution to a Linear Equation with Minimum Norm; 12.4 Kaczmarz's Algorithm; 12.5 Solving Linear Equations in General; Exercises; Chapter 13: Unconstrained Optimization and Neural Networks; 13.1 Introduction 13.2 Single-Neuron Training13.3 The Backpropagation Algorithm; Exercises; Chapter 14: Global Search Algorithms; 14.1 Introduction; 14.2 The Nelder-Mead Simplex Algorithm; 14.3 Simulated Annealing; 14.4 Particle Swarm Optimization; 14.5 Genetic Algorithms; Exercises; Part III: Linear Programming; Chapter 15: Introduction to Linear Programming; 15.1 Brief History of Linear Programming; 15.2 Simple Examples of Linear Programs; 15.3 Two-Dimensional Linear Programs; 15.4 Convex Polyhedra and Linear Programming; 15.5 Standard Form Linear Programs; 15.6 Basic Solutions 15.7 Properties of Basic Solutions |
| Record Nr. | UNINA-9910462743603321 |
Chong Edwin Kah Pin
|
||
| Hoboken, New Jersey : , : Wiley, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematics of public key cryptography / / Steven D. Galbraith (University of Auckland)
| Mathematics of public key cryptography / / Steven D. Galbraith (University of Auckland) |
| Autore | Galbraith Steven D. |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
| Descrizione fisica | 1 online resource (xiv, 615 pages) : digital, PDF file(s) |
| Disciplina | 003/.54 |
| Soggetto topico |
Codificació, Teoria de la
Criptografia - Matemàtica Coding theory Cryptography - Mathematics Criptografia Teoria de la codificació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9781139012843
1-107-22971-5 1-280-39333-5 1-139-22286-4 9786613571250 1-139-01284-3 1-139-21806-9 1-139-21497-7 1-139-22458-1 1-139-22114-0 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- Part I. Background -- 2. Basic algorithmic number theory -- 3. Hash functions and MACs -- Part II. Algebraic Groups -- 4. Preliminary remarks on algebraic groups -- 5. Varieties -- 6. Tori, LUC and XTR -- 7. Curves and divisor class groups -- 8. Rational maps on curves and divisors -- 9. Elliptic curves --10. Hyperelliptic curves -- Part III. Exponentiation, Factoring and Discrete Logarithms -- 11. Basic algorithms for algebraic groups -- 12. Primality testing and integer factorisation using algebraic groups --13. Basic discrete logarithm algorithms -- 14. Factoring and discrete logarithms using pseudorandom walks -- 15. Factoring and discrete logarithms in subexponential algorithms -- Part IV. Lattices -- 16. Lattices -- 17. Lattice basis reduction -- 18. Algorithms for the closest and shortest vector problems -- 19. Coppersmith's method and related applications -- Part V. Cryptography Related to Discrete Logarithms -- 20. The Diffie-Hellman problem and cryptographic applications -- 21. The Diffie-Hellman problem -- 22. Digital signatures based on discrete logarithms -- 23. Public key encryption based on discrete logarithms -- Part VI. Cryptography Related to Integer Factorisation -- 24. The RSA and Rabin cryptosystems -- Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves -- 25. Isogenies of elliptic curves -- 26. Pairings on elliptic curves. |
| Record Nr. | UNINA-9910790280403321 |
Galbraith Steven D.
|
||
| Cambridge : , : Cambridge University Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The mathematics of public key cryptography / / Steven D. Galbraith
| The mathematics of public key cryptography / / Steven D. Galbraith |
| Autore | Galbraith Steven D |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cambridge ; ; New York, : Cambridge University Press, 2012 |
| Descrizione fisica | 1 online resource (xiv, 615 pages) : digital, PDF file(s) |
| Disciplina | 003/.54 |
| Soggetto topico |
Coding theory
Cryptography - Mathematics Criptografia Teoria de la codificació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9781139012843
1-107-22971-5 1-280-39333-5 1-139-22286-4 9786613571250 1-139-01284-3 1-139-21806-9 1-139-21497-7 1-139-22458-1 1-139-22114-0 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- Part I. Background -- 2. Basic algorithmic number theory -- 3. Hash functions and MACs -- Part II. Algebraic Groups -- 4. Preliminary remarks on algebraic groups -- 5. Varieties -- 6. Tori, LUC and XTR -- 7. Curves and divisor class groups -- 8. Rational maps on curves and divisors -- 9. Elliptic curves --10. Hyperelliptic curves -- Part III. Exponentiation, Factoring and Discrete Logarithms -- 11. Basic algorithms for algebraic groups -- 12. Primality testing and integer factorisation using algebraic groups --13. Basic discrete logarithm algorithms -- 14. Factoring and discrete logarithms using pseudorandom walks -- 15. Factoring and discrete logarithms in subexponential algorithms -- Part IV. Lattices -- 16. Lattices -- 17. Lattice basis reduction -- 18. Algorithms for the closest and shortest vector problems -- 19. Coppersmith's method and related applications -- Part V. Cryptography Related to Discrete Logarithms -- 20. The Diffie-Hellman problem and cryptographic applications -- 21. The Diffie-Hellman problem -- 22. Digital signatures based on discrete logarithms -- 23. Public key encryption based on discrete logarithms -- Part VI. Cryptography Related to Integer Factorisation -- 24. The RSA and Rabin cryptosystems -- Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves -- 25. Isogenies of elliptic curves -- 26. Pairings on elliptic curves. |
| Record Nr. | UNINA-9910954284503321 |
Galbraith Steven D
|
||
| Cambridge ; ; New York, : Cambridge University Press, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theory of computation [[electronic resource] /] / George Tourlakis
| Theory of computation [[electronic resource] /] / George Tourlakis |
| Autore | Tourlakis George J |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (410 p.) |
| Disciplina | 511.3/52 |
| Soggetto topico |
Computable functions
Functional programming languages |
| ISBN |
1-280-59246-X
9786613622297 1-118-31535-9 1-118-31536-7 1-118-31533-2 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Theory of Computation; CONTENTS; Preface; 1 Mathematical Foundations; 1.1 Sets and Logic; Naïvely; 1.1.1 A Detour via Logic; 1.1.2 Sets and their Operations; 1.1.3 Alphabets, Strings and Languages; 1.2 Relations and Functions; 1.3 Big and Small Infinite Sets; Diagonalization; 1.4 Induction from a User's Perspective; 1.4.1 Complete, or Course-of-Values, Induction; 1.4.2 Simple Induction; 1.4.3 The Least Principle; 1.4.4 The Equivalence of Induction and the Least Principle; 1.5 Why Induction Ticks; 1.6 Inductively Defined Sets; 1.7 Recursive Definitions of Functions; 1.8 Additional Exercises
2 Algorithms, Computable Functions and Computations 2.1 A Theory of Computability; 2.1.1 A Programming Framework for Computable Functions; 2.1.2 Primitive Recursive Functions; 2.1.3 Simultaneous Primitive Recursion; 2.1.4 Pairing Functions; 2.1.5 Iteration; 2.2 A Programming Formalism for the Primitive Recursive Functions; 2.2.1 PR vs. L; 2.2.2 Incompleteness of PR; 2.3 URM Computations and their Arithmetization; 2.4 A Double Recursion that Leads Outside the Primitive Recursive Function Class; 2.4.1 The Ackermann Function; 2.4.2 Properties of the Ackermann Function 2.4.3 The Ackermann Function Majorizes All the Functions of PR 2.4.4 The Graph of the Ackermann Function is in PR*; 2.5 Semi-computable Relations; Unsolvability; 2.6 The Iteration Theorem of Kleene; 2.7 Diagonalization Revisited; Unsolvability via Reductions; 2.7.1 More Diagonalization; 2.7.2 Reducibility via the S-m-n Theorem; 2.7.3 More Dovetailing; 2.7.4 Recursive Enumerations; 2.8 Productive and Creative Sets; 2.9 The Recursion Theorem; 2.9.1 Applications of the Recursion Theorem; 2.10 Completeness; 2.11 Unprovability from Unsolvability 3.5 Additional Exercises 4 Adding a Stack to a NFA: Pushdown Automata; 4.1 The PDA; 4.2 PDA Computations; 4.2.1 ES vs AS vs ES+AS; 4.3 The PDA-acceptable Languages are the Context Free Languages; 4.4 Non Context Free Languages; Another Pumping Lemma; 4.5 Additional Exercises; 5 Computational Complexity; 5.1 Adding a Second Stack; Turing Machines; 5.1.1 Turing Machines; 5.1.2 N P-Completeness; 5.1.3 Cook's Theorem; 5.2 Axt, Loop Program, and Grzegorczyk Hierarchies; 5.3 Additional Exercises; Bibliography; Index |
| Record Nr. | UNINA-9910141450503321 |
Tourlakis George J
|
||
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theory of computation / / George Tourlakis
| Theory of computation / / George Tourlakis |
| Autore | Tourlakis George J |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (410 p.) |
| Disciplina | 511.3/52 |
| Soggetto topico |
Computable functions
Functional programming languages |
| ISBN |
9786613622297
9781280592461 128059246X 9781118315354 1118315359 9781118315361 1118315367 9781118315330 1118315332 |
| Classificazione | MAT008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Theory of Computation; CONTENTS; Preface; 1 Mathematical Foundations; 1.1 Sets and Logic; Naïvely; 1.1.1 A Detour via Logic; 1.1.2 Sets and their Operations; 1.1.3 Alphabets, Strings and Languages; 1.2 Relations and Functions; 1.3 Big and Small Infinite Sets; Diagonalization; 1.4 Induction from a User's Perspective; 1.4.1 Complete, or Course-of-Values, Induction; 1.4.2 Simple Induction; 1.4.3 The Least Principle; 1.4.4 The Equivalence of Induction and the Least Principle; 1.5 Why Induction Ticks; 1.6 Inductively Defined Sets; 1.7 Recursive Definitions of Functions; 1.8 Additional Exercises
2 Algorithms, Computable Functions and Computations 2.1 A Theory of Computability; 2.1.1 A Programming Framework for Computable Functions; 2.1.2 Primitive Recursive Functions; 2.1.3 Simultaneous Primitive Recursion; 2.1.4 Pairing Functions; 2.1.5 Iteration; 2.2 A Programming Formalism for the Primitive Recursive Functions; 2.2.1 PR vs. L; 2.2.2 Incompleteness of PR; 2.3 URM Computations and their Arithmetization; 2.4 A Double Recursion that Leads Outside the Primitive Recursive Function Class; 2.4.1 The Ackermann Function; 2.4.2 Properties of the Ackermann Function 2.4.3 The Ackermann Function Majorizes All the Functions of PR 2.4.4 The Graph of the Ackermann Function is in PR*; 2.5 Semi-computable Relations; Unsolvability; 2.6 The Iteration Theorem of Kleene; 2.7 Diagonalization Revisited; Unsolvability via Reductions; 2.7.1 More Diagonalization; 2.7.2 Reducibility via the S-m-n Theorem; 2.7.3 More Dovetailing; 2.7.4 Recursive Enumerations; 2.8 Productive and Creative Sets; 2.9 The Recursion Theorem; 2.9.1 Applications of the Recursion Theorem; 2.10 Completeness; 2.11 Unprovability from Unsolvability 3.5 Additional Exercises 4 Adding a Stack to a NFA: Pushdown Automata; 4.1 The PDA; 4.2 PDA Computations; 4.2.1 ES vs AS vs ES+AS; 4.3 The PDA-acceptable Languages are the Context Free Languages; 4.4 Non Context Free Languages; Another Pumping Lemma; 4.5 Additional Exercises; 5 Computational Complexity; 5.1 Adding a Second Stack; Turing Machines; 5.1.1 Turing Machines; 5.1.2 N P-Completeness; 5.1.3 Cook's Theorem; 5.2 Axt, Loop Program, and Grzegorczyk Hierarchies; 5.3 Additional Exercises; Bibliography; Index |
| Record Nr. | UNINA-9910824075303321 |
Tourlakis George J
|
||
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||