A classical introduction to Galois theory [[electronic resource] /] / Stephen C. Newman |
Autore | Newman Stephen C. <1952-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2012 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina | 512/.32 |
Soggetto topico | Galois theory |
ISBN |
1-280-67898-4
9786613655912 1-118-33684-4 1-118-33681-X 1-118-33667-4 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A CLASSICAL INTRODUCTION TO GALOIS THEORY; CONTENTS; PREFACE; 1 CLASSICAL FORMULAS; 1.1 Quadratic Polynomials; 1.2 Cubic Polynomials; 1.3 Quartic Polynomials; 2 POLYNOMIALS AND FIELD THEORY; 2.1 Divisibility; 2.2 Algebraic Extensions; 2.3 Degree of Extensions; 2.4 Derivatives; 2.5 Primitive Element Theorem; 2.6 Isomorphism Extension Theorem and Splitting Fields; 3 FUNDAMENTAL THEOREM ON SYMMETRIC POLYNOMIALS AND DISCRIMINANTS; 3.1 Fundamental Theorem on Symmetric Polynomials; 3.2 Fundamental Theorem on Symmetric Rational Functions; 3.3 Some Identities Based on Elementary Symmetric Polynomials
3.4 Discriminants3.5 Discriminants and Subfields of the Real Numbers; 4 IRREDUCIBILITY AND FACTORIZATION; 4.1 Irreducibility Over the Rational Numbers; 4.2 Irreducibility and Splitting Fields; 4.3 Factorization and Adjunction; 5 ROOTS OF UNITY AND CYCLOTOMIC POLYNOMIALS; 5.1 Roots of Unity; 5.2 Cyclotomic Polynomials; 6 RADICAL EXTENSIONS AND SOLVABILITY BY RADICALS; 6.1 Basic Results on Radical Extensions; 6.2 Gauss's Theorem on Cyclotomic Polynomials; 6.3 Abel's Theorem on Radical Extensions; 6.4 Polynomials of Prime Degree; 7 GENERAL POLYNOMIALS AND THE BEGINNINGS OF GALOIS THEORY 7.1 General Polynomials7.2 The Beginnings of Galois Theory; 8 CLASSICAL GALOIS THEORY ACCORDING TO GALOIS; 9 MODERN GALOIS THEORY; 9.1 Galois Theory and Finite Extensions; 9.2 Galois Theory and Splitting Fields; 10 CYCLIC EXTENSIONS AND CYCLOTOMIC FIELDS; 10.1 Cyclic Extensions; 10.2 Cyclotomic Fields; 11 GALOIS'S CRITERION FOR SOLVABILITY OF POLYNOMIALS BY RADICALS; 12 POLYNOMIALS OF PRIME DEGREE; 13 PERIODS OF ROOTS OF UNITY; 14 DENESTING RADICALS; 15 CLASSICAL FORMULAS REVISITED; 15.1 General Quadratic Polynomial; 15.2 General Cubic Polynomial; 15.3 General Quartic Polynomial APPENDIX A COSETS AND GROUP ACTIONSAPPENDIX B CYCLIC GROUPS; APPENDIX C SOLVABLE GROUPS; APPENDIX D PERMUTATION GROUPS; APPENDIX E FINITE FIELDS AND NUMBER THEORY; APPENDIX F FURTHER READING; REFERENCES; INDEX |
Record Nr. | UNINA-9910139550803321 |
Newman Stephen C. <1952->
![]() |
||
Hoboken, N.J., : Wiley, c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A classical introduction to Galois theory / / Stephen C. Newman |
Autore | Newman Stephen C. <1952-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2012 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina | 512/.32 |
Soggetto topico | Galois theory |
ISBN |
1-280-67898-4
9786613655912 1-118-33684-4 1-118-33681-X 1-118-33667-4 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A CLASSICAL INTRODUCTION TO GALOIS THEORY; CONTENTS; PREFACE; 1 CLASSICAL FORMULAS; 1.1 Quadratic Polynomials; 1.2 Cubic Polynomials; 1.3 Quartic Polynomials; 2 POLYNOMIALS AND FIELD THEORY; 2.1 Divisibility; 2.2 Algebraic Extensions; 2.3 Degree of Extensions; 2.4 Derivatives; 2.5 Primitive Element Theorem; 2.6 Isomorphism Extension Theorem and Splitting Fields; 3 FUNDAMENTAL THEOREM ON SYMMETRIC POLYNOMIALS AND DISCRIMINANTS; 3.1 Fundamental Theorem on Symmetric Polynomials; 3.2 Fundamental Theorem on Symmetric Rational Functions; 3.3 Some Identities Based on Elementary Symmetric Polynomials
3.4 Discriminants3.5 Discriminants and Subfields of the Real Numbers; 4 IRREDUCIBILITY AND FACTORIZATION; 4.1 Irreducibility Over the Rational Numbers; 4.2 Irreducibility and Splitting Fields; 4.3 Factorization and Adjunction; 5 ROOTS OF UNITY AND CYCLOTOMIC POLYNOMIALS; 5.1 Roots of Unity; 5.2 Cyclotomic Polynomials; 6 RADICAL EXTENSIONS AND SOLVABILITY BY RADICALS; 6.1 Basic Results on Radical Extensions; 6.2 Gauss's Theorem on Cyclotomic Polynomials; 6.3 Abel's Theorem on Radical Extensions; 6.4 Polynomials of Prime Degree; 7 GENERAL POLYNOMIALS AND THE BEGINNINGS OF GALOIS THEORY 7.1 General Polynomials7.2 The Beginnings of Galois Theory; 8 CLASSICAL GALOIS THEORY ACCORDING TO GALOIS; 9 MODERN GALOIS THEORY; 9.1 Galois Theory and Finite Extensions; 9.2 Galois Theory and Splitting Fields; 10 CYCLIC EXTENSIONS AND CYCLOTOMIC FIELDS; 10.1 Cyclic Extensions; 10.2 Cyclotomic Fields; 11 GALOIS'S CRITERION FOR SOLVABILITY OF POLYNOMIALS BY RADICALS; 12 POLYNOMIALS OF PRIME DEGREE; 13 PERIODS OF ROOTS OF UNITY; 14 DENESTING RADICALS; 15 CLASSICAL FORMULAS REVISITED; 15.1 General Quadratic Polynomial; 15.2 General Cubic Polynomial; 15.3 General Quartic Polynomial APPENDIX A COSETS AND GROUP ACTIONSAPPENDIX B CYCLIC GROUPS; APPENDIX C SOLVABLE GROUPS; APPENDIX D PERMUTATION GROUPS; APPENDIX E FINITE FIELDS AND NUMBER THEORY; APPENDIX F FURTHER READING; REFERENCES; INDEX |
Record Nr. | UNISA-996197528903316 |
Newman Stephen C. <1952->
![]() |
||
Hoboken, N.J., : Wiley, c2012 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
A classical introduction to Galois theory / / Stephen C. Newman |
Autore | Newman Stephen C. <1952-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2012 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina | 512/.32 |
Soggetto topico | Galois theory |
ISBN |
1-280-67898-4
9786613655912 1-118-33684-4 1-118-33681-X 1-118-33667-4 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A CLASSICAL INTRODUCTION TO GALOIS THEORY; CONTENTS; PREFACE; 1 CLASSICAL FORMULAS; 1.1 Quadratic Polynomials; 1.2 Cubic Polynomials; 1.3 Quartic Polynomials; 2 POLYNOMIALS AND FIELD THEORY; 2.1 Divisibility; 2.2 Algebraic Extensions; 2.3 Degree of Extensions; 2.4 Derivatives; 2.5 Primitive Element Theorem; 2.6 Isomorphism Extension Theorem and Splitting Fields; 3 FUNDAMENTAL THEOREM ON SYMMETRIC POLYNOMIALS AND DISCRIMINANTS; 3.1 Fundamental Theorem on Symmetric Polynomials; 3.2 Fundamental Theorem on Symmetric Rational Functions; 3.3 Some Identities Based on Elementary Symmetric Polynomials
3.4 Discriminants3.5 Discriminants and Subfields of the Real Numbers; 4 IRREDUCIBILITY AND FACTORIZATION; 4.1 Irreducibility Over the Rational Numbers; 4.2 Irreducibility and Splitting Fields; 4.3 Factorization and Adjunction; 5 ROOTS OF UNITY AND CYCLOTOMIC POLYNOMIALS; 5.1 Roots of Unity; 5.2 Cyclotomic Polynomials; 6 RADICAL EXTENSIONS AND SOLVABILITY BY RADICALS; 6.1 Basic Results on Radical Extensions; 6.2 Gauss's Theorem on Cyclotomic Polynomials; 6.3 Abel's Theorem on Radical Extensions; 6.4 Polynomials of Prime Degree; 7 GENERAL POLYNOMIALS AND THE BEGINNINGS OF GALOIS THEORY 7.1 General Polynomials7.2 The Beginnings of Galois Theory; 8 CLASSICAL GALOIS THEORY ACCORDING TO GALOIS; 9 MODERN GALOIS THEORY; 9.1 Galois Theory and Finite Extensions; 9.2 Galois Theory and Splitting Fields; 10 CYCLIC EXTENSIONS AND CYCLOTOMIC FIELDS; 10.1 Cyclic Extensions; 10.2 Cyclotomic Fields; 11 GALOIS'S CRITERION FOR SOLVABILITY OF POLYNOMIALS BY RADICALS; 12 POLYNOMIALS OF PRIME DEGREE; 13 PERIODS OF ROOTS OF UNITY; 14 DENESTING RADICALS; 15 CLASSICAL FORMULAS REVISITED; 15.1 General Quadratic Polynomial; 15.2 General Cubic Polynomial; 15.3 General Quartic Polynomial APPENDIX A COSETS AND GROUP ACTIONSAPPENDIX B CYCLIC GROUPS; APPENDIX C SOLVABLE GROUPS; APPENDIX D PERMUTATION GROUPS; APPENDIX E FINITE FIELDS AND NUMBER THEORY; APPENDIX F FURTHER READING; REFERENCES; INDEX |
Record Nr. | UNINA-9910815403803321 |
Newman Stephen C. <1952->
![]() |
||
Hoboken, N.J., : Wiley, c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational methods for data evaluation and assimilation / / Dan Gabrial Cauci, Ionel Michael Navon, Mihaela Ionescu-Bujor |
Autore | Cacuci D. G. |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2014] |
Descrizione fisica | 1 online resource (372 p.) |
Disciplina | 518.0285 |
Soggetto topico | Mathematical analysis - Data processing |
ISBN |
0-429-13654-4
1-58488-735-4 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Contributors; Preface; List of Figures; List of Tables; Contents; Introduction; Chapter 1 - Experimental Data Evaluation: Basic Concepts; Chapter 2 - Computation of Means and Variances from Measurements; Chapter 3 - Optimization Methods For Large-Scale Data Assimilation; Chapter 4 - Basic Principles of 4-D VAR; Chapter 5 - 4-D VAR in Numerical Weather Prediction Models; Chapter 6 - Appendix A; Chapter 7 - Appendix B; Chapter 8 - Appendix C; Bibliography; Back Cover |
Record Nr. | UNINA-9910787583203321 |
Cacuci D. G.
![]() |
||
Boca Raton : , : CRC Press, , [2014] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of random walk and diffusion processes [[electronic resource] /] / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
Descrizione fisica | 1 online resource (278 p.) |
Disciplina | 519.2/82 |
Collana | Wiley series in operations research and management science |
Soggetto topico |
Random walks (Mathematics)
Diffusion processes |
ISBN |
1-118-61793-2
1-118-61805-X 1-118-62985-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction 2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral Density; 2.6 Counting Processes; 2.7 Independent Increment Processes; 2.8 Stationary Increment Process; 2.9 Poisson Processes; 2.9.1 Compound Poisson Process; 2.10 Markov Processes; 2.10.1 Discrete-Time Markov Chains; 2.10.2 State Transition Probability Matrix; 2.10.3 The k-Step State Transition Probability; 2.10.4 State Transition Diagrams; 2.10.5 Classification of States 2.10.6 Limiting-State Probabilities2.10.7 Doubly Stochastic Matrix; 2.10.8 Continuous-Time Markov Chains; 2.10.9 Birth and Death Processes; 2.11 Gaussian Processes; 2.12 Martingales; 2.12.1 Stopping Times; Problems; 3 One-Dimensional Random Walk; 3.1 Introduction; 3.2 Occupancy Probability; 3.3 Random Walk as a Markov Chain; 3.4 Symmetric Random Walk as a Martingale; 3.5 Random Walk with Barriers; 3.6 Mean-Square Displacement; 3.7 Gambler's Ruin; 3.7.1 Ruin Probability; 3.7.2 Alternative Derivation of Ruin Probability; 3.7.3 Duration of a Game; 3.8 Random Walk with Stay 3.9 First Return to the Origin3.10 First Passage Times for Symmetric Random Walk; 3.10.1 First Passage Time via the Generating Function; 3.10.2 First Passage Time via the Reflection Principle; 3.10.3 Hitting Time and the Reflection Principle; 3.11 The Ballot Problem and the Reflection Principle; 3.11.1 The Conditional Probability Method; 3.12 Returns to the Origin and the Arc-Sine Law; 3.13 Maximum of a Random Walk; 3.14 Two Symmetric Random Walkers; 3.15 Random Walk on a Graph; 3.15.1 Proximity Measures; 3.15.2 Directed Graphs; 3.15.3 Random Walk on an Undirected Graph 3.15.4 Random Walk on a Weighted Graph |
Record Nr. | UNINA-9910139012803321 |
Ibe Oliver C (Oliver Chukwudi), <1947->
![]() |
||
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of random walk and diffusion processes / / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
Descrizione fisica | 1 online resource (278 p.) |
Disciplina | 519.2/82 |
Collana | Wiley series in operations research and management science |
Soggetto topico |
Random walks (Mathematics)
Diffusion processes |
ISBN |
1-118-61793-2
1-118-61805-X 1-118-62985-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction 2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral Density; 2.6 Counting Processes; 2.7 Independent Increment Processes; 2.8 Stationary Increment Process; 2.9 Poisson Processes; 2.9.1 Compound Poisson Process; 2.10 Markov Processes; 2.10.1 Discrete-Time Markov Chains; 2.10.2 State Transition Probability Matrix; 2.10.3 The k-Step State Transition Probability; 2.10.4 State Transition Diagrams; 2.10.5 Classification of States 2.10.6 Limiting-State Probabilities2.10.7 Doubly Stochastic Matrix; 2.10.8 Continuous-Time Markov Chains; 2.10.9 Birth and Death Processes; 2.11 Gaussian Processes; 2.12 Martingales; 2.12.1 Stopping Times; Problems; 3 One-Dimensional Random Walk; 3.1 Introduction; 3.2 Occupancy Probability; 3.3 Random Walk as a Markov Chain; 3.4 Symmetric Random Walk as a Martingale; 3.5 Random Walk with Barriers; 3.6 Mean-Square Displacement; 3.7 Gambler's Ruin; 3.7.1 Ruin Probability; 3.7.2 Alternative Derivation of Ruin Probability; 3.7.3 Duration of a Game; 3.8 Random Walk with Stay 3.9 First Return to the Origin3.10 First Passage Times for Symmetric Random Walk; 3.10.1 First Passage Time via the Generating Function; 3.10.2 First Passage Time via the Reflection Principle; 3.10.3 Hitting Time and the Reflection Principle; 3.11 The Ballot Problem and the Reflection Principle; 3.11.1 The Conditional Probability Method; 3.12 Returns to the Origin and the Arc-Sine Law; 3.13 Maximum of a Random Walk; 3.14 Two Symmetric Random Walkers; 3.15 Random Walk on a Graph; 3.15.1 Proximity Measures; 3.15.2 Directed Graphs; 3.15.3 Random Walk on an Undirected Graph 3.15.4 Random Walk on a Weighted Graph |
Record Nr. | UNINA-9910817355103321 |
Ibe Oliver C (Oliver Chukwudi), <1947->
![]() |
||
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Financial enterprise risk management / / Paul Sweeting [[electronic resource]] |
Autore | Sweeting Paul |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
Descrizione fisica | 1 online resource (xii, 551 pages) : digital, PDF file(s) |
Disciplina | 332.1068/1 |
Collana | International series on actuarial science |
Soggetto topico |
Financial institutions - Risk management
Financial services industry - Risk management |
ISBN |
1-139-63548-4
1-107-22257-5 1-283-34223-5 1-139-16004-4 9786613342232 1-139-16104-0 1-139-15548-2 1-139-15899-6 1-139-15723-X 0-511-84413-1 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | An introduction to enterprise risk management -- Types of financial institution -- Stakeholders -- The internal environment -- The external environment -- Process overview -- Definitions of risk -- Risk identification -- Some useful statistics -- Statistical distributions -- Modelling techniques -- Extreme value theory -- Modelling time series -- Quantifying particular risks -- Risk assessment -- Responses to risk -- Continuous considerations -- Economic capital -- Risk frameworks -- Case studies. |
Record Nr. | UNINA-9910781968603321 |
Sweeting Paul
![]() |
||
Cambridge : , : Cambridge University Press, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Financial enterprise risk management / / Paul Sweeting [[electronic resource]] |
Autore | Sweeting Paul |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
Descrizione fisica | 1 online resource (xii, 551 pages) : digital, PDF file(s) |
Disciplina | 332.1068/1 |
Collana | International series on actuarial science |
Soggetto topico |
Financial institutions - Risk management
Financial services industry - Risk management |
ISBN |
1-139-63548-4
1-107-22257-5 1-283-34223-5 1-139-16004-4 9786613342232 1-139-16104-0 1-139-15548-2 1-139-15899-6 1-139-15723-X 0-511-84413-1 |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | An introduction to enterprise risk management -- Types of financial institution -- Stakeholders -- The internal environment -- The external environment -- Process overview -- Definitions of risk -- Risk identification -- Some useful statistics -- Statistical distributions -- Modelling techniques -- Extreme value theory -- Modelling time series -- Quantifying particular risks -- Risk assessment -- Responses to risk -- Continuous considerations -- Economic capital -- Risk frameworks -- Case studies. |
Record Nr. | UNINA-9910818686203321 |
Sweeting Paul
![]() |
||
Cambridge : , : Cambridge University Press, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A first course in applied mathematics / / Jorge Rebaza |
Autore | Rebaza Jorge |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, 2012 |
Descrizione fisica | 1 online resource (458 p.) |
Disciplina |
510
519 |
Soggetto topico |
Mathematical models
Computer simulation |
ISBN |
1-280-59248-6
9786613622310 1-118-27717-1 1-118-27715-5 1-118-27718-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A First Course in Applied Mathematics; CONTENTS; Preface; 1 Basics of Linear Algebra; 1.1 Notation and Terminology; 1.2 Vector and Matrix Norms; 1.3 Dot Product and Orthogonality; 1.4 Special Matrices; 1.4.1 Diagonal and triangular matrices; 1.4.2 Hessenberg matrices; 1.4.3 Nonsingular and inverse matrices; 1.4.4 Symmetric and positive definite matrices; 1.4.5 Matrix exponential; 1.4.6 Permutation matrices; 1.4.7 Orthogonal matrices; 1.5 Vector Spaces; 1.6 Linear Independence and Basis; 1.7 Orthogonalization and Direct Sums; 1.8 Column Space, Row Space, and Null Space
1.8.1 Linear transformations1.9 Orthogonal Projections; 1.10 Eigenvalues and Eigenvectors; 1.11 Similarity; 1.12 Bezier Curves and Postscript Fonts; 1.12.1 Properties of Bezier curves; 1.12.2 Composite Bezier curves; 1.13 Final Remarks and Further Reading; Exercises; 2 Ranking Web Pages; 2.1 The Power Method; 2.2 Stochastic, Irreducible, and Primitive Matrices; 2.3 Google's PageRank Algorithm; 2.3.1 The personalization vector; 2.3.2 Speed of convergence and sparsity; 2.3.3 Power method and reordering; 2.4 Alternatives to the Power Method; 2.4.1 Linear system formulation 2.4.2 Iterative aggregation/disaggregation (IAD)2.4.3 IAD and linear systems; 2.5 Final Remarks and Further Reading; Exercises; 3 Matrix Factorizations; 3.1 LU Factorization; 3.1.1 The complex case; 3.1.2 Solving several systems; 3.1.3 The PA = LU factorization; 3.2 QR Factorization; 3.2.1 QR and Gram-Schmidt; 3.2.2 The complex case; 3.2.3 QR and similarity; 3.2.4 The QR algorithm; 3.2.5 QR and LU; 3.3 Singular Value Decomposition (SVD); 3.3.1 The complex case; 3.3.2 Low-rank approximations; 3.3.3 SVD and spectral norm; 3.4 Schur Factorization; 3.4.1 The complex case 3.4.2 Schur factorization and invariant subspaces3.4.3 Exchanging eigenblocks; 3.4.4 Block diagonalization; 3.5 Information Retrieval; 3.5.1 Query matching; 3.5.2 Low-rank query matching; 3.5.3 Term-term comparison; 3.6 Partition of Simple Substitution Cryptograms; 3.6.1 Rank-1 approximation; 3.6.2 Rank-2 approximation; 3.7 Final Remarks and Further Reading; Exercises; 4 Least Squares; 4.1 Projections and Normal Equations; 4.2 Least Squares and QR Factorization; 4.3 Lagrange Multipliers; 4.4 Final Remarks and Further Reading; Exercises; 5 Image Compression 5.1 Compressing with Discrete Cosine Transform5.1.1 1 -D discrete cosine transform; 5.1.2 2-D discrete cosine transform; 5.1.3 Image compression and the human visual system; 5.1.4 Basis functions and images; 5.1.5 Low-pass filtering; 5.1.6 Quantization; 5.1.7 Compression of color images; 5.2 Huffman Coding; 5.2.1 Huffman coding and JPEG; 5.3 Compression with SVD; 5.3.1 Compressing grayscale images; 5.3.2 Compressing color images; 5.4 Final Remarks and Further Reading; Exercises; 6 Ordinary Differential Equations; 6.1 One-Dimensional Differential Equations; 6.1.1 Existence and uniqueness 6.1.2 A simple population model |
Record Nr. | UNINA-9910141255003321 |
Rebaza Jorge
![]() |
||
Hoboken, NJ, : Wiley, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A first course in applied mathematics / / Jorge Rebaza |
Autore | Rebaza Jorge |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, 2012 |
Descrizione fisica | 1 online resource (458 p.) |
Disciplina |
510
519 |
Soggetto topico |
Mathematical models
Computer simulation |
ISBN |
1-280-59248-6
9786613622310 1-118-27717-1 1-118-27715-5 1-118-27718-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A First Course in Applied Mathematics; CONTENTS; Preface; 1 Basics of Linear Algebra; 1.1 Notation and Terminology; 1.2 Vector and Matrix Norms; 1.3 Dot Product and Orthogonality; 1.4 Special Matrices; 1.4.1 Diagonal and triangular matrices; 1.4.2 Hessenberg matrices; 1.4.3 Nonsingular and inverse matrices; 1.4.4 Symmetric and positive definite matrices; 1.4.5 Matrix exponential; 1.4.6 Permutation matrices; 1.4.7 Orthogonal matrices; 1.5 Vector Spaces; 1.6 Linear Independence and Basis; 1.7 Orthogonalization and Direct Sums; 1.8 Column Space, Row Space, and Null Space
1.8.1 Linear transformations1.9 Orthogonal Projections; 1.10 Eigenvalues and Eigenvectors; 1.11 Similarity; 1.12 Bezier Curves and Postscript Fonts; 1.12.1 Properties of Bezier curves; 1.12.2 Composite Bezier curves; 1.13 Final Remarks and Further Reading; Exercises; 2 Ranking Web Pages; 2.1 The Power Method; 2.2 Stochastic, Irreducible, and Primitive Matrices; 2.3 Google's PageRank Algorithm; 2.3.1 The personalization vector; 2.3.2 Speed of convergence and sparsity; 2.3.3 Power method and reordering; 2.4 Alternatives to the Power Method; 2.4.1 Linear system formulation 2.4.2 Iterative aggregation/disaggregation (IAD)2.4.3 IAD and linear systems; 2.5 Final Remarks and Further Reading; Exercises; 3 Matrix Factorizations; 3.1 LU Factorization; 3.1.1 The complex case; 3.1.2 Solving several systems; 3.1.3 The PA = LU factorization; 3.2 QR Factorization; 3.2.1 QR and Gram-Schmidt; 3.2.2 The complex case; 3.2.3 QR and similarity; 3.2.4 The QR algorithm; 3.2.5 QR and LU; 3.3 Singular Value Decomposition (SVD); 3.3.1 The complex case; 3.3.2 Low-rank approximations; 3.3.3 SVD and spectral norm; 3.4 Schur Factorization; 3.4.1 The complex case 3.4.2 Schur factorization and invariant subspaces3.4.3 Exchanging eigenblocks; 3.4.4 Block diagonalization; 3.5 Information Retrieval; 3.5.1 Query matching; 3.5.2 Low-rank query matching; 3.5.3 Term-term comparison; 3.6 Partition of Simple Substitution Cryptograms; 3.6.1 Rank-1 approximation; 3.6.2 Rank-2 approximation; 3.7 Final Remarks and Further Reading; Exercises; 4 Least Squares; 4.1 Projections and Normal Equations; 4.2 Least Squares and QR Factorization; 4.3 Lagrange Multipliers; 4.4 Final Remarks and Further Reading; Exercises; 5 Image Compression 5.1 Compressing with Discrete Cosine Transform5.1.1 1 -D discrete cosine transform; 5.1.2 2-D discrete cosine transform; 5.1.3 Image compression and the human visual system; 5.1.4 Basis functions and images; 5.1.5 Low-pass filtering; 5.1.6 Quantization; 5.1.7 Compression of color images; 5.2 Huffman Coding; 5.2.1 Huffman coding and JPEG; 5.3 Compression with SVD; 5.3.1 Compressing grayscale images; 5.3.2 Compressing color images; 5.4 Final Remarks and Further Reading; Exercises; 6 Ordinary Differential Equations; 6.1 One-Dimensional Differential Equations; 6.1.1 Existence and uniqueness 6.1.2 A simple population model |
Record Nr. | UNINA-9910830317403321 |
Rebaza Jorge
![]() |
||
Hoboken, NJ, : Wiley, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|