top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues [[electronic resource] ] : Fourth International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings / / edited by De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, Kang-Hyun Jo
Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues [[electronic resource] ] : Fourth International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings / / edited by De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, Kang-Hyun Jo
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Descrizione fisica 1 online resource (XXVII, 1273 p.)
Disciplina 006.301
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer programming
Application software
Pattern recognition systems
Computer science
Algorithms
Artificial intelligence
Programming Techniques
Computer and Information Systems Applications
Automated Pattern Recognition
Theory of Computation
Artificial Intelligence
ISBN 3-540-87442-9
Classificazione 54.72
DAT 500f
DAT 700f
SS 4800
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biological and Quantum Computing -- Intelligent Computing in Bioinformatics -- Computational Genomics and Proteomics -- Intelligent Computing in Signal Processing -- Intelligent Computing in Pattern Recognition -- Intelligent Computing in Communication -- Intelligent Agent and Web Applications -- Intelligent Fault Diagnosis -- Intelligent Control and Automation -- Intelligent Data Fusion and Security -- Intelligent Prediction and Time Series Analysis -- Natural Language Processing and Expert Systems -- Intelligent Image/Document Retrievals -- Network-Based Intelligence and Automation -- Intelligent Robot Systems Based on Vision Technology -- Computational Intelligence for Image Analysis.
Record Nr. UNISA-996465522903316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues : Fourth International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings / / edited by De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, Kang-Hyun Jo
Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues : Fourth International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings / / edited by De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, Kang-Hyun Jo
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Descrizione fisica 1 online resource (XXVII, 1273 p.)
Disciplina 006.301
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer programming
Application software
Pattern recognition systems
Computer science
Algorithms
Artificial intelligence
Programming Techniques
Computer and Information Systems Applications
Automated Pattern Recognition
Theory of Computation
Artificial Intelligence
ISBN 3-540-87442-9
Classificazione 54.72
DAT 500f
DAT 700f
SS 4800
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biological and Quantum Computing -- Intelligent Computing in Bioinformatics -- Computational Genomics and Proteomics -- Intelligent Computing in Signal Processing -- Intelligent Computing in Pattern Recognition -- Intelligent Computing in Communication -- Intelligent Agent and Web Applications -- Intelligent Fault Diagnosis -- Intelligent Control and Automation -- Intelligent Data Fusion and Security -- Intelligent Prediction and Time Series Analysis -- Natural Language Processing and Expert Systems -- Intelligent Image/Document Retrievals -- Network-Based Intelligence and Automation -- Intelligent Robot Systems Based on Vision Technology -- Computational Intelligence for Image Analysis.
Record Nr. UNINA-9910483797103321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in fuzzy clustering and its applications [[electronic resource] /] / edited by J. Valente de Oliveira, W. Pedrycz
Advances in fuzzy clustering and its applications [[electronic resource] /] / edited by J. Valente de Oliveira, W. Pedrycz
Pubbl/distr/stampa Chichester, : Wiley, c2007
Descrizione fisica 1 online resource (456 p.)
Disciplina 006.3
Altri autori (Persone) OliveiraJ. Valente de (José Valente)
PedryczWitold <1953->
Soggetto topico Fuzzy systems
Soft computing
Soggetto genere / forma Electronic books.
ISBN 1-280-90081-4
9786610900817
0-470-06119-7
0-470-06118-9
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advances in Fuzzy Clustering and its Applications; Contents; List of Contributors; Foreword; Preface; Part I Fundamentals 1; 1 Fundamentals of Fuzzy Clustering; 1.1 Introduction; 1.2 Basic Clustering Algorithms; 1.3 Distance Function Variants; 1.4 Objective Function Variants; 1.5 Update Equation Variants: Alternating Cluster Estimation; 1.6 Concluding Remarks; Acknowledgements; References; 2 Relational Fuzzy Clustering; 2.1 Introduction; 2.2 Object and Relational Data; 2.3 Object Data Clustering Models; 2.4 Relational Clustering; 2.5 Relational Clustering with Non-spherical Prototypes
2.6 Relational Data Interpreted as Object Data2.7 Summary; 2.8 Experiments; 2.9 Conclusions; References; 3 Fuzzy Clustering with Minkowski Distance Functions; 3.1 Introduction; 3.2 Formalization; 3.3 The Majorizing Algorithm for Fuzzy C-means with Minkowski Distances; 3.4 The Effects of the Robustness Parameterl; 3.5 Internet Attitudes; 3.6 Conclusions; References; 4 Soft Cluster Ensembles; 4.1 Introduction; 4.2 Cluster Ensembles; 4.3 Soft Cluster Ensembles; 4.4 Experimental Setup; 4.5 Soft vs. Hard Cluster Ensembles; 4.6 Conclusions and Future Work; Acknowledgements; References
Part II Visualization5 Aggregation and Visualization of Fuzzy Clusters Based on Fuzzy Similarity Measures; 5.1 Problem Definition; 5.2 Classical Methods for Cluster Validity and Merging; 5.3 Similarity of Fuzzy Clusters; 5.4 Visualization of Clustering Results; 5.5 Conclusions; Appendix 5A.1 Validity Indices; Appendix 5A.2 The Modified Sammon Mapping Algorithm; Acknowledgements; References; 6 Interactive Exploration of Fuzzy Clusters; 6.1 Introduction; 6.2 Neighborgram Clustering; 6.3 Interactive Exploration; 6.4 Parallel Universes; 6.5 Discussion; References
Part III Algorithms and Computational Aspects7 Fuzzy Clustering with Participatory Learning and Applications; 7.1 Introduction; 7.2 Participatory Learning; 7.3 Participatory Learning in Fuzzy Clustering; 7.4 Experimental Results; 7.5 Applications; 7.6 Conclusions; Acknowledgements; References; 8 Fuzzy Clustering of Fuzzy Data; 8.1 Introduction; 8.2 Informational Paradigm, Fuzziness and Complexity in Clustering Processes; 8.3 Fuzzy Data; 8.4 Fuzzy Clustering of Fuzzy Data; 8.5 An Extension: Fuzzy Clustering Models for Fuzzy Data Time Arrays; 8.6 Applicative Examples
8.7 Concluding Remarks and Future PerspectivesReferences; 9 Inclusion-based Fuzzy Clustering; 9.1 Introduction; 9.2 Background: Fuzzy Clustering; 9.3 Construction of an Inclusion Index; 9.4 Inclusion-based Fuzzy Clustering; 9.5 Numerical Examples and Illustrations; 9.6 Conclusion; Acknowledgements; Appendix 9A.1; References; 10 Mining Diagnostic Rules Using Fuzzy Clustering; 10.1 Introduction; 10.2 Fuzzy Medical Diagnosis; 10.3 Interpretability in Fuzzy Medical Diagnosis; 10.4 A Framework for Mining Interpretable Diagnostic Rules; 10.5 An Illustrative Example; 10.6 Conclusive Remarks
References
Record Nr. UNINA-9910143587503321
Chichester, : Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in fuzzy clustering and its applications [[electronic resource] /] / edited by J. Valente de Oliveira, W. Pedrycz
Advances in fuzzy clustering and its applications [[electronic resource] /] / edited by J. Valente de Oliveira, W. Pedrycz
Pubbl/distr/stampa Chichester, : Wiley, c2007
Descrizione fisica 1 online resource (456 p.)
Disciplina 006.3
Altri autori (Persone) OliveiraJ. Valente de (José Valente)
PedryczWitold <1953->
Soggetto topico Fuzzy systems
Soft computing
ISBN 1-280-90081-4
9786610900817
0-470-06119-7
0-470-06118-9
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advances in Fuzzy Clustering and its Applications; Contents; List of Contributors; Foreword; Preface; Part I Fundamentals 1; 1 Fundamentals of Fuzzy Clustering; 1.1 Introduction; 1.2 Basic Clustering Algorithms; 1.3 Distance Function Variants; 1.4 Objective Function Variants; 1.5 Update Equation Variants: Alternating Cluster Estimation; 1.6 Concluding Remarks; Acknowledgements; References; 2 Relational Fuzzy Clustering; 2.1 Introduction; 2.2 Object and Relational Data; 2.3 Object Data Clustering Models; 2.4 Relational Clustering; 2.5 Relational Clustering with Non-spherical Prototypes
2.6 Relational Data Interpreted as Object Data2.7 Summary; 2.8 Experiments; 2.9 Conclusions; References; 3 Fuzzy Clustering with Minkowski Distance Functions; 3.1 Introduction; 3.2 Formalization; 3.3 The Majorizing Algorithm for Fuzzy C-means with Minkowski Distances; 3.4 The Effects of the Robustness Parameterl; 3.5 Internet Attitudes; 3.6 Conclusions; References; 4 Soft Cluster Ensembles; 4.1 Introduction; 4.2 Cluster Ensembles; 4.3 Soft Cluster Ensembles; 4.4 Experimental Setup; 4.5 Soft vs. Hard Cluster Ensembles; 4.6 Conclusions and Future Work; Acknowledgements; References
Part II Visualization5 Aggregation and Visualization of Fuzzy Clusters Based on Fuzzy Similarity Measures; 5.1 Problem Definition; 5.2 Classical Methods for Cluster Validity and Merging; 5.3 Similarity of Fuzzy Clusters; 5.4 Visualization of Clustering Results; 5.5 Conclusions; Appendix 5A.1 Validity Indices; Appendix 5A.2 The Modified Sammon Mapping Algorithm; Acknowledgements; References; 6 Interactive Exploration of Fuzzy Clusters; 6.1 Introduction; 6.2 Neighborgram Clustering; 6.3 Interactive Exploration; 6.4 Parallel Universes; 6.5 Discussion; References
Part III Algorithms and Computational Aspects7 Fuzzy Clustering with Participatory Learning and Applications; 7.1 Introduction; 7.2 Participatory Learning; 7.3 Participatory Learning in Fuzzy Clustering; 7.4 Experimental Results; 7.5 Applications; 7.6 Conclusions; Acknowledgements; References; 8 Fuzzy Clustering of Fuzzy Data; 8.1 Introduction; 8.2 Informational Paradigm, Fuzziness and Complexity in Clustering Processes; 8.3 Fuzzy Data; 8.4 Fuzzy Clustering of Fuzzy Data; 8.5 An Extension: Fuzzy Clustering Models for Fuzzy Data Time Arrays; 8.6 Applicative Examples
8.7 Concluding Remarks and Future PerspectivesReferences; 9 Inclusion-based Fuzzy Clustering; 9.1 Introduction; 9.2 Background: Fuzzy Clustering; 9.3 Construction of an Inclusion Index; 9.4 Inclusion-based Fuzzy Clustering; 9.5 Numerical Examples and Illustrations; 9.6 Conclusion; Acknowledgements; Appendix 9A.1; References; 10 Mining Diagnostic Rules Using Fuzzy Clustering; 10.1 Introduction; 10.2 Fuzzy Medical Diagnosis; 10.3 Interpretability in Fuzzy Medical Diagnosis; 10.4 A Framework for Mining Interpretable Diagnostic Rules; 10.5 An Illustrative Example; 10.6 Conclusive Remarks
References
Record Nr. UNINA-9910830897803321
Chichester, : Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in fuzzy clustering and its applications / / edited by J. Valente de Oliveira, W. Pedrycz
Advances in fuzzy clustering and its applications / / edited by J. Valente de Oliveira, W. Pedrycz
Pubbl/distr/stampa Chichester, : Wiley, c2007
Descrizione fisica 1 online resource (456 p.)
Disciplina 006.3
Altri autori (Persone) OliveiraJ. Valente de (Jose Valente)
PedryczWitold <1953->
Soggetto topico Fuzzy systems
Soft computing
ISBN 1-280-90081-4
9786610900817
0-470-06119-7
0-470-06118-9
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advances in Fuzzy Clustering and its Applications; Contents; List of Contributors; Foreword; Preface; Part I Fundamentals 1; 1 Fundamentals of Fuzzy Clustering; 1.1 Introduction; 1.2 Basic Clustering Algorithms; 1.3 Distance Function Variants; 1.4 Objective Function Variants; 1.5 Update Equation Variants: Alternating Cluster Estimation; 1.6 Concluding Remarks; Acknowledgements; References; 2 Relational Fuzzy Clustering; 2.1 Introduction; 2.2 Object and Relational Data; 2.3 Object Data Clustering Models; 2.4 Relational Clustering; 2.5 Relational Clustering with Non-spherical Prototypes
2.6 Relational Data Interpreted as Object Data2.7 Summary; 2.8 Experiments; 2.9 Conclusions; References; 3 Fuzzy Clustering with Minkowski Distance Functions; 3.1 Introduction; 3.2 Formalization; 3.3 The Majorizing Algorithm for Fuzzy C-means with Minkowski Distances; 3.4 The Effects of the Robustness Parameterl; 3.5 Internet Attitudes; 3.6 Conclusions; References; 4 Soft Cluster Ensembles; 4.1 Introduction; 4.2 Cluster Ensembles; 4.3 Soft Cluster Ensembles; 4.4 Experimental Setup; 4.5 Soft vs. Hard Cluster Ensembles; 4.6 Conclusions and Future Work; Acknowledgements; References
Part II Visualization5 Aggregation and Visualization of Fuzzy Clusters Based on Fuzzy Similarity Measures; 5.1 Problem Definition; 5.2 Classical Methods for Cluster Validity and Merging; 5.3 Similarity of Fuzzy Clusters; 5.4 Visualization of Clustering Results; 5.5 Conclusions; Appendix 5A.1 Validity Indices; Appendix 5A.2 The Modified Sammon Mapping Algorithm; Acknowledgements; References; 6 Interactive Exploration of Fuzzy Clusters; 6.1 Introduction; 6.2 Neighborgram Clustering; 6.3 Interactive Exploration; 6.4 Parallel Universes; 6.5 Discussion; References
Part III Algorithms and Computational Aspects7 Fuzzy Clustering with Participatory Learning and Applications; 7.1 Introduction; 7.2 Participatory Learning; 7.3 Participatory Learning in Fuzzy Clustering; 7.4 Experimental Results; 7.5 Applications; 7.6 Conclusions; Acknowledgements; References; 8 Fuzzy Clustering of Fuzzy Data; 8.1 Introduction; 8.2 Informational Paradigm, Fuzziness and Complexity in Clustering Processes; 8.3 Fuzzy Data; 8.4 Fuzzy Clustering of Fuzzy Data; 8.5 An Extension: Fuzzy Clustering Models for Fuzzy Data Time Arrays; 8.6 Applicative Examples
8.7 Concluding Remarks and Future PerspectivesReferences; 9 Inclusion-based Fuzzy Clustering; 9.1 Introduction; 9.2 Background: Fuzzy Clustering; 9.3 Construction of an Inclusion Index; 9.4 Inclusion-based Fuzzy Clustering; 9.5 Numerical Examples and Illustrations; 9.6 Conclusion; Acknowledgements; Appendix 9A.1; References; 10 Mining Diagnostic Rules Using Fuzzy Clustering; 10.1 Introduction; 10.2 Fuzzy Medical Diagnosis; 10.3 Interpretability in Fuzzy Medical Diagnosis; 10.4 A Framework for Mining Interpretable Diagnostic Rules; 10.5 An Illustrative Example; 10.6 Conclusive Remarks
References
Record Nr. UNINA-9910877448803321
Chichester, : Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ambient intelligence : European conference, AmI 2008, Nuremberg, Germany, November 19-22, 2008 ; proceedings / / Emile Aarts [and three others] (editors)
Ambient intelligence : European conference, AmI 2008, Nuremberg, Germany, November 19-22, 2008 ; proceedings / / Emile Aarts [and three others] (editors)
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, New York : , : Springer, , [2008]
Descrizione fisica 1 online resource (XV, 359 p.)
Disciplina 004.019
Collana Information Systems and Applications, incl. Internet/Web, and HCI
Soggetto topico Ambient intelligence
ISBN 3-540-89617-1
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Service-Oriented Smart and Comfortable Homes for Better Recreation and Leisure Time -- Designing Acceptable Assisted Living Services for Elderly Users -- Dynamic vs. Static Recognition of Facial Expressions -- Towards Human Centered Ambient Intelligence -- HOMEinTOUCH Designing Two-Way Ambient Communication -- The Influence of Control on the Acceptance of Ambient Intelligence by Elderly People: An Explorative Study -- JXTA-SOAP: Implementing Service-Oriented Ubiquitous Computing Platforms for Ambient Assisted Living -- The PERSONA Framework for Supporting Context-Awareness in Open Distributed Systems -- Enabling NFC Technology for Supporting Chronic Diseases: A Proposal for Alzheimer Caregivers -- Intelligent and Cooperative Domestic Devices for Smart Home and Shopping Environments -- Designing an Interactive Messaging and Reminder Display for Elderly -- Adaptive Estimation of Emotion Generation for an Ambient Agent Model -- End-User Software Engineering of Smart Retail Environments: The Intelligent Shop Window -- Mobility and Logistics -- Collect&Drop: A Technique for Multi-Tag Interaction with Real World Objects and Information -- Tracking Outdoor Sports – User Experience Perspective -- Rich Tactile Output on Mobile Devices -- An Ambient Agent Model Exploiting Workflow-Based Reasoning to Recognize Task Progress -- An Architecture to Automate Ambient Business System Development -- Navigation and Guidance in Unknown Environments and Unusual Situations -- C-NGINE: A Contextual Navigation Guide for Indoor Environments -- Creating Design Guidelines for a Navigational Aid for Mild Demented Pedestrians -- Context-Aware Indoor Navigation -- Context-Oriented Health Monitoring and Alerting Systems for a Carefree Life -- Distributed Defeasible Contextual Reasoning in Ambient Computing -- Analysis of Heart Stress Response for a Public Talk Assistant System -- Stone-Type Physiological Sensing Device for Daily Monitoring in an Ambient Intelligence Environment.
Record Nr. UNINA-9910483685003321
Berlin, Germany ; ; New York, New York : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ambient intelligence : European conference, AmI 2008, Nuremberg, Germany, November 19-22, 2008 ; proceedings / / Emile Aarts [and three others] (editors)
Ambient intelligence : European conference, AmI 2008, Nuremberg, Germany, November 19-22, 2008 ; proceedings / / Emile Aarts [and three others] (editors)
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, New York : , : Springer, , [2008]
Descrizione fisica 1 online resource (XV, 359 p.)
Disciplina 004.019
Collana Information Systems and Applications, incl. Internet/Web, and HCI
Soggetto topico Ambient intelligence
ISBN 3-540-89617-1
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Service-Oriented Smart and Comfortable Homes for Better Recreation and Leisure Time -- Designing Acceptable Assisted Living Services for Elderly Users -- Dynamic vs. Static Recognition of Facial Expressions -- Towards Human Centered Ambient Intelligence -- HOMEinTOUCH Designing Two-Way Ambient Communication -- The Influence of Control on the Acceptance of Ambient Intelligence by Elderly People: An Explorative Study -- JXTA-SOAP: Implementing Service-Oriented Ubiquitous Computing Platforms for Ambient Assisted Living -- The PERSONA Framework for Supporting Context-Awareness in Open Distributed Systems -- Enabling NFC Technology for Supporting Chronic Diseases: A Proposal for Alzheimer Caregivers -- Intelligent and Cooperative Domestic Devices for Smart Home and Shopping Environments -- Designing an Interactive Messaging and Reminder Display for Elderly -- Adaptive Estimation of Emotion Generation for an Ambient Agent Model -- End-User Software Engineering of Smart Retail Environments: The Intelligent Shop Window -- Mobility and Logistics -- Collect&Drop: A Technique for Multi-Tag Interaction with Real World Objects and Information -- Tracking Outdoor Sports – User Experience Perspective -- Rich Tactile Output on Mobile Devices -- An Ambient Agent Model Exploiting Workflow-Based Reasoning to Recognize Task Progress -- An Architecture to Automate Ambient Business System Development -- Navigation and Guidance in Unknown Environments and Unusual Situations -- C-NGINE: A Contextual Navigation Guide for Indoor Environments -- Creating Design Guidelines for a Navigational Aid for Mild Demented Pedestrians -- Context-Aware Indoor Navigation -- Context-Oriented Health Monitoring and Alerting Systems for a Carefree Life -- Distributed Defeasible Contextual Reasoning in Ambient Computing -- Analysis of Heart Stress Response for a Public Talk Assistant System -- Stone-Type Physiological Sensing Device for Daily Monitoring in an Ambient Intelligence Environment.
Record Nr. UNISA-996465438803316
Berlin, Germany ; ; New York, New York : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Analog VLSI circuits for the perception of visual motion [[electronic resource] /] / Alan Stocker
Analog VLSI circuits for the perception of visual motion [[electronic resource] /] / Alan Stocker
Autore Stocker Alan
Edizione [1st edition]
Pubbl/distr/stampa Hoboken NJ, : John Wiley & Sons, 2006
Descrizione fisica 1 online resource (243 p.)
Disciplina 006.37
Soggetto topico Computer vision
Motion perception (Vision) - Computer simulation
Neural networks (Computer science)
Soggetto genere / forma Electronic books.
ISBN 1-280-41116-3
9786610411160
0-470-03489-0
0-470-03488-2
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analog VLSI Circuits for the Perception of Visual Motion; Contents; Foreword; Preface; 1 Introduction; 1.1 Artificial Autonomous Systems; 1.2 Neural Computation and Analog Integrated Circuits; 2 Visual Motion Perception; 2.1 Image Brightness; 2.2 Correspondence Problem; 2.3 Optical Flow; 2.4 Matching Models; 2.4.1 Explicit matching; 2.4.2 Implicit matching; 2.5 Flow Models; 2.5.1 Global motion; 2.5.2 Local motion; 2.5.3 Perceptual bias; 2.6 Outline for a Visual Motion Perception System; 2.7 Review of a VLSI Implementations; 3 Optimization Networks; 3.1 Associative Memory and Optimization
3.2 Constraint Satisfaction Problems3.3 Winner-takes-all Networks; 3.3.1 Network architecture; 3.3.2 Global convergence and gain; 3.4 Resistive Network; 4 Visual Motion Perception Networks; 4.1 Model for Optical Flow Estimation; 4.1.1 Well-posed optimization problem; 4.1.2 Mechanical equivalent; 4.1.3 Smoothness and sparse data; 4.1.4 Probabilistic formulation; 4.2 Network Architecture; 4.2.1 Non-stationary optimization; 4.2.2 Network conductances; 4.3 Simulation Results for Natural Image Sequences; 4.4 Passive Non-linear Network Conductances; 4.5 Extended Recurrent Network Architectures
4.5.1 Motion segmentation4.5.2 Attention and motion selection; 4.6 Remarks; 5 Analog VLSI Implementation; 5.1 Implementation Substrate; 5.2 Phototransduction; 5.2.1 Logarithmic adaptive photoreceptor; 5.2.2 Robust brightness constancy constraint; 5.3 Extraction of the Spatio-temporal Brightness Gradients; 5.3.1 Temporal derivative circuits; 5.3.2 Spatial sampling; 5.4 Single Optical Flow Unit; 5.4.1 Wide-linear-range multiplier; 5.4.2 Effective bias conductance; 5.4.3 Implementation of the smoothness constraint; 5.5 Layout; 6 Smooth Optical Flow Chip; 6.1 Response Characteristics
6.1.1 Speed tuning6.1.2 Contrast dependence; 6.1.3 Spatial frequency tuning; 6.1.4 Orientation tuning; 6.2 Intersection-of-constraints Solution; 6.3 Flow Field Estimation; 6.4 Device Mismatch; 6.4.1 Gradient offsets; 6.4.2 Variations across the array; 6.5 Processing Speed; 6.6 Applications; 6.6.1 Sensor modules for robotic applications; 6.6.2 Human-machine interface; 7 Extended Network Implementations; 7.1 Motion Segmentation Chip; 7.1.1 Schematics of the motion segmentation pixel; 7.1.2 Experiments and results; 7.2 Motion Selection Chip; 7.2.1 Pixel schematics
7.2.2 Non-linear diffusion length7.2.3 Experiments and results; 8 Comparison to Human Motion Vision; 8.1 Human vs. Chip Perception; 8.1.1 Contrast-dependent speed perception; 8.1.2 Bias on perceived direction of motion; 8.1.3 Perceptual dynamics; 8.2 Computational Architecture; 8.3 Remarks; Appendix; A Variational Calculus; B Simulation Methods; C Transistors and Basic Circuits; D Process Parameters and Chips Specifications; References; Index
Record Nr. UNINA-9910143747003321
Stocker Alan  
Hoboken NJ, : John Wiley & Sons, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analog VLSI circuits for the perception of visual motion [[electronic resource] /] / Alan Stocker
Analog VLSI circuits for the perception of visual motion [[electronic resource] /] / Alan Stocker
Autore Stocker Alan
Edizione [1st edition]
Pubbl/distr/stampa Hoboken NJ, : John Wiley & Sons, 2006
Descrizione fisica 1 online resource (243 p.)
Disciplina 006.37
Soggetto topico Computer vision
Motion perception (Vision) - Computer simulation
Neural networks (Computer science)
ISBN 1-280-41116-3
9786610411160
0-470-03489-0
0-470-03488-2
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analog VLSI Circuits for the Perception of Visual Motion; Contents; Foreword; Preface; 1 Introduction; 1.1 Artificial Autonomous Systems; 1.2 Neural Computation and Analog Integrated Circuits; 2 Visual Motion Perception; 2.1 Image Brightness; 2.2 Correspondence Problem; 2.3 Optical Flow; 2.4 Matching Models; 2.4.1 Explicit matching; 2.4.2 Implicit matching; 2.5 Flow Models; 2.5.1 Global motion; 2.5.2 Local motion; 2.5.3 Perceptual bias; 2.6 Outline for a Visual Motion Perception System; 2.7 Review of a VLSI Implementations; 3 Optimization Networks; 3.1 Associative Memory and Optimization
3.2 Constraint Satisfaction Problems3.3 Winner-takes-all Networks; 3.3.1 Network architecture; 3.3.2 Global convergence and gain; 3.4 Resistive Network; 4 Visual Motion Perception Networks; 4.1 Model for Optical Flow Estimation; 4.1.1 Well-posed optimization problem; 4.1.2 Mechanical equivalent; 4.1.3 Smoothness and sparse data; 4.1.4 Probabilistic formulation; 4.2 Network Architecture; 4.2.1 Non-stationary optimization; 4.2.2 Network conductances; 4.3 Simulation Results for Natural Image Sequences; 4.4 Passive Non-linear Network Conductances; 4.5 Extended Recurrent Network Architectures
4.5.1 Motion segmentation4.5.2 Attention and motion selection; 4.6 Remarks; 5 Analog VLSI Implementation; 5.1 Implementation Substrate; 5.2 Phototransduction; 5.2.1 Logarithmic adaptive photoreceptor; 5.2.2 Robust brightness constancy constraint; 5.3 Extraction of the Spatio-temporal Brightness Gradients; 5.3.1 Temporal derivative circuits; 5.3.2 Spatial sampling; 5.4 Single Optical Flow Unit; 5.4.1 Wide-linear-range multiplier; 5.4.2 Effective bias conductance; 5.4.3 Implementation of the smoothness constraint; 5.5 Layout; 6 Smooth Optical Flow Chip; 6.1 Response Characteristics
6.1.1 Speed tuning6.1.2 Contrast dependence; 6.1.3 Spatial frequency tuning; 6.1.4 Orientation tuning; 6.2 Intersection-of-constraints Solution; 6.3 Flow Field Estimation; 6.4 Device Mismatch; 6.4.1 Gradient offsets; 6.4.2 Variations across the array; 6.5 Processing Speed; 6.6 Applications; 6.6.1 Sensor modules for robotic applications; 6.6.2 Human-machine interface; 7 Extended Network Implementations; 7.1 Motion Segmentation Chip; 7.1.1 Schematics of the motion segmentation pixel; 7.1.2 Experiments and results; 7.2 Motion Selection Chip; 7.2.1 Pixel schematics
7.2.2 Non-linear diffusion length7.2.3 Experiments and results; 8 Comparison to Human Motion Vision; 8.1 Human vs. Chip Perception; 8.1.1 Contrast-dependent speed perception; 8.1.2 Bias on perceived direction of motion; 8.1.3 Perceptual dynamics; 8.2 Computational Architecture; 8.3 Remarks; Appendix; A Variational Calculus; B Simulation Methods; C Transistors and Basic Circuits; D Process Parameters and Chips Specifications; References; Index
Record Nr. UNINA-9910830000903321
Stocker Alan  
Hoboken NJ, : John Wiley & Sons, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analog VLSI circuits for the perception of visual motion / / Alan Stocker
Analog VLSI circuits for the perception of visual motion / / Alan Stocker
Autore Stocker Alan A
Edizione [1st edition]
Pubbl/distr/stampa Hoboken NJ, : John Wiley & Sons, 2006
Descrizione fisica 1 online resource (243 p.)
Disciplina 006.3/7
Soggetto topico Computer vision
Motion perception (Vision) - Computer simulation
Neural networks (Computer science)
ISBN 9786610411160
9781280411168
1280411163
9780470034897
0470034890
9780470034880
0470034882
Classificazione 54.72
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analog VLSI Circuits for the Perception of Visual Motion; Contents; Foreword; Preface; 1 Introduction; 1.1 Artificial Autonomous Systems; 1.2 Neural Computation and Analog Integrated Circuits; 2 Visual Motion Perception; 2.1 Image Brightness; 2.2 Correspondence Problem; 2.3 Optical Flow; 2.4 Matching Models; 2.4.1 Explicit matching; 2.4.2 Implicit matching; 2.5 Flow Models; 2.5.1 Global motion; 2.5.2 Local motion; 2.5.3 Perceptual bias; 2.6 Outline for a Visual Motion Perception System; 2.7 Review of a VLSI Implementations; 3 Optimization Networks; 3.1 Associative Memory and Optimization
3.2 Constraint Satisfaction Problems3.3 Winner-takes-all Networks; 3.3.1 Network architecture; 3.3.2 Global convergence and gain; 3.4 Resistive Network; 4 Visual Motion Perception Networks; 4.1 Model for Optical Flow Estimation; 4.1.1 Well-posed optimization problem; 4.1.2 Mechanical equivalent; 4.1.3 Smoothness and sparse data; 4.1.4 Probabilistic formulation; 4.2 Network Architecture; 4.2.1 Non-stationary optimization; 4.2.2 Network conductances; 4.3 Simulation Results for Natural Image Sequences; 4.4 Passive Non-linear Network Conductances; 4.5 Extended Recurrent Network Architectures
4.5.1 Motion segmentation4.5.2 Attention and motion selection; 4.6 Remarks; 5 Analog VLSI Implementation; 5.1 Implementation Substrate; 5.2 Phototransduction; 5.2.1 Logarithmic adaptive photoreceptor; 5.2.2 Robust brightness constancy constraint; 5.3 Extraction of the Spatio-temporal Brightness Gradients; 5.3.1 Temporal derivative circuits; 5.3.2 Spatial sampling; 5.4 Single Optical Flow Unit; 5.4.1 Wide-linear-range multiplier; 5.4.2 Effective bias conductance; 5.4.3 Implementation of the smoothness constraint; 5.5 Layout; 6 Smooth Optical Flow Chip; 6.1 Response Characteristics
6.1.1 Speed tuning6.1.2 Contrast dependence; 6.1.3 Spatial frequency tuning; 6.1.4 Orientation tuning; 6.2 Intersection-of-constraints Solution; 6.3 Flow Field Estimation; 6.4 Device Mismatch; 6.4.1 Gradient offsets; 6.4.2 Variations across the array; 6.5 Processing Speed; 6.6 Applications; 6.6.1 Sensor modules for robotic applications; 6.6.2 Human-machine interface; 7 Extended Network Implementations; 7.1 Motion Segmentation Chip; 7.1.1 Schematics of the motion segmentation pixel; 7.1.2 Experiments and results; 7.2 Motion Selection Chip; 7.2.1 Pixel schematics
7.2.2 Non-linear diffusion length7.2.3 Experiments and results; 8 Comparison to Human Motion Vision; 8.1 Human vs. Chip Perception; 8.1.1 Contrast-dependent speed perception; 8.1.2 Bias on perceived direction of motion; 8.1.3 Perceptual dynamics; 8.2 Computational Architecture; 8.3 Remarks; Appendix; A Variational Calculus; B Simulation Methods; C Transistors and Basic Circuits; D Process Parameters and Chips Specifications; References; Index
Altri titoli varianti Analog very large-scale integrated circuits for the perception of visual motion
Record Nr. UNINA-9910877726503321
Stocker Alan A  
Hoboken NJ, : John Wiley & Sons, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui