Condensed-phase molecular spectroscopy and photophysics [[electronic resource] /] / Anne Myers Kelley
| Condensed-phase molecular spectroscopy and photophysics [[electronic resource] /] / Anne Myers Kelley |
| Autore | Kelley Anne Myers |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2013 |
| Descrizione fisica | xiii, 330 p. : ill |
| Disciplina | 543/.54 |
| Soggetto topico |
Electromagnetic waves
Molecular spectroscopy |
| ISBN |
9781118493069
1118493060 9781118493052 |
| Classificazione |
431.5
543/.54 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910795823003321 |
Kelley Anne Myers
|
||
| Hoboken, N.J., : Wiley, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Principles and applications of photochemistry / / Brian Wardle
| Principles and applications of photochemistry / / Brian Wardle |
| Autore | Wardle Brian |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2009 |
| Descrizione fisica | xiv, 250 p. : ill |
| Disciplina | 541/.35 |
| Soggetto topico |
Chemistry
Photochemistry |
| ISBN |
9780470710135
0470710136 |
| Classificazione |
431.5
541/.35 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Principles and Applications of Photochemistry -- Contents -- Preface -- 1: Introductory Concepts -- AIMS AND OBJECTIVES -- 1.1 THE QUANTUM NATURE OF MATTER AND LIGHT -- 1.2 MODELLING ATOMS: ATOMIC ORBITALS -- 1.3 MODELLING MOLECULES: MOLECULAR ORBITALS -- 1.4 MODELLING MOLECULES: ELECTRONIC STATES -- 1.5 LIGHT SOURCES USED IN PHOTOCHEMISTRY -- 1.5.1 The Mercury Lamp -- 1.5.2 Lasers -- 1.6 EFFICIENCY OF PHOTOCHEMICAL PROCESSES: QUANTUM YIELD -- 1.6.1 Primary Quantum Yield (φ) -- 1.6.2 Overall Quantum Yield (Φ) -- 2: Light Absorption and Electronically-excited States -- AIMS AND OBJECTIVES -- 2.1 INTRODUCTION -- 2.2 THE BEER-LAMBERT LAW -- 2.3 THE PHYSICAL BASIS OF LIGHT ABSORPTION BY MOLECULES -- 2.4 ABSORPTION OF LIGHT BY ORGANIC MOLECULES -- 2.5 LINEARLY-CONJUGATED MOLECULES -- 2.6 SOME SELECTION RULES -- 2.7 ABSORPTION OF LIGHT BY INORGANIC COMPLEXES -- 3: The Physical Deactivation of Excited States -- AIMS AND OBJECTIVES -- 3.1 INTRODUCTION -- 3.2 JABLONSKI DIAGRAMS -- 3.2.1 Vibrational Relaxation -- 3.2.2 Internal Conversion -- 3.2.3 Intersystem Crossing -- 3.2.4 Fluorescence -- 3.2.5 Phosphorescence -- 3.3 EXCITED-STATE LIFETIMES -- 3.3.1 Excited Singlet-state Lifetime -- 3.3.2 Excited Singlet-state Radiative Lifetime -- 3.3.3 Lifetimes of the T1 Excited State -- 4: Radiative Processes of Excited States -- AIMS AND OBJECTIVES -- 4.1 INTRODUCTION -- 4.2 FLUORESCENCE AND FLUORESCENCE SPECTRA -- 4.3 AN EXCEPTION TO KASHA'S RULE -- 4.4 FLUORESCENCE QUANTUM YIELD -- 4.5 FACTORS CONTRIBUTING TO FLUORESCENCE BEHAVIOUR -- 4.5.1 The Nature of S1 -- 4.5.2 Molecular Rigidity -- 4.5.3 The Effect of Substituent Groups -- 4.5.4 The Heavy Atom Effect -- 4.6 MOLECULAR FLUORESCENCE IN ANALYTICAL CHEMISTRY -- 4.7 PHOSPHORESCENCE -- 4.8 DELAYED FLUORESCENCE -- 4.8.1 P-type Delayed Fluorescence (Triplet-Triplet Annihilation).
4.8.2 E-type Delayed Fluorescence (Thermally-activated Delayed Fluorescence) -- 4.9 LANTHANIDE LUMINESCENCE -- 5: Intramolecular Radiationless Transitions of Excited States -- AIMS AND OBJECTIVES -- 5.1 INTRODUCTION -- 5.2 THE ENERGY GAP LAW -- 5.3 THE FRANCK-CONDON FACTOR -- 5.3.1 Case (A): Both Electronic States Have a Similar Geometry, with a Large Energy Separation between the States -- 5.3.2 Case (B): Both Electronic States Have a Similar Geometry, with a Small Energy Separation between the States -- 5.3.3 Case (C): The Electronic States Have Different Geometries, with a Large Energy Separation between the States -- 5.4 HEAVY ATOM EFFECTS ON INTERSYSTEM CROSSING -- 5.5 EL-SAYED'S SELECTION RULES FOR INTERSYSTEM CROSSING -- 6: Intermolecular Physical Processes of Excited States -- AIMS AND OBJECTIVES -- 6.1 QUENCHING PROCESSES -- 6.2 EXCIMERS -- 6.2.1 Excimer Emission in Ca2+ Sensing -- 6.3 EXCIPLEXES -- 6.3.1 Exciplex Fluorescence Imaging -- 6.4 INTERMOLECULAR ELECTRONIC ENERGY TRANSFER -- 6.5 THE TRIVIAL OR RADIATIVE MECHANISM OF ENERGY TRANSFER -- 6.6 LONG-RANGE DIPOLE-DIPOLE (COULOMBIC) ENERGY TRANSFER -- 6.6.1 Dynamic Processes within Living Cells -- 6.6.2 Molecular Ruler -- 6.6.3 Molecular Beacons -- 6.7 SHORT-RANGE ELECTRON-EXCHANGE ENERGY TRANSFER -- 6.7.1 Triplet-Triplet Energy Transfer and Photosensitisation -- 6.7.2 Singlet Oxygen and Photodynamic Therapy for Cancer Treatment -- 6.8 PHOTOINDUCED ELECTRON TRANSFER (PET) -- 6.8.1 Fluorescence Switching by PET -- 6.8.2 The Marcus Theory of Electron Transfer -- 6.8.3 Experimental Evidence Relating to the Marcus Equation -- 6.8.4 Evidence for the Inverted Region -- 7: Some Aspects of the Chemical Properties of Excited States -- AIMS AND OBJECTIVES -- 7.1 THE PATHWAY OF PHOTOCHEMICAL REACTIONS -- 7.2 DIFFERENCES BETWEEN PHOTOCHEMICAL AND THERMAL REACTIONS -- 7.3 PHOTOLYSIS. 7.3.1 Photohalogenation of Hydrocarbons -- 7.3.2 The Stratospheric Ozone Layer: Its Photochemical Formation and Degradation -- 7.3.3 Radicals in the Polluted Troposphere -- 7.4 AN INTRODUCTION TO THE CHEMISTRY OF CARBON-CENTRED RADICALS -- 7.5 PHOTOCHEMISTRY OF THE COMPLEXES AND ORGANOMETALLIC COMPOUNDS OF d-BLOCK ELEMENTS -- 7.5.1 The Photochemistry of Metal Complexes -- 7.5.2 An Aside: Redox Potentials Involved in Photoredox Reactions -- 7.5.3 Organometallic Photochemistry -- 8: The Photochemistry of Alkenes -- AIMS AND OBJECTIVES -- 8.1 EXCITED STATES OF ALKENES -- 8.2 GEOMETRICAL ISOMERISATION BY DIRECT IRRADIATION OF C=C COMPOUNDS -- 8.2.1 Phototherapy -- 8.2.2 Vision -- 8.3 PHOTOSENSITISED GEOMETRICAL ISOMERISATION OF C=C COMPOUNDS -- 8.3.1 Synthesis -- 8.4 CONCERTED PHOTOREACTIONS -- 8.4.1 Electrocyclic Reactions -- 8.4.2 Sigmatropic Shifts -- 8.5 PHOTOCYCLOADDITION REACTIONS -- 8.5.1 Solar Energy Storage -- 8.6 PHOTOADDITION REACTIONS -- 8.6.1 DNA Damage by UV -- 9: The Photochemistry of Carbonyl Compounds -- AIMS AND OBJECTIVES -- 9.1 EXCITED STATES OF CARBONYL COMPOUNDS -- 9.2 α-CLEAVAGE REACTIONS -- 9.3 INTERMOLECULAR HYDROGEN-ABSTRACTION REACTIONS -- 9.4 INTRAMOLECULAR HYDROGEN-ABSTRACTION REACTIONS -- 9.5 PHOTOCYCLOADDITION REACTIONS -- 9.6 THE ROLE OF CARBONYL COMPOUNDS IN POLYMER CHEMISTRY -- 9.6.1 Vinyl Polymerisation -- 9.6.2 Photochemical Cross-linking of Polymers -- 9.6.3 Photodegradation of Polymers -- 10: Investigating Some Aspects of Photochemical Reaction Mechanisms -- AIMS AND OBJECTIVES -- 10.1 INTRODUCTION -- 10.2 INFORMATION FROM ELECTRONIC SPECTRA -- 10.3 TRIPLET-QUENCHING STUDIES -- 10.4 SENSITISATION -- 10.5 FLASH PHOTOLYSIS STUDIES -- 10.5.1 An Aside: Some Basic Ideas on Reaction Kinetics -- 10.5.2 Flash Photolysis Studies in Bimolecular Electron-transfer Processes. 10.5.3 Photochemistry of Substituted Benzoquinones in Ethanol/Water -- 10.5.4 Time-resolved Infrared Spectroscopy -- 10.5.5 Femtochemistry -- 10.6 LOW-TEMPERATURE STUDIES -- FURTHER READING -- 11: Semiconductor Photochemistry -- AIMS AND OBJECTIVES -- 11.1 INTRODUCTION TO SEMICONDUCTOR PHOTOCHEMISTRY -- 11.2 SOLAR-ENERGY CONVERSION BY PHOTOVOLTAIC CELLS -- 11.2.1 Dye-sensitised Photovoltaic Cells -- 11.3 SEMICONDUCTORS AS SENSITISERS FOR WATER SPLITTING -- 11.4 SEMICONDUCTOR PHOTOCATALYSIS -- 11.5 SEMICONDUCTOR-PHOTOINDUCED SUPERHYDROPHILICITY -- FURTHER READING -- 12: An Introduction to Supramolecular Photochemistry -- AIMS AND OBJECTIVES -- 12.1 SOME BASIC IDEAS -- 12.2 HOST-GUEST SUPRAMOLECULAR PHOTOCHEMISTRY -- 12.2.1 Micelles -- 12.2.2 Zeolites as Supramolecular Hosts for Photochemical Transformations -- 12.2.3 Cyclodextrins as Supramolecular Hosts -- 12.3 SUPRAMOLECULAR PHOTOCHEMISTRY IN NATURAL SYSTEMS -- 12.3.1 Vision -- 12.3.2 Photosynthesis -- 12.3.3 Bacterial Photosynthesis -- 12.4 ARTIFICIAL PHOTOSYNTHESIS -- 12.5 PHOTOCHEMICAL SUPRAMOLECULAR DEVICES -- 12.5.1 Devices for Photoinduced Energy or Electron Transfer -- 12.5.2 Devices for Information Processing based on Photochemical or Photophysical Processes -- 12.5.3 Devices Designed to Undergo Extensive Conformational Changes on Photoexcitation: Photochemically-driven Molecular Machines -- FURTHER READING -- Index. |
| Record Nr. | UNINA-9910954921503321 |
Wardle Brian
|
||
| Hoboken, N.J., : Wiley, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||