Mutational Analysis [[electronic resource] ] : A Joint Framework for Cauchy Problems in and Beyond Vector Spaces / / by Thomas Lorenz
| Mutational Analysis [[electronic resource] ] : A Joint Framework for Cauchy Problems in and Beyond Vector Spaces / / by Thomas Lorenz |
| Autore | Lorenz Thomas |
| Edizione | [1st ed. 2010.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010 |
| Descrizione fisica | 1 online resource (XIV, 509 p. 57 illus. in color.) |
| Disciplina | 515.35 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Mathematical analysis
Analysis (Mathematics) Functions of real variables Dynamics Ergodic theory Differential equations Partial differential equations System theory Analysis Real Functions Dynamical Systems and Ergodic Theory Ordinary Differential Equations Partial Differential Equations Systems Theory, Control |
| ISBN |
1-280-39175-8
9786613569677 3-642-12471-2 |
| Classificazione | 34A6034G1035K2049J5360H2093B03 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Extending Ordinary Differential Equations to Metric Spaces: Aubin’s Suggestion -- Adapting Mutational Equations to Examples in Vector Spaces: Local Parameters of Continuity -- Less Restrictive Conditions on Distance Functions: Continuity Instead of Triangle Inequality -- Introducing Distribution-Like Solutions to Mutational Equations -- Mutational Inclusions in Metric Spaces. |
| Record Nr. | UNISA-996466494803316 |
Lorenz Thomas
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Mutational analysis : a joint framework for Cauchy problems in and beyond vector spaces / / Thomas Lorenz
| Mutational analysis : a joint framework for Cauchy problems in and beyond vector spaces / / Thomas Lorenz |
| Autore | Lorenz Thomas |
| Edizione | [1st ed. 2010.] |
| Pubbl/distr/stampa | Heidelberg, : Springer, 2010 |
| Descrizione fisica | 1 online resource (XIV, 509 p. 57 illus. in color.) |
| Disciplina | 515.35 |
| Collana | Lecture notes in mathematics |
| Soggetto topico | Vector analysis |
| ISBN |
9786613569677
9781280391750 1280391758 9783642124716 3642124712 |
| Classificazione | 34A6034G1035K2049J5360H2093B03 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Extending Ordinary Differential Equations to Metric Spaces: Aubin’s Suggestion -- Adapting Mutational Equations to Examples in Vector Spaces: Local Parameters of Continuity -- Less Restrictive Conditions on Distance Functions: Continuity Instead of Triangle Inequality -- Introducing Distribution-Like Solutions to Mutational Equations -- Mutational Inclusions in Metric Spaces. |
| Record Nr. | UNINA-9910484172503321 |
Lorenz Thomas
|
||
| Heidelberg, : Springer, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||