top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher
Autore Handel Michael <1949->
Pubbl/distr/stampa Providence, RI : , : American Mathematical Society, , [2020]
Descrizione fisica 1 online resource (290 pages)
Disciplina 511.3/26
Collana Memoirs of the American Mathematical Society
Soggetto topico Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups
Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx]
Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36]
Non-Abelian groups
Geometric group theory
Decomposition (Mathematics)
Automorphisms
Algebraic topology
ISBN 1-4704-5802-0
Classificazione 20F2820E0520F6557M07
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma.
Record Nr. UNINA-9910794040003321
Handel Michael <1949->  
Providence, RI : , : American Mathematical Society, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher
Autore Handel Michael <1949->
Pubbl/distr/stampa Providence, RI : , : American Mathematical Society, , [2020]
Descrizione fisica 1 online resource (290 pages)
Disciplina 511.3/26
Collana Memoirs of the American Mathematical Society
Soggetto topico Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups
Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx]
Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36]
Non-Abelian groups
Geometric group theory
Decomposition (Mathematics)
Automorphisms
Algebraic topology
ISBN 1-4704-5802-0
Classificazione 20F2820E0520F6557M07
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma.
Record Nr. UNINA-9910812844203321
Handel Michael <1949->  
Providence, RI : , : American Mathematical Society, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui