Foundations of Grothendieck Duality for Diagrams of Schemes [[electronic resource] /] / by Joseph Lipman, Mitsuyasu Hashimoto |
Autore | Lipman Joseph |
Edizione | [1st ed. 2009.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 |
Descrizione fisica | 1 online resource (X, 478 p.) |
Disciplina | 516.35 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Algebraic geometry
Category theory (Mathematics) Homological algebra Algebraic Geometry Category Theory, Homological Algebra |
ISBN | 3-540-85420-7 |
Classificazione | 14A2018E3014F9918A9918F9914L30 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Joseph Lipman: Notes on Derived Functors and Grothendieck Duality -- Derived and Triangulated Categories -- Derived Functors -- Derived Direct and Inverse Image -- Abstract Grothendieck Duality for Schemes -- Mitsuyasu Hashimoto: Equivariant Twisted Inverses -- Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors -- Sheaves on Ringed Sites -- Derived Categories and Derived Functors of Sheaves on Ringed Sites -- Sheaves over a Diagram of S-Schemes -- The Left and Right Inductions and the Direct and Inverse Images -- Operations on Sheaves Via the Structure Data -- Quasi-Coherent Sheaves Over a Diagram of Schemes -- Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes -- Simplicial Objects -- Descent Theory -- Local Noetherian Property -- Groupoid of Schemes -- Bökstedt—Neeman Resolutions and HyperExt Sheaves -- The Right Adjoint of the Derived Direct Image Functor -- Comparison of Local Ext Sheaves -- The Composition of Two Almost-Pseudofunctors -- The Right Adjoint of the Derived Direct Image Functor of a Morphism of Diagrams -- Commutativity of Twisted Inverse with Restrictions -- Open Immersion Base Change -- The Existence of Compactification and Composition Data for Diagrams of Schemes Over an Ordered Finite Category -- Flat Base Change -- Preservation of Quasi-Coherent Cohomology -- Compatibility with Derived Direct Images -- Compatibility with Derived Right Inductions -- Equivariant Grothendieck's Duality -- Morphisms of Finite Flat Dimension -- Cartesian Finite Morphisms -- Cartesian Regular Embeddings and Cartesian Smooth Morphisms -- Group Schemes Flat of Finite Type -- Compatibility with Derived G-Invariance -- Equivariant Dualizing Complexes and Canonical Modules -- A Generalization of Watanabe's Theorem -- Other Examples of Diagrams of Schemes. |
Record Nr. | UNISA-996466538203316 |
Lipman Joseph | ||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Foundations of Grothendieck duality for diagrams of schemes / / Joseph Lipman, Mitsuyasu Hashimoto |
Autore | Lipman Joseph |
Edizione | [1st ed. 2009.] |
Pubbl/distr/stampa | Berlin, : Springer, c2009 |
Descrizione fisica | 1 online resource (X, 478 p.) |
Disciplina | 516.35 |
Altri autori (Persone) | HashimotoMitsuyasu <1962-> |
Collana | Lecture notes in mathematics |
Soggetto topico |
Categories (Mathematics)
Duality theory (Mathematics) Functor theory Schemes (Algebraic geometry) Sheaf theory |
ISBN | 3-540-85420-7 |
Classificazione | 14A2018E3014F9918A9918F9914L30 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Joseph Lipman: Notes on Derived Functors and Grothendieck Duality -- Derived and Triangulated Categories -- Derived Functors -- Derived Direct and Inverse Image -- Abstract Grothendieck Duality for Schemes -- Mitsuyasu Hashimoto: Equivariant Twisted Inverses -- Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors -- Sheaves on Ringed Sites -- Derived Categories and Derived Functors of Sheaves on Ringed Sites -- Sheaves over a Diagram of S-Schemes -- The Left and Right Inductions and the Direct and Inverse Images -- Operations on Sheaves Via the Structure Data -- Quasi-Coherent Sheaves Over a Diagram of Schemes -- Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes -- Simplicial Objects -- Descent Theory -- Local Noetherian Property -- Groupoid of Schemes -- Bökstedt—Neeman Resolutions and HyperExt Sheaves -- The Right Adjoint of the Derived Direct Image Functor -- Comparison of Local Ext Sheaves -- The Composition of Two Almost-Pseudofunctors -- The Right Adjoint of the Derived Direct Image Functor of a Morphism of Diagrams -- Commutativity of Twisted Inverse with Restrictions -- Open Immersion Base Change -- The Existence of Compactification and Composition Data for Diagrams of Schemes Over an Ordered Finite Category -- Flat Base Change -- Preservation of Quasi-Coherent Cohomology -- Compatibility with Derived Direct Images -- Compatibility with Derived Right Inductions -- Equivariant Grothendieck's Duality -- Morphisms of Finite Flat Dimension -- Cartesian Finite Morphisms -- Cartesian Regular Embeddings and Cartesian Smooth Morphisms -- Group Schemes Flat of Finite Type -- Compatibility with Derived G-Invariance -- Equivariant Dualizing Complexes and Canonical Modules -- A Generalization of Watanabe's Theorem -- Other Examples of Diagrams of Schemes. |
Record Nr. | UNINA-9910484895603321 |
Lipman Joseph | ||
Berlin, : Springer, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|