top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Foundations of Grothendieck Duality for Diagrams of Schemes [[electronic resource] /] / by Joseph Lipman, Mitsuyasu Hashimoto
Foundations of Grothendieck Duality for Diagrams of Schemes [[electronic resource] /] / by Joseph Lipman, Mitsuyasu Hashimoto
Autore Lipman Joseph
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (X, 478 p.)
Disciplina 516.35
Collana Lecture Notes in Mathematics
Soggetto topico Algebraic geometry
Category theory (Mathematics)
Homological algebra
Algebraic Geometry
Category Theory, Homological Algebra
ISBN 3-540-85420-7
Classificazione 14A2018E3014F9918A9918F9914L30
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Joseph Lipman: Notes on Derived Functors and Grothendieck Duality -- Derived and Triangulated Categories -- Derived Functors -- Derived Direct and Inverse Image -- Abstract Grothendieck Duality for Schemes -- Mitsuyasu Hashimoto: Equivariant Twisted Inverses -- Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors -- Sheaves on Ringed Sites -- Derived Categories and Derived Functors of Sheaves on Ringed Sites -- Sheaves over a Diagram of S-Schemes -- The Left and Right Inductions and the Direct and Inverse Images -- Operations on Sheaves Via the Structure Data -- Quasi-Coherent Sheaves Over a Diagram of Schemes -- Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes -- Simplicial Objects -- Descent Theory -- Local Noetherian Property -- Groupoid of Schemes -- Bökstedt—Neeman Resolutions and HyperExt Sheaves -- The Right Adjoint of the Derived Direct Image Functor -- Comparison of Local Ext Sheaves -- The Composition of Two Almost-Pseudofunctors -- The Right Adjoint of the Derived Direct Image Functor of a Morphism of Diagrams -- Commutativity of Twisted Inverse with Restrictions -- Open Immersion Base Change -- The Existence of Compactification and Composition Data for Diagrams of Schemes Over an Ordered Finite Category -- Flat Base Change -- Preservation of Quasi-Coherent Cohomology -- Compatibility with Derived Direct Images -- Compatibility with Derived Right Inductions -- Equivariant Grothendieck's Duality -- Morphisms of Finite Flat Dimension -- Cartesian Finite Morphisms -- Cartesian Regular Embeddings and Cartesian Smooth Morphisms -- Group Schemes Flat of Finite Type -- Compatibility with Derived G-Invariance -- Equivariant Dualizing Complexes and Canonical Modules -- A Generalization of Watanabe's Theorem -- Other Examples of Diagrams of Schemes.
Record Nr. UNISA-996466538203316
Lipman Joseph  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Foundations of Grothendieck duality for diagrams of schemes / / Joseph Lipman, Mitsuyasu Hashimoto
Foundations of Grothendieck duality for diagrams of schemes / / Joseph Lipman, Mitsuyasu Hashimoto
Autore Lipman Joseph
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, : Springer, c2009
Descrizione fisica 1 online resource (X, 478 p.)
Disciplina 516.35
Altri autori (Persone) HashimotoMitsuyasu <1962->
Collana Lecture notes in mathematics
Soggetto topico Categories (Mathematics)
Duality theory (Mathematics)
Functor theory
Schemes (Algebraic geometry)
Sheaf theory
ISBN 3-540-85420-7
Classificazione 14A2018E3014F9918A9918F9914L30
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Joseph Lipman: Notes on Derived Functors and Grothendieck Duality -- Derived and Triangulated Categories -- Derived Functors -- Derived Direct and Inverse Image -- Abstract Grothendieck Duality for Schemes -- Mitsuyasu Hashimoto: Equivariant Twisted Inverses -- Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors -- Sheaves on Ringed Sites -- Derived Categories and Derived Functors of Sheaves on Ringed Sites -- Sheaves over a Diagram of S-Schemes -- The Left and Right Inductions and the Direct and Inverse Images -- Operations on Sheaves Via the Structure Data -- Quasi-Coherent Sheaves Over a Diagram of Schemes -- Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes -- Simplicial Objects -- Descent Theory -- Local Noetherian Property -- Groupoid of Schemes -- Bökstedt—Neeman Resolutions and HyperExt Sheaves -- The Right Adjoint of the Derived Direct Image Functor -- Comparison of Local Ext Sheaves -- The Composition of Two Almost-Pseudofunctors -- The Right Adjoint of the Derived Direct Image Functor of a Morphism of Diagrams -- Commutativity of Twisted Inverse with Restrictions -- Open Immersion Base Change -- The Existence of Compactification and Composition Data for Diagrams of Schemes Over an Ordered Finite Category -- Flat Base Change -- Preservation of Quasi-Coherent Cohomology -- Compatibility with Derived Direct Images -- Compatibility with Derived Right Inductions -- Equivariant Grothendieck's Duality -- Morphisms of Finite Flat Dimension -- Cartesian Finite Morphisms -- Cartesian Regular Embeddings and Cartesian Smooth Morphisms -- Group Schemes Flat of Finite Type -- Compatibility with Derived G-Invariance -- Equivariant Dualizing Complexes and Canonical Modules -- A Generalization of Watanabe's Theorem -- Other Examples of Diagrams of Schemes.
Record Nr. UNINA-9910484895603321
Lipman Joseph  
Berlin, : Springer, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui