top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The age of everything [[electronic resource] ] : how science explores the past / / Matthew Hedman
The age of everything [[electronic resource] ] : how science explores the past / / Matthew Hedman
Autore Hedman Matthew <1974->
Pubbl/distr/stampa Chicago, : University of Chicago Press, 2007
Descrizione fisica 1 online resource (259 p.)
Disciplina 930.1
Soggetto topico Archaeological dating
Archaeology - Technological innovations
Radiocarbon dating
Science - History
Geochronometry
Soggetto genere / forma Electronic books.
ISBN 1-282-53848-9
9786612538483
0-226-32294-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The calendars of the classic Maya -- Precession, polaris, and the age of the pyramids -- The physics of carbon-14 -- Calibrating carbon-14 dates and the history of the air -- Carbon-14 and the peopling of the new world -- Potassium, argon, DNA, and walking upright -- Molecular dating and the many different types of mammals -- Meteorites and the age of the solar system -- Colors, brightness, and the age of stars -- Distances, redshifts, and the age of the universe -- Parameterizing the age of the universe.
Record Nr. UNINA-9910459327703321
Hedman Matthew <1974->  
Chicago, : University of Chicago Press, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The age of everything : how science explores the past / / Matthew Hedman
The age of everything : how science explores the past / / Matthew Hedman
Autore Hedman Matthew <1974->
Pubbl/distr/stampa Chicago : , : University of Chicago Press, , 2007
Descrizione fisica 1 online resource (249 pages) : illustrations, maps
Disciplina 930.1
Soggetto topico Archaeological dating
Archaeology - Technological innovations
Radiocarbon dating
Science - History
Geochronometry
Soggetto non controllato science, archaeology, paleontology, discovery, pyramids, deep time, calendars, maya, ancient civilizations, polaris, carbon-14, physics, calibration, new world, dna, argon, potassium, molecular dating, mammals, astronomy, solar system, meteorites, stars, universe, radiocarbon, geochronometry, technology, nonfiction, fossils, history, chronology
ISBN 1-282-53848-9
9786612538483
0-226-32294-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The calendars of the classic Maya -- Precession, polaris, and the age of the pyramids -- The physics of carbon-14 -- Calibrating carbon-14 dates and the history of the air -- Carbon-14 and the peopling of the new world -- Potassium, argon, DNA, and walking upright -- Molecular dating and the many different types of mammals -- Meteorites and the age of the solar system -- Colors, brightness, and the age of stars -- Distances, redshifts, and the age of the universe -- Parameterizing the age of the universe.
Record Nr. UNINA-9910792349103321
Hedman Matthew <1974->  
Chicago : , : University of Chicago Press, , 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The age of everything : how science explores the past / / Matthew Hedman
The age of everything : how science explores the past / / Matthew Hedman
Autore Hedman Matthew <1974->
Edizione [1st ed.]
Pubbl/distr/stampa Chicago : , : University of Chicago Press, , 2007
Descrizione fisica 1 online resource (249 pages) : illustrations, maps
Disciplina 930.1
Soggetto topico Archaeological dating
Archaeology - Technological innovations
Radiocarbon dating
Science - History
Geochronometry
Soggetto non controllato science, archaeology, paleontology, discovery, pyramids, deep time, calendars, maya, ancient civilizations, polaris, carbon-14, physics, calibration, new world, dna, argon, potassium, molecular dating, mammals, astronomy, solar system, meteorites, stars, universe, radiocarbon, geochronometry, technology, nonfiction, fossils, history, chronology
ISBN 1-282-53848-9
9786612538483
0-226-32294-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The calendars of the classic Maya -- Precession, polaris, and the age of the pyramids -- The physics of carbon-14 -- Calibrating carbon-14 dates and the history of the air -- Carbon-14 and the peopling of the new world -- Potassium, argon, DNA, and walking upright -- Molecular dating and the many different types of mammals -- Meteorites and the age of the solar system -- Colors, brightness, and the age of stars -- Distances, redshifts, and the age of the universe -- Parameterizing the age of the universe.
Record Nr. UNINA-9910820948503321
Hedman Matthew <1974->  
Chicago : , : University of Chicago Press, , 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The solar system 1 : telluric and giant planets, interplanetary medium and exoplanets / / edited by Thérèse Encrenaz, James Lequeux
The solar system 1 : telluric and giant planets, interplanetary medium and exoplanets / / edited by Thérèse Encrenaz, James Lequeux
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (352 pages)
Disciplina 523.2
Soggetto genere / forma Electronic books.
ISBN 1-119-88165-X
1-119-88166-8
1-119-88164-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. General Presentation of the Solar System -- 1.1. Introduction -- 1.2. Mechanics and dynamics of the Solar System1 -- 1.2.1. Newton's law of gravitation -- 1.2.2. Kepler's laws r -- 1.2.3. Mean motion resonances -- 1.2.4. The N-body problem -- 1.2.5. The role of collisions -- 1.2.6. Migrations in the Solar System -- 1.2.7. The role of gravity in a solid body -- 1.2.8. Special configurations of the Sun-Earth-Moon system -- 1.3. Physics of the Solar System -- 1.3.1. Equilibrium temperature of an object in the Solar System -- 1.3.2. Planets -- 1.3.3. Satellites -- 1.3.4. Small bodies of the Solar System -- 1.3.5. The interplanetary medium2 -- 1.4. References -- 2 Solar and Planetary Systems -- 2.1. The Sun in the Galaxy -- 2.2. Planetary systems in the Galaxy -- 2.3. Interstellar matter¹ -- 2.3.1. History -- 2.3.2. Chemical composition -- 2.3.3. Physical properties -- 2.4. The formation of stars with masses close to that of the Sun -- 2.5. Circumstellar disks -- 2.6. Formation of planetesimals and planetoids -- 2.7. The environment of the Solar System at its birth -- 2.8. Detection and properties of exoplanets and their systems -- 2.8.1. First attempts -- 2.8.2. The unexpected discovery of planets around a pulsar -- 2.8.3. Exoplanet detection methods -- 2.8.4. Some statistical results -- 2.8.5. The diversity of exoplanets -- 2.8.6. Exoplanet atmospheres -- 2.8.7. Habitable planets -- 2.8.8. Some extrasolar planetary systems -- 2.9. References -- 3 The Interaction of Solar System Bodies with the Interplanetary Medium¹ -- 3.1. Interplanetary plasma: origin and properties of the solar wind -- 3.1.1. Coronal expansion -- 3.1.2. The structure of the heliosphere in the ecliptic plane -- 3.1.3. The three-dimensional structure of the heliosphere.
3.1.4. Transient structures of the solar wind -- 3.1.5. The boundaries of the heliosphere -- 3.2. Planetary envelopes -- 3.2.1. Upper planetary atmospheres -- 3.2.2. Planetary magnetic fields -- 3.3. The solar wind's interaction with objects of the Solar System -- 3.3.1. The different types of interaction -- 3.3.2. The case of non-magnetized gaseous envelopes -- 3.3.3. The case of magnetized planets -- 3.3.4. Planetary auroral processes -- 3.4. Acknowledgements -- 3.5. References -- 4 Telluric Planets -- 4.1. The exploration of the telluric planets -- 4.1.1. From antiquity to the space age -- 4.1.2. The beginning of the space age -- 4.1.3. The return to Mars -- 4.1.4. The return to Venus -- 4.1.5. Observations from the ground -- 4.1.6. The exploration of planet Earth -- 4.1.7. Global Climatic Models -- 4.1.8. The electromagnetic spectrum of telluric planets -- 4.2. Objects without an atmosphere: Mercury, the Moon¹ -- 4.2.1. Orbital parameters and macroscopic characteristics -- 4.2.2. Exospheres -- 4.2.3. Internal structure -- 4.2.4. The surfaces of Mercury and the Moon -- 4.2.5. The origin of Mercury and the Moon -- 4.2.6. Mercury's magnetosphere -- 4.3. Objects with an atmosphere (Venus, Earth, Mars) -- 4.3.1. The interior and the magnetic field² -- 4.3.2. The surface³ -- 4.3.3. The atmosphere -- 4.3.4. The satellites of Mars -- 4.4. References -- 5 Giant Planets -- 5.1. The exploration of giant planets -- 5.1.1. From Antiquity to the Space Age -- 5.1.2. Space exploration -- 5.1.3. Exploration from Earth and the terrestrial environment -- 5.1.4. The electromagnetic spectrum of giant planets -- 5.2. The atmosphere of giant planets -- 5.2.1. Atmospheric composition -- 5.2.2. Elemental and isotopic abundance ratios -- 5.2.3. Thermal structure -- 5.2.4. Atmospheric circulation and cloud structure -- 5.2.5. High atmosphere and photochemistry.
5.3. The internal structure of giant planets -- 5.3.1. Experimental data -- 5.3.2. The construction of internal energy models -- 5.3.3. The results -- 5.4. The magnetospheres of the giant planets -- 5.4.1. Jupiter's giant magnetosphere -- 5.4.2. Saturn's symmetrical magnetosphere -- 5.4.3. The asymmetric magnetospheres of Uranus and Neptune -- 5.5. References -- Appendix Web links -- Glossary -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910555100103321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The solar system 1 : telluric and giant planets, interplanetary medium and exoplanets / / edited by Thérèse Encrenaz, James Lequeux
The solar system 1 : telluric and giant planets, interplanetary medium and exoplanets / / edited by Thérèse Encrenaz, James Lequeux
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (352 pages)
Disciplina 523.2
ISBN 1-119-88165-X
1-119-88166-8
1-119-88164-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. General Presentation of the Solar System -- 1.1. Introduction -- 1.2. Mechanics and dynamics of the Solar System1 -- 1.2.1. Newton's law of gravitation -- 1.2.2. Kepler's laws r -- 1.2.3. Mean motion resonances -- 1.2.4. The N-body problem -- 1.2.5. The role of collisions -- 1.2.6. Migrations in the Solar System -- 1.2.7. The role of gravity in a solid body -- 1.2.8. Special configurations of the Sun-Earth-Moon system -- 1.3. Physics of the Solar System -- 1.3.1. Equilibrium temperature of an object in the Solar System -- 1.3.2. Planets -- 1.3.3. Satellites -- 1.3.4. Small bodies of the Solar System -- 1.3.5. The interplanetary medium2 -- 1.4. References -- 2 Solar and Planetary Systems -- 2.1. The Sun in the Galaxy -- 2.2. Planetary systems in the Galaxy -- 2.3. Interstellar matter¹ -- 2.3.1. History -- 2.3.2. Chemical composition -- 2.3.3. Physical properties -- 2.4. The formation of stars with masses close to that of the Sun -- 2.5. Circumstellar disks -- 2.6. Formation of planetesimals and planetoids -- 2.7. The environment of the Solar System at its birth -- 2.8. Detection and properties of exoplanets and their systems -- 2.8.1. First attempts -- 2.8.2. The unexpected discovery of planets around a pulsar -- 2.8.3. Exoplanet detection methods -- 2.8.4. Some statistical results -- 2.8.5. The diversity of exoplanets -- 2.8.6. Exoplanet atmospheres -- 2.8.7. Habitable planets -- 2.8.8. Some extrasolar planetary systems -- 2.9. References -- 3 The Interaction of Solar System Bodies with the Interplanetary Medium¹ -- 3.1. Interplanetary plasma: origin and properties of the solar wind -- 3.1.1. Coronal expansion -- 3.1.2. The structure of the heliosphere in the ecliptic plane -- 3.1.3. The three-dimensional structure of the heliosphere.
3.1.4. Transient structures of the solar wind -- 3.1.5. The boundaries of the heliosphere -- 3.2. Planetary envelopes -- 3.2.1. Upper planetary atmospheres -- 3.2.2. Planetary magnetic fields -- 3.3. The solar wind's interaction with objects of the Solar System -- 3.3.1. The different types of interaction -- 3.3.2. The case of non-magnetized gaseous envelopes -- 3.3.3. The case of magnetized planets -- 3.3.4. Planetary auroral processes -- 3.4. Acknowledgements -- 3.5. References -- 4 Telluric Planets -- 4.1. The exploration of the telluric planets -- 4.1.1. From antiquity to the space age -- 4.1.2. The beginning of the space age -- 4.1.3. The return to Mars -- 4.1.4. The return to Venus -- 4.1.5. Observations from the ground -- 4.1.6. The exploration of planet Earth -- 4.1.7. Global Climatic Models -- 4.1.8. The electromagnetic spectrum of telluric planets -- 4.2. Objects without an atmosphere: Mercury, the Moon¹ -- 4.2.1. Orbital parameters and macroscopic characteristics -- 4.2.2. Exospheres -- 4.2.3. Internal structure -- 4.2.4. The surfaces of Mercury and the Moon -- 4.2.5. The origin of Mercury and the Moon -- 4.2.6. Mercury's magnetosphere -- 4.3. Objects with an atmosphere (Venus, Earth, Mars) -- 4.3.1. The interior and the magnetic field² -- 4.3.2. The surface³ -- 4.3.3. The atmosphere -- 4.3.4. The satellites of Mars -- 4.4. References -- 5 Giant Planets -- 5.1. The exploration of giant planets -- 5.1.1. From Antiquity to the Space Age -- 5.1.2. Space exploration -- 5.1.3. Exploration from Earth and the terrestrial environment -- 5.1.4. The electromagnetic spectrum of giant planets -- 5.2. The atmosphere of giant planets -- 5.2.1. Atmospheric composition -- 5.2.2. Elemental and isotopic abundance ratios -- 5.2.3. Thermal structure -- 5.2.4. Atmospheric circulation and cloud structure -- 5.2.5. High atmosphere and photochemistry.
5.3. The internal structure of giant planets -- 5.3.1. Experimental data -- 5.3.2. The construction of internal energy models -- 5.3.3. The results -- 5.4. The magnetospheres of the giant planets -- 5.4.1. Jupiter's giant magnetosphere -- 5.4.2. Saturn's symmetrical magnetosphere -- 5.4.3. The asymmetric magnetospheres of Uranus and Neptune -- 5.5. References -- Appendix Web links -- Glossary -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910829856003321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The solar system 2 : external satellites, small bodies, cosmochemistry, dynamics, exobiology / / Thérèse Encrenaz, James Lequeux
The solar system 2 : external satellites, small bodies, cosmochemistry, dynamics, exobiology / / Thérèse Encrenaz, James Lequeux
Edizione [2nd ed.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Limited : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (368 pages)
Disciplina 523.2
Soggetto genere / forma Electronic books.
ISBN 1-119-88167-6
1-119-88169-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Satellites and Rings of the Giant Planets -- 1.1. Introduction -- 1.2. Jupiter's satellites -- 1.2.1. The Galilean satellites -- 1.2.2. The minor Jovian satellites -- 1.3. Saturn's satellites -- 1.3.1. Titan -- 1.3.2. Enceladus -- 1.3.3. The other icy satellites -- 1.3.4. Challenges for future missions in the Saturn system and Dragonfly -- 1.4. The satellites of Uranus and Neptune -- 1.4.1. The satellites of Uranus -- 1.4.2. The satellites of Neptune -- 1.4.3. Future exploration of the icy giant planets' systems -- 1.5. The rings -- 1.5.1. Tidal forces and the Roche limit -- 1.5.2. Flattening and ring dispersion -- 1.5.3. Jupiter's rings -- 1.5.4. Saturn's rings -- 1.5.5. Uranus's rings -- 1.5.6. Neptune's rings -- 1.5.7. The rings of small bodies -- 1.5.8. Ring dynamics -- 1.5.9. The origin of the rings -- 1.5.10. An exo-ring -- 1.6. References -- 2. Comets, Asteroids, and Dwarf Planets -- 2.1. Comets -- 2.1.1. Definition and nomenclature -- 2.1.2. The orbits and families of the comets -- 2.1.3. Cometary magnitude -- 2.1.4. Space exploration of the comets -- 2.1.5. The nucleus -- 2.1.6. The atmosphere -- 2.1.7. Dust and the tail -- 2.1.8. The chemical diversity of the comets: a relationship to their origins? -- 2.1.9. The interaction of comets with solar wind -- 2.2. The "historical" asteroids -- 2.2.1. The asteroids in the main belt -- 2.2.2. The asteroids that cross the orbit of the terrestrial planets -- 2.2.3. The Trojan asteroids -- 2.2.4. The properties of asteroids -- 2.3. The "new" asteroids -- 2.3.1. The Centaurs -- 2.3.2. Trans-Neptunian objects -- 2.3.3. Interstellar objects -- 2.3.4. The origin and evolution of the asteroids -- 2.4. The dwarf planets -- 2.4.1. Ceres -- 2.4.2. Pluto and its satellites -- 2.4.3. Eris, Haumea, and Makemake.
2.5. References -- 3. Meteorites and Cosmochemistry -- 3.1. Rocks falling from the sky -- 3.2. Origin of meteorites -- 3.3. Planetary differentiation and groups of meteorites -- 3.4. Chondrites and the origin of the Solar System -- 3.4.1. The chemical composition of chondrites -- 3.4.2. The mineralogy of chondrites -- 3.4.3. The isotopic characteristics of bulk meteorites -- 3.5. Differentiated meteorites -- 3.5.1. Fragments of the asteroid Vesta -- 3.5.2. Iron meteorites -- 3.5.3. Pallasites -- 3.5.4. Fragments of the planet Mars -- 3.6. Witnesses to the formation and evolution of the Solar System -- 3.7. References -- 4. Formation and Dynamic History of the Solar System¹ -- 4.1. Introduction -- 4.2. Laws of motion of the planets and satellites -- 4.2.1. Kepler's laws -- 4.2.2. Gravity -- 4.2.3. Newton's fundamental laws of dynamics -- 4.2.4. The orbital elements -- 4.3. The two-body problem -- 4.4. The three-body problem -- 4.4.1. Jacobi constant and Lagrange points -- 4.4.2. Tadpole and horseshoe orbits -- 4.4.3. Hill sphere -- 4.5. Perturbations and resonances -- 4.6. Stability and chaos in the Solar System -- 4.7. Orbits in relation to a flattened body -- 4.8. Tidal effect -- 4.8.1. Tidal deformation -- 4.8.2. Tidal torque -- 4.8.3. Roche limit -- 4.9. Nongravitational forces and orbits of small bodies -- 4.9.1. Radiation pressure (micrometer-sized grains) -- 4.9.2. Poynting-Robertson effect (small macroscopic particles) -- 4.9.3. The Yarkovsky Effect (meter to kilometer-sized particles) -- 4.9.4. Yorp torque (asymmetric bodies) -- 4.9.5. Friction from solar particles (submicrometer dust) -- 4.9.6. Friction in gas -- 4.10. Formation of planetary systems -- 4.10.1. A disk of planetoids -- 4.10.2. Formation of terrestrial planets -- 4.10.3. Formation of Jupiter -- 4.10.4. Formation of giant planets by core accretion.
4.10.5. Formation by disk instability -- 4.10.6. Disappearance of the gas -- 4.10.7. Catastrophic collisions -- 4.10.8. Small bodies -- 4.10.9. Planetary migration -- 4.10.10. Fate of the small bodies -- 4.10.11. Exoplanetary formation -- 4.11. References -- 5. Origin of Life and Extraterrestrial Life -- 5.1. Definition of life -- 5.2. The appearance of life on Earth -- 5.2.1. Physicochemical conditions -- 5.2.2. The first forms of life -- 5.2.3. The formation of living cells -- 5.3. Life elsewhere in the Solar System -- 5.3.1. Mars -- 5.3.2. Venus -- 5.3.3. Satellites of the giant planets -- 5.4. How can life be detected on exoplanets? -- 5.5. Communicating with other civilizations? -- 5.6. References -- 6 Methods for Studying the Solar System -- 6.1. History -- 6.2. Observational techniques -- 6.2.1. Remote sensing -- 6.2.2. Methods of space exploration -- 6.2.3. Virtual Observatory and databases -- 6.2.4. Perspectives of ground-based and space observations -- 6.3. Computer simulations -- 6.3.1. Dynamics -- 6.3.2. Global climate models -- 6.4. References -- Appendix Web links -- Glossary -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910555017103321
London, England ; ; Hoboken, New Jersey : , : ISTE Limited : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The solar system 2 : external satellites, small bodies, cosmochemistry, dynamics, exobiology / / Thérèse Encrenaz, James Lequeux
The solar system 2 : external satellites, small bodies, cosmochemistry, dynamics, exobiology / / Thérèse Encrenaz, James Lequeux
Edizione [2nd ed.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Limited : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (368 pages)
Disciplina 523.2
ISBN 1-119-88167-6
1-119-88169-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Satellites and Rings of the Giant Planets -- 1.1. Introduction -- 1.2. Jupiter's satellites -- 1.2.1. The Galilean satellites -- 1.2.2. The minor Jovian satellites -- 1.3. Saturn's satellites -- 1.3.1. Titan -- 1.3.2. Enceladus -- 1.3.3. The other icy satellites -- 1.3.4. Challenges for future missions in the Saturn system and Dragonfly -- 1.4. The satellites of Uranus and Neptune -- 1.4.1. The satellites of Uranus -- 1.4.2. The satellites of Neptune -- 1.4.3. Future exploration of the icy giant planets' systems -- 1.5. The rings -- 1.5.1. Tidal forces and the Roche limit -- 1.5.2. Flattening and ring dispersion -- 1.5.3. Jupiter's rings -- 1.5.4. Saturn's rings -- 1.5.5. Uranus's rings -- 1.5.6. Neptune's rings -- 1.5.7. The rings of small bodies -- 1.5.8. Ring dynamics -- 1.5.9. The origin of the rings -- 1.5.10. An exo-ring -- 1.6. References -- 2. Comets, Asteroids, and Dwarf Planets -- 2.1. Comets -- 2.1.1. Definition and nomenclature -- 2.1.2. The orbits and families of the comets -- 2.1.3. Cometary magnitude -- 2.1.4. Space exploration of the comets -- 2.1.5. The nucleus -- 2.1.6. The atmosphere -- 2.1.7. Dust and the tail -- 2.1.8. The chemical diversity of the comets: a relationship to their origins? -- 2.1.9. The interaction of comets with solar wind -- 2.2. The "historical" asteroids -- 2.2.1. The asteroids in the main belt -- 2.2.2. The asteroids that cross the orbit of the terrestrial planets -- 2.2.3. The Trojan asteroids -- 2.2.4. The properties of asteroids -- 2.3. The "new" asteroids -- 2.3.1. The Centaurs -- 2.3.2. Trans-Neptunian objects -- 2.3.3. Interstellar objects -- 2.3.4. The origin and evolution of the asteroids -- 2.4. The dwarf planets -- 2.4.1. Ceres -- 2.4.2. Pluto and its satellites -- 2.4.3. Eris, Haumea, and Makemake.
2.5. References -- 3. Meteorites and Cosmochemistry -- 3.1. Rocks falling from the sky -- 3.2. Origin of meteorites -- 3.3. Planetary differentiation and groups of meteorites -- 3.4. Chondrites and the origin of the Solar System -- 3.4.1. The chemical composition of chondrites -- 3.4.2. The mineralogy of chondrites -- 3.4.3. The isotopic characteristics of bulk meteorites -- 3.5. Differentiated meteorites -- 3.5.1. Fragments of the asteroid Vesta -- 3.5.2. Iron meteorites -- 3.5.3. Pallasites -- 3.5.4. Fragments of the planet Mars -- 3.6. Witnesses to the formation and evolution of the Solar System -- 3.7. References -- 4. Formation and Dynamic History of the Solar System¹ -- 4.1. Introduction -- 4.2. Laws of motion of the planets and satellites -- 4.2.1. Kepler's laws -- 4.2.2. Gravity -- 4.2.3. Newton's fundamental laws of dynamics -- 4.2.4. The orbital elements -- 4.3. The two-body problem -- 4.4. The three-body problem -- 4.4.1. Jacobi constant and Lagrange points -- 4.4.2. Tadpole and horseshoe orbits -- 4.4.3. Hill sphere -- 4.5. Perturbations and resonances -- 4.6. Stability and chaos in the Solar System -- 4.7. Orbits in relation to a flattened body -- 4.8. Tidal effect -- 4.8.1. Tidal deformation -- 4.8.2. Tidal torque -- 4.8.3. Roche limit -- 4.9. Nongravitational forces and orbits of small bodies -- 4.9.1. Radiation pressure (micrometer-sized grains) -- 4.9.2. Poynting-Robertson effect (small macroscopic particles) -- 4.9.3. The Yarkovsky Effect (meter to kilometer-sized particles) -- 4.9.4. Yorp torque (asymmetric bodies) -- 4.9.5. Friction from solar particles (submicrometer dust) -- 4.9.6. Friction in gas -- 4.10. Formation of planetary systems -- 4.10.1. A disk of planetoids -- 4.10.2. Formation of terrestrial planets -- 4.10.3. Formation of Jupiter -- 4.10.4. Formation of giant planets by core accretion.
4.10.5. Formation by disk instability -- 4.10.6. Disappearance of the gas -- 4.10.7. Catastrophic collisions -- 4.10.8. Small bodies -- 4.10.9. Planetary migration -- 4.10.10. Fate of the small bodies -- 4.10.11. Exoplanetary formation -- 4.11. References -- 5. Origin of Life and Extraterrestrial Life -- 5.1. Definition of life -- 5.2. The appearance of life on Earth -- 5.2.1. Physicochemical conditions -- 5.2.2. The first forms of life -- 5.2.3. The formation of living cells -- 5.3. Life elsewhere in the Solar System -- 5.3.1. Mars -- 5.3.2. Venus -- 5.3.3. Satellites of the giant planets -- 5.4. How can life be detected on exoplanets? -- 5.5. Communicating with other civilizations? -- 5.6. References -- 6 Methods for Studying the Solar System -- 6.1. History -- 6.2. Observational techniques -- 6.2.1. Remote sensing -- 6.2.2. Methods of space exploration -- 6.2.3. Virtual Observatory and databases -- 6.2.4. Perspectives of ground-based and space observations -- 6.3. Computer simulations -- 6.3.1. Dynamics -- 6.3.2. Global climate models -- 6.4. References -- Appendix Web links -- Glossary -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830655103321
London, England ; ; Hoboken, New Jersey : , : ISTE Limited : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui