Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (388 pages) |
Disciplina | 780 |
Soggetto topico |
Mathematicians
Anàlisi matemàtica Teoria de grups Matemàtics |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-031-05331-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- On the Joint Spectral Radius -- 1 Introduction -- 2 Extremal Norms and Barabanov Norms -- 3 Explicit Bounds for Theorem 2 -- 4 Explicit Bounds for Bochi's Inequalities -- 5 Ultrametric Complete Valued Fields -- References -- The Failure of the Fractal Uncertainty Principle for the Walsh-Fourier Transform -- 1 The Fractal Uncertainty Principle for the Fourier Transform -- 2 The Walsh Transform -- 3 The Main Result -- 4 Proofs -- References -- The Continuous Formulation of Shallow Neural Networks as Wasserstein-Type Gradient Flows -- 1 Introduction -- 2 Shallow Neural Network and Gradient Flows -- 2.1 The μ Formulation -- 2.2 Comparison Between the Continuous and Discrete Model -- Consistency -- 2.3 The (ρ, H) Formulation -- 3 PDE Formulations -- 3.1 Gradient Flow in the μ Formulation -- 3.2 A First PDE Approach in the (ρ, H) Formulation -- Separating Variables -- Transporting Along the Flow of ρt -- 3.3 A Gradient Flow in the (ρ, H) Formulation via Propagation of Chaos -- 4 Regularized Problems -- 4.1 Heat Regularization -- 4.2 The Porous Medium Regularization -- 4.3 An Observation Without Regularization -- 5 Open Questions -- 5.1 Regularity and Convergence -- 5.2 Multilayer Neural Networks -- References -- On the Origins, Nature, and Impact of Bourgain's Discretized Sum-Product Theorem -- 1 Overture -- 2 Origins: Kakeya-Besicovitch Problem+ -- 2.1 Some Fundamental Properties of Plane Sets of Fractional Dimension -- 2.2 Besicovitch Type Maximal Operators and Applications to Fourier Analysis -- 2.3 Balog-Szemerédi-Gowers Lemma -- 2.4 On the Dimension of Kakeya Sets and Related Maximal Inequalities -- 3 Sum-Product Phenomena and the Labyrinth of the Continuum -- 3.1 Freiman's Theorem and Ruzsa's Calculus -- 3.2 Sum-Product Phenomena and Incidence Geometry -- Crossing Number Inequality -- Szemerédi-Trotter Theorem.
Proof of Sum-Product Inequality -- 3.3 On the Erdös-Volkmann and Katz-Tao Discretized Ring Conjectures -- Erdös-Volkmann Problem -- Katz-Tao Discretized Ring Conjecture -- Labyrinth of the Continuum -- 3.4 A Sum-Product Estimate in Finite Fields and Applications -- 4 Discrete and Continuous Variations on the Expanding Theme -- 4.1 Bemerkung über den Inhalt von Punktmengen -- 4.2 Sur le problème de la mesure -- 4.3 Ramanujan-Selberg Conjecture -- 4.4 Expanders -- 4.5 Superstrong Approximation -- 4.6 On the Spectral Gap for Finitely Generated Subgroups of SU(d) -- 5 Coda -- References -- Cartan Covers and Doubling Bernstein-Type Inequalities on Analytic Subsets of C2 -- 1 Introduction -- 2 Cartan's Estimate -- 3 Bernstein Exponent and Number of Zeros -- 4 Weierstrass' Preparation Theorem and Bernstein Exponents -- 5 Resultants -- 6 Refinement of the Assumption (1) -- 7 Proofs of Theorems A, B, and C -- References -- A Weighted Prékopa-Leindler Inequality and Sumsets withQuasicubes -- 1 Introduction -- 2 A Weighted Discrete Prékopa-Leindler Inequality -- 3 Proof of the Main Theorem -- References -- Equidistribution of Affine Random Walks on Some Nilmanifolds -- 1 Introduction -- 1.1 Quantitative Equidistribution -- 1.2 Statement of the Main Result -- 1.3 The Case of a Torus -- 1.4 Consequences of the Main Theorem -- 1.5 Idea of the Proof -- 2 Examples -- 2.1 Heisenberg Nilmanifold -- 2.2 Heisenberg Nilmanifold over Number Fields -- 2.3 A Non-semisimple Group of Toral Automorphisms -- 2.4 A Non-example -- 3 The Setup -- 3.1 Hölder Functions -- 4 The Main Argument -- 4.1 Principal Torus Bundle -- 4.2 Fourier Transform -- 4.3 Essential Growth Rate -- 4.4 The Cauchy-Schwarz Argument -- 4.5 Proof of the Key Proposition -- 5 Proof of the Main Theorems -- Appendix A: A Large Deviation Estimate -- Appendix B: The Case of a Torus. B.1 Multiplicative Convolutions in Simple Algebras -- B.2 Fourier Decay for Linear Random Walks -- B.3 Proof of Theorems B.1 and B.2 -- References -- Logarithmic Quantum Dynamical Bounds for Arithmetically Defined Ergodic Schrödinger Operators with Smooth Potentials -- 1 Introduction -- 2 Preliminaries -- 2.1 Schrödinger Operators and Transfer Matrices -- 2.2 Transport Exponents -- 2.3 Semialgebraic Sets -- 2.4 Large Deviation Theorems -- 3 Transport Exponents -- 4 Semialgebraic Sets -- 5 Technical Lemmas -- 6 The Case ν= 1 -- 7 The Case ν> -- 1 -- 8 The Analytic Case -- 9 The Skew-Shift Case, ν> -- 1 -- References -- The Slicing Problem by Bourgain -- 1 Introduction -- 2 The Isotropic Position -- 3 Distribution of Volume in Convex Bodies -- 4 Bound for the Isotropic Constant -- References -- On the Work of Jean Bourgain in Nonlinear Dispersive Equations -- 1 Introduction -- 2 Nonlinear Dispersive Equations: The Well-Posedness Theory Before Bourgain -- 3 Bourgain's Transformative Work on the Well-Posedness Theory of Dispersive Equations -- 4 A Quick Sampling of Some of the Other Groundbreaking Contributions of Bourgain to Nonlinear Dispersive Equations -- 4.1 Gibbs Measure Associated to Periodic (NLS) -- 4.2 Bourgain's ``High-Low Decomposition'' -- 4.3 Bourgain's Work on the Defocusing Energy Critical (NLS) -- 5 Conclusion -- References -- On Trace Sets of Restricted Continued Fraction Semigroups -- 1 Introduction -- 1.1 McMullen's Arithmetic Chaos Conjecture -- 1.2 Thin Semigroups -- 1.3 The Local-Global and Positive Density Conjectures -- 1.4 Statements of the Main Theorems -- 1.5 Notation -- 2 Preliminary Remarks -- 3 Proof of Theorem 1.5 -- 4 Proof of Theorem 1.6 -- 5 Proof of Lemma 1.9 -- References -- Polynomial Equations in Subgroups and Applications -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 New Results. 2 Solutions to Polynomial Equations in Subgroups of Finite Fields -- 2.1 Stepanov's Method -- 2.2 Some Divisibilities and Non-divisibilities -- 2.3 Derivatives on Some Curves -- 2.4 Multiplicity Points on Some Curves -- 3 Small Divisors of Integers -- 3.1 Smooth Numbers -- 3.2 Number of Small Divisors of Integers -- 4 Proof of Theorem 1.2 -- 4.1 Preliminary Estimates -- 4.2 Optimization of Parameters -- 5 Proof of Theorem 1.6 -- 5.1 Outline of the Proof -- 5.2 Formal Argument -- 6 Comments -- References -- Exponential Sums, Twisted Multiplicativity, and Moments -- 1 Introduction -- 1.1 Exponential Sums with Polynomials -- 1.2 Sums of Twisted Multiplicative Functions -- 1.3 Non-correlation of Exponential Sums for Different Polynomials -- 1.4 Previous Work -- 2 Sums of Twisted Multiplicative Functions -- 3 Exponential Sums of Polynomials: Preliminary Results -- 4 Proof of Theorem 1.1 -- 5 The Fourth Moment: Proof of Theorem 1.3 -- 6 Generic Polynomials -- 7 Multiple Correlations -- 8 Remarks on Katz's Theorem -- References -- The Ternary Goldbach Problem with a Missing Digit and Other Primes of Special Types -- 1 Introduction -- 2 Outline of the Proof -- 3 Structure of the Paper -- 4 Sieve Decomposition and Proof of Theorem 1.1 -- 5 Fourier Estimates and Large Sieve Inequalities -- 6 Local Versions of Maynard's Results -- 7 Sieve Asymptotics for Local Version of Maynard -- 8 b-Variable Circle Method -- 9 b-Variable Major Arcs -- 10 Generic Minor Arcs -- 11 Exceptional Minor Arcs -- 12 The Ternary Goldbach Problem with a Prime with a Missing Digit, a Piatetski-Shapiro Prime, and a Prime of Another Special Type -- References -- A Note on Harmonious Sets -- 1 A Wrong Lemma Is Revisited -- 2 Bogolyobov's Approach -- 3 New Examples of Harmonious Sets -- 4 The Union of Two Harmonious Sets -- References. On the Multiplicative Group Generated by Two Primes in Z/QZ -- 1 Introduction -- 1.1 Notation -- 2 Proof of Theorem 4 -- References. |
Record Nr. | UNINA-9910629291503321 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (388 pages) |
Disciplina | 780 |
Soggetto topico |
Mathematicians
Anàlisi matemàtica Teoria de grups Matemàtics |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-031-05331-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- On the Joint Spectral Radius -- 1 Introduction -- 2 Extremal Norms and Barabanov Norms -- 3 Explicit Bounds for Theorem 2 -- 4 Explicit Bounds for Bochi's Inequalities -- 5 Ultrametric Complete Valued Fields -- References -- The Failure of the Fractal Uncertainty Principle for the Walsh-Fourier Transform -- 1 The Fractal Uncertainty Principle for the Fourier Transform -- 2 The Walsh Transform -- 3 The Main Result -- 4 Proofs -- References -- The Continuous Formulation of Shallow Neural Networks as Wasserstein-Type Gradient Flows -- 1 Introduction -- 2 Shallow Neural Network and Gradient Flows -- 2.1 The μ Formulation -- 2.2 Comparison Between the Continuous and Discrete Model -- Consistency -- 2.3 The (ρ, H) Formulation -- 3 PDE Formulations -- 3.1 Gradient Flow in the μ Formulation -- 3.2 A First PDE Approach in the (ρ, H) Formulation -- Separating Variables -- Transporting Along the Flow of ρt -- 3.3 A Gradient Flow in the (ρ, H) Formulation via Propagation of Chaos -- 4 Regularized Problems -- 4.1 Heat Regularization -- 4.2 The Porous Medium Regularization -- 4.3 An Observation Without Regularization -- 5 Open Questions -- 5.1 Regularity and Convergence -- 5.2 Multilayer Neural Networks -- References -- On the Origins, Nature, and Impact of Bourgain's Discretized Sum-Product Theorem -- 1 Overture -- 2 Origins: Kakeya-Besicovitch Problem+ -- 2.1 Some Fundamental Properties of Plane Sets of Fractional Dimension -- 2.2 Besicovitch Type Maximal Operators and Applications to Fourier Analysis -- 2.3 Balog-Szemerédi-Gowers Lemma -- 2.4 On the Dimension of Kakeya Sets and Related Maximal Inequalities -- 3 Sum-Product Phenomena and the Labyrinth of the Continuum -- 3.1 Freiman's Theorem and Ruzsa's Calculus -- 3.2 Sum-Product Phenomena and Incidence Geometry -- Crossing Number Inequality -- Szemerédi-Trotter Theorem.
Proof of Sum-Product Inequality -- 3.3 On the Erdös-Volkmann and Katz-Tao Discretized Ring Conjectures -- Erdös-Volkmann Problem -- Katz-Tao Discretized Ring Conjecture -- Labyrinth of the Continuum -- 3.4 A Sum-Product Estimate in Finite Fields and Applications -- 4 Discrete and Continuous Variations on the Expanding Theme -- 4.1 Bemerkung über den Inhalt von Punktmengen -- 4.2 Sur le problème de la mesure -- 4.3 Ramanujan-Selberg Conjecture -- 4.4 Expanders -- 4.5 Superstrong Approximation -- 4.6 On the Spectral Gap for Finitely Generated Subgroups of SU(d) -- 5 Coda -- References -- Cartan Covers and Doubling Bernstein-Type Inequalities on Analytic Subsets of C2 -- 1 Introduction -- 2 Cartan's Estimate -- 3 Bernstein Exponent and Number of Zeros -- 4 Weierstrass' Preparation Theorem and Bernstein Exponents -- 5 Resultants -- 6 Refinement of the Assumption (1) -- 7 Proofs of Theorems A, B, and C -- References -- A Weighted Prékopa-Leindler Inequality and Sumsets withQuasicubes -- 1 Introduction -- 2 A Weighted Discrete Prékopa-Leindler Inequality -- 3 Proof of the Main Theorem -- References -- Equidistribution of Affine Random Walks on Some Nilmanifolds -- 1 Introduction -- 1.1 Quantitative Equidistribution -- 1.2 Statement of the Main Result -- 1.3 The Case of a Torus -- 1.4 Consequences of the Main Theorem -- 1.5 Idea of the Proof -- 2 Examples -- 2.1 Heisenberg Nilmanifold -- 2.2 Heisenberg Nilmanifold over Number Fields -- 2.3 A Non-semisimple Group of Toral Automorphisms -- 2.4 A Non-example -- 3 The Setup -- 3.1 Hölder Functions -- 4 The Main Argument -- 4.1 Principal Torus Bundle -- 4.2 Fourier Transform -- 4.3 Essential Growth Rate -- 4.4 The Cauchy-Schwarz Argument -- 4.5 Proof of the Key Proposition -- 5 Proof of the Main Theorems -- Appendix A: A Large Deviation Estimate -- Appendix B: The Case of a Torus. B.1 Multiplicative Convolutions in Simple Algebras -- B.2 Fourier Decay for Linear Random Walks -- B.3 Proof of Theorems B.1 and B.2 -- References -- Logarithmic Quantum Dynamical Bounds for Arithmetically Defined Ergodic Schrödinger Operators with Smooth Potentials -- 1 Introduction -- 2 Preliminaries -- 2.1 Schrödinger Operators and Transfer Matrices -- 2.2 Transport Exponents -- 2.3 Semialgebraic Sets -- 2.4 Large Deviation Theorems -- 3 Transport Exponents -- 4 Semialgebraic Sets -- 5 Technical Lemmas -- 6 The Case ν= 1 -- 7 The Case ν> -- 1 -- 8 The Analytic Case -- 9 The Skew-Shift Case, ν> -- 1 -- References -- The Slicing Problem by Bourgain -- 1 Introduction -- 2 The Isotropic Position -- 3 Distribution of Volume in Convex Bodies -- 4 Bound for the Isotropic Constant -- References -- On the Work of Jean Bourgain in Nonlinear Dispersive Equations -- 1 Introduction -- 2 Nonlinear Dispersive Equations: The Well-Posedness Theory Before Bourgain -- 3 Bourgain's Transformative Work on the Well-Posedness Theory of Dispersive Equations -- 4 A Quick Sampling of Some of the Other Groundbreaking Contributions of Bourgain to Nonlinear Dispersive Equations -- 4.1 Gibbs Measure Associated to Periodic (NLS) -- 4.2 Bourgain's ``High-Low Decomposition'' -- 4.3 Bourgain's Work on the Defocusing Energy Critical (NLS) -- 5 Conclusion -- References -- On Trace Sets of Restricted Continued Fraction Semigroups -- 1 Introduction -- 1.1 McMullen's Arithmetic Chaos Conjecture -- 1.2 Thin Semigroups -- 1.3 The Local-Global and Positive Density Conjectures -- 1.4 Statements of the Main Theorems -- 1.5 Notation -- 2 Preliminary Remarks -- 3 Proof of Theorem 1.5 -- 4 Proof of Theorem 1.6 -- 5 Proof of Lemma 1.9 -- References -- Polynomial Equations in Subgroups and Applications -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 New Results. 2 Solutions to Polynomial Equations in Subgroups of Finite Fields -- 2.1 Stepanov's Method -- 2.2 Some Divisibilities and Non-divisibilities -- 2.3 Derivatives on Some Curves -- 2.4 Multiplicity Points on Some Curves -- 3 Small Divisors of Integers -- 3.1 Smooth Numbers -- 3.2 Number of Small Divisors of Integers -- 4 Proof of Theorem 1.2 -- 4.1 Preliminary Estimates -- 4.2 Optimization of Parameters -- 5 Proof of Theorem 1.6 -- 5.1 Outline of the Proof -- 5.2 Formal Argument -- 6 Comments -- References -- Exponential Sums, Twisted Multiplicativity, and Moments -- 1 Introduction -- 1.1 Exponential Sums with Polynomials -- 1.2 Sums of Twisted Multiplicative Functions -- 1.3 Non-correlation of Exponential Sums for Different Polynomials -- 1.4 Previous Work -- 2 Sums of Twisted Multiplicative Functions -- 3 Exponential Sums of Polynomials: Preliminary Results -- 4 Proof of Theorem 1.1 -- 5 The Fourth Moment: Proof of Theorem 1.3 -- 6 Generic Polynomials -- 7 Multiple Correlations -- 8 Remarks on Katz's Theorem -- References -- The Ternary Goldbach Problem with a Missing Digit and Other Primes of Special Types -- 1 Introduction -- 2 Outline of the Proof -- 3 Structure of the Paper -- 4 Sieve Decomposition and Proof of Theorem 1.1 -- 5 Fourier Estimates and Large Sieve Inequalities -- 6 Local Versions of Maynard's Results -- 7 Sieve Asymptotics for Local Version of Maynard -- 8 b-Variable Circle Method -- 9 b-Variable Major Arcs -- 10 Generic Minor Arcs -- 11 Exceptional Minor Arcs -- 12 The Ternary Goldbach Problem with a Prime with a Missing Digit, a Piatetski-Shapiro Prime, and a Prime of Another Special Type -- References -- A Note on Harmonious Sets -- 1 A Wrong Lemma Is Revisited -- 2 Bogolyobov's Approach -- 3 New Examples of Harmonious Sets -- 4 The Union of Two Harmonious Sets -- References. On the Multiplicative Group Generated by Two Primes in Z/QZ -- 1 Introduction -- 1.1 Notation -- 2 Proof of Theorem 4 -- References. |
Record Nr. | UNISA-996499872503316 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
As One Lives, So One Dies : On the Life and Death of Great Psychotherapists |
Autore | Gross Werner |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin / Heidelberg, , 2024 |
Descrizione fisica | 1 online resource (186 pages) |
Soggetto topico |
Psicologia
Vida Mort Psicoterapeutes |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN |
9783662700617
9783662700600 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910908362403321 |
Gross Werner
![]() |
||
Berlin, Heidelberg : , : Springer Berlin / Heidelberg, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Athanasius Kircher, the Mysteries of the Geocosmos, Magnetism, and the Universe / / by Agustín Udías |
Autore | Udías Vallina Agustín |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
Descrizione fisica | 1 online resource (155 pages) |
Disciplina | 509.2 |
Soggetto topico |
Science - History
Mathematics History Physics - History History of Science History of Mathematical Sciences History of Physics and Astronomy Científics Història de la ciència |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN |
9783031530081
303153008X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- 1. Introduction -- 2. Athanasius Kircher’s life and works -- The museum and correspondence -- The books -- 3. The geocosmos and the interior of the Earth -- Short index of the twelve books -- Preface: Earthquakes and volcanoes -- The Earth center of the universe -- The interior of the Earth -- The oceans and seas -- The subterranean fire, water and air -- Fountains, rivers, and lakes -- The terrestrial element -- Nature of the geocosmos -- Fossils, subterranean animals, men, and demons -- Poisons in the subterranean world -- Metals and mines -- Chemical transformations -- "Panspermia", the origin of plants and animals -- Chemical work -- 4. Magnetism and the cosmic magnetic chain -- Early work on magnetism and the Earth’s magnetic field -- Kircher and magnetism -- Nature and properties of magnets -- Magnetic declination -- Observations of magnetic declination -- The magnetic map -- Causes of magnetic declination -- Magnetism as a cosmic and spiritual force -- 5. A space journey and the vision of the universe -- Introduction -- Preambles by Schott and Kircher -- Preamble by Schott -- Preamble by Kircher -- Dialog I: Journeys to Moon, Venus, Mercury, Sun, Mars, Jupiter, Saturn and the Firmament -- Dialog II: God’s providence in the work of the World -- Ecstatic Journey II -- Dialog I: The water element and the universal principle of things -- Dialog II: The admirable arcane of the Geocosmos or Terrestrial World -- Dialog III: Ecstatic journey to the subterranean world -- 6. Conclusion -- Appendix 1. Books on Athanasius Kircher published from 2000 to 2020 -- Appendix 2. Table of Contents of Mundus subterraneus -- Appendix 3. Table of Contents of Magnes sive de arte Magnetica -- Appendix 4. Table of Contents of Iter exstaticum coelestem -- Kircher’s Works Mentioned -- Bibliography -- Index by Names. |
Record Nr. | UNINA-9910845485403321 |
Udías Vallina Agustín
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Famous Composers – Diseases Reloaded / / by Andreas Otte |
Autore | Otte Andreas |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (180 pages) |
Disciplina | 780.922 |
Soggetto topico |
Medical jurisprudence
Music - History and criticism Music Forensic Medicine History of Music Classical Music Compositors Història de la medicina Malalties |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN |
9783031066719
9783031066702 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introductory to the Topic -- Johann Sebastian Bach (1685–1750) -- Domenico Scarlatti (1685–1757) -- Nicolò Paganini (1782–1840) -- Francisco Tárrega (1852–1909) -- Maurice Ravel (1875–1937) -- Heitor Villa-Lobos (1887-1959) -- Robert Schumann (1810-1856). |
Record Nr. | UNINA-9910595029103321 |
Otte Andreas
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis |
Autore | Tobies Renate |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (697 pages) |
Disciplina | 510.92 |
Collana | Vita Mathematica |
Soggetto topico |
Matemàtics
Mathematicians - Germany Reformers - Germany |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-030-75785-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- PREFACE -- CONTENTS -- 1 INTRODUCTION -- 1.1 THE STATE OF RESEARCH -- 1.2 GUIDING QUESTIONS -- 1.3 EDITORIAL REMARKS -- Acknowledgements -- 2 FORMATIVE GROUPS -- 2.1 THE KLEIN-KAYSER FAMILY -- 2.1.1 A Royalist and Frugal Westphalian Upbringing -- 2.1.2 Talent in School and Wide Interests as Gifts from His Mother's Side -- 2.1.3 Felix Klein and His Siblings -- 2.2 SCHOOL YEARS IN DÜSSELDORF -- 2.2.1 Earning His Abitur from a Gymnasium at the Age of Sixteen -- 2.2.2 Examination Questions in Mathematics -- 2.2.3 Interests in Natural Science During His School Years -- 2.3 STUDIES AND DOCTORATE IN BONN -- 2.3.1 Coursework and Seminar Awards -- 2.3.2 Assistantship and a Reward for Winning a Physics Contest -- 2.3.3 Assisting Julius Plücker's Research in Geometry -- 2.3.4 Doctoral Procedure -- 2.4 JOINING ALFRED CLEBSCH'S THOUGHT COMMUNITY -- 2.4.1 The Clebsch School -- 2.4.2 The Journal Mathematische Annalen -- 2.4.3 Articles on Line Geometry, 1869 -- 2.5 BROADENING HIS HORIZONS IN BERLIN -- 2.5.1 The Professors in Berlin and Felix Klein -- 2.5.2 Acquaintances from the Mathematical Union: Kiepert, Lie, Stolz -- 2.5.3 Cayley's Metric and Klein's Non-Euclidean Interpretation -- 2.6 IN PARIS WITH SOPHUS LIE -- 2.6.1 Felix Klein and French Mathematicians -- 2.6.2 Collaborative Work with Sophus Lie -- 2.6.2.1 Notes on W-Configurations -- 2.6.2.2 Principal Tangent Curves of the Kummer Surface -- 2.6.3 A Report on Mathematics in Paris -- 2.7 THE FRANCO-PRUSSIAN WAR AND KLEIN'S HABILITATION -- 2.7.1 Wartime Service as a Paramedic and Its Effects -- 2.7.2 Habilitation -- 2.8 TIME AS A PRIVATDOZENT IN GÖTTINGEN -- 2.8.1 Klein's Teaching Activity and Its Context -- 2.8.2 An Overview of Klein's Research Results as a Privatdozent -- 2.8.3 Discussion Groups -- 2.8.3.1 A Three-Man Club with Clebsch and Riecke.
2.8.3.2 The Mathematical and Natural-Scientific Student Union -- 2.8.3.3 A Scientific Circle: Eskimo -- 2.8.3.4 The "Social Activity" of Bringing Mathematicians Together -- 3 A PROFESSORSHIP AT THE UNIVERSITY OF ERLANGEN -- 3.1 RESEARCH TRENDS AND DOCTORAL STUDENTS -- 3.1.1 The Vision of the Erlangen Program -- 3.1.2 Klein's Students in Erlangen -- 3.1.3 New Research Trends -- 3.1.3.1 On a New Type of Riemann Surface -- 3.1.3.2 The Theory of Equations -- 3.2 INAUGURAL LECTURE: A PLAN FOR MATHEMATICAL EDUCATION -- 3.3 FIRST TRIP TO GREAT BRITAIN, 1873 -- 3.4 TRIPS TO ITALY -- 3.5 DEVELOPING THE MATHEMATICAL INSTITUTION -- 3.6 FAMILY MATTERS -- 3.6.1 His Friends Marry and Klein Follows Suit -- 3.6.2 Klein's Father-in-Law, the Historian Karl Hegel -- 3.6.3 Anna Hegel, Felix Klein, and Their Family -- 4 A PROFESSORSHIP AT THE POLYTECHNIKUM IN MUNICH -- 4.1 A NEW INSTITUTE AND NEW TEACHING ACTIVITY -- 4.1.1 Creating a Mathematical Institute -- 4.1.2 Reorganizing the Curriculum -- 4.2 DEVELOPING HIS MATHEMATICAL INDIVIDUALITY -- 4.2.1 The Icosahedron Equation -- 4.2.2 Number Theory -- 4.2.3 Elliptic Modular Functions -- 4.2.4 Klein's Circle of Students in Munich -- 4.2.4.1 Phase I: 1875-1876 -- 4.2.4.2 Phase II: 1876-1880 -- 4.3 DISCUSSION GROUPS IN MUNICH -- 4.3.1 A Mathematical Discussion Group with Engineers and Natural Scientists -- 4.3.2 The Mathematical Student Union and the Mathematical Society -- 4.3.3 The Meeting of Natural Scientists in Munich, 1877 -- 4.4 "READY AGAIN FOR A UNIVERSITY IN A SMALL CITY" -- 5 A PROFESSORSHIP FOR GEOMETRY IN LEIPZIG -- 5.1 KLEIN'S START IN LEIPZIG AND HIS INAUGURAL ADDRESS -- 5.2 CREATING A NEW MATHEMATICAL INSTITUTION -- 5.3 TEACHING PROGRAM -- 5.3.1 Lectures: Organization, Reorientation, and Deviation from the Plan -- 5.3.2 The Mathematical Colloquium / Exercises / Seminar -- 5.4 THE KLEINIAN "FLOCK". 5.4.1 Post-Doctoral Mathematicians -- 5.4.2 Klein's Foreign Students in Leipzig -- 5.4.2.1 The First Frenchman and the First Briton -- 5.4.2.2 The First Americans -- 5.4.2.3 The Italians -- 5.4.2.4 Mathematicians from Switzerland and Austria-Hungary -- 5.4.2.5 Russian and Other Eastern European Contacts -- 5.5 FIELDS OF RESEARCH -- 5.5.1 Mathematical Physics / Physical Mathematics -- 5.5.1.1 Lamé's Function, Potential Theory, and Carl Neumann -- 5.5.1.2 On Riemann's Theory of Algebraic Functions and Their Integrals -- 5.5.2 Looking Toward Berlin -- 5.5.2.1 Gathering Sources -- 5.5.2.2 The Dirichlet Principle -- 5.5.2.3 Klein's Seminar on the Theory of Abelian Functions (1882) -- 5.5.2.4 Openness vs. Partiality -- 5.5.3 Looking Toward France -- 5.5.3.1 French Contributors to Mathematische Annalen -- 5.5.3.2 Klein's Correspondence with Poincaré -- 5.5.4 Three Fundamental Theorems -- 5.5.4.1 The Loop-Cut Theorem (Rückkehrschnitttheorem) -- 5.5.4.2 Theorem of the Limit-Circle (Grenzkreistheorem) -- 5.5.4.3 The (General) Fundamental Theorem -- 5.5.4.4 Remarks on the Proofs -- 5.5.5 The Polemic about and with Lazarus Fuchs -- 5.5.6 The Icosahedron Book -- 5.5.7 A Book on the Theory of Elliptic Modular Functions -- 5.5.7.1 Supplementing the Theory -- 5.5.7.2 Who Should Be the Editor? - Georg Pick -- 5.5.8 Hyperelliptic and Abelian Functions -- 5.6 FELIX KLEIN AND ALFRED ACKERMANN-TEUBNER -- 5.7 FELIX KLEIN IN LEIPZIG'S INTELLECTUAL COMMUNITIES -- 5.7.1 A Mathematicians' Circle -- 5.7.2 The Societas Jablonoviana -- 5.7.3 The Royal Saxon Society of Sciences in Leipzig -- 5.8 TURNING HIS BACK ON LEIPZIG -- 5.8.1 Weighing Offers from Oxford and Johns Hopkins -- 5.8.2 The Physicist Eduard Riecke Arranges Klein's Move to Göttingen -- 5.8.3 The Appointment of Sophus Lie as Klein's Successor - and the Reactions. 6 THE START OF KLEIN'S PROFESSORSHIP IN GÖTTINGEN, 1886-1892 -- 6.1 FAMILY CONSIDERATIONS -- 6.2 DEALING WITH COLLEAGUES, TEACHING, AND CURRICULUM PLANNING -- 6.2.1 The Relationship Between Klein and Schwarz -- 6.2.2 The Göttingen Privatdozenten Hölder and Schoenflies -- 6.2.3 Klein's Teaching in Context -- 6.3 INDEPENDENT AND COLLABORATIVE RESEARCH -- 6.3.1 The Theory of Finite Groups of Linear Substitutions: The Theory of Solving Equations of Higher Degree -- 6.3.2 Hyperelliptic and Abelian Functions -- 6.3.3 The Theory of Elliptic Modular Functions (Monograph) -- 6.3.4 The Theory of Automorphic Functions (Monograph) -- 6.3.5 The Theory of Lamé Functions and Potential Theory -- 6.3.6 Refreshing His Work on Geometry -- 6.3.7 Visions: Internationality, Crystallography, Hilbert's Invariant Theory -- 6.3.7.1 An Eye on Developments Abroad -- 6.3.7.2 Arthur Schoenflies and Crystallography -- 6.3.7.3 Felix Klein and Hilbert's Invariant Theory -- 6.4 BRINGING PEOPLE AND INSTITUTIONS TOGETHER -- 6.4.1 The Professorium in Göttingen -- 6.4.2 A Proposal to Relocate the Technische Hochschule in Hanover to Göttingen -- 6.4.3 The Idea of Reorganizing the Göttingen Society of Sciences -- 6.4.4 Felix Klein and the Founding of the German Mathematical Society -- 6.5 THE PIVOTAL YEAR OF 1892 -- 6.5.1 Refilling Vacant Professorships in Prussia -- 6.5.1.1 Berlin, Breslau, and Klein's System for Classifying Styles of Thought -- 6.5.1.2 Hiring a Successor for H.A. Schwarz in Göttingen -- 6.5.2 A Job Offer from the University of Munich and the Consequences -- 7 SETTING THE COURSE, 1892/93-1895 -- 7.1 KLEIN'S ASSISTANTS AND HIS PRINCIPLES FOR CHOOSING THEM -- 7.2 THE GÖTTINGEN MATHEMATICAL SOCIETY -- 7.3 TURNING TO SECONDARY SCHOOL TEACHERS -- 7.4 A TRIP TO THE UNITED STATES -- 7.4.1 The World's Fair in Chicago and the Mathematical Congress. 7.4.2 Twelve Lectures by Klein: The Evanston Colloquium -- 7.4.3 Traveling from University to University -- 7.4.4 Repercussions -- 7.5 THE BEGINNINGS OF WOMEN STUDYING MATHEMATICS -- 7.6 ACTUARIAL MATHEMATICS AS A COURSE OF STUDY -- 7.7 CONTACTING ENGINEERS AND INDUSTRIALISTS -- 7.8 THE ENCYKLOPÄDIE PROJECT -- 7.9 KLEIN SUCCEEDS IN HIRING DAVID HILBERT -- 8 THE FRUITS OF KLEIN'S EFFORTS, 1895-1913 -- 8.1 A CENTER FOR MATHEMATICS, NATURAL SCIENCES, AND TECHNOLOGY -- 8.1.1 The Göttingen Association -- 8.1.2 Applied Mathematics in the New Examination Regulations and the Consequences -- 8.1.3 Aeronautical Research -- 8.2 MAINTAINING HIS SCIENTIFIC REPUTATION -- 8.2.1 Automorphic Functions (Monograph) -- 8.2.2 Geometric Number Theory -- 8.2.3 A Monograph on the Theory of the Spinning Top -- 8.2.4 Inspiring Ideas in the Fields of Mathematical Physics and Technology -- 8.2.4.1 Hydrodynamics / Hydraulics -- 8.2.4.2 Statics -- 8.2.4.3 The Theory of Friction -- 8.2.4.4 The Special Theory of Relativity -- 8.3 PROGRAM: THE HISTORY, PHILOSOPHY, PSYCHOLOGY, ANDINSTRUCTION OF MATHEMATICS -- 8.3.1 The History of Mathematics -- 8.3.2 Philosophical Aspects -- 8.3.3 Psychological-Epistemological Classifications -- 8.3.4 The "Kleinian" Educational Reform -- 8.3.4.1 Suggestions for Reform -- 8.3.4.2 A Polemic about the Teaching of Analysis at the University -- 8.4 INTERNATIONAL SCIENTIFIC COOPERATION -- 8.5 EARLY RETIREMENT AND HONORS -- 8.5.1 Recovering and Working in the Hahnenklee Sanatorium -- 8.5.2 Max Liebermann's Portrait of Felix Klein -- 8.5.3 The Successors to Klein's Professorship -- 9 THE FIRST WORLD WAR AND THE POSTWAR PERIOD -- 9.1 POLITICAL ACTIVITY DURING THE FIRST WORLD WAR -- 9.1.1 The Vows of Allegiance of German Professors to Militarism -- 9.1.2 A Plea for Studying Abroad. 9.2 HISTORY OF MATHEMATICS, THE "CRY FOR HELP OF MODERNPHYSICS," AND EDITION PROJECTS. |
Record Nr. | UNISA-996466414903316 |
Tobies Renate
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis |
Autore | Tobies Renate |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (697 pages) |
Disciplina | 510.92 |
Collana | Vita Mathematica |
Soggetto topico |
Matemàtics
Mathematicians - Germany Reformers - Germany |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-030-75785-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- PREFACE -- CONTENTS -- 1 INTRODUCTION -- 1.1 THE STATE OF RESEARCH -- 1.2 GUIDING QUESTIONS -- 1.3 EDITORIAL REMARKS -- Acknowledgements -- 2 FORMATIVE GROUPS -- 2.1 THE KLEIN-KAYSER FAMILY -- 2.1.1 A Royalist and Frugal Westphalian Upbringing -- 2.1.2 Talent in School and Wide Interests as Gifts from His Mother's Side -- 2.1.3 Felix Klein and His Siblings -- 2.2 SCHOOL YEARS IN DÜSSELDORF -- 2.2.1 Earning His Abitur from a Gymnasium at the Age of Sixteen -- 2.2.2 Examination Questions in Mathematics -- 2.2.3 Interests in Natural Science During His School Years -- 2.3 STUDIES AND DOCTORATE IN BONN -- 2.3.1 Coursework and Seminar Awards -- 2.3.2 Assistantship and a Reward for Winning a Physics Contest -- 2.3.3 Assisting Julius Plücker's Research in Geometry -- 2.3.4 Doctoral Procedure -- 2.4 JOINING ALFRED CLEBSCH'S THOUGHT COMMUNITY -- 2.4.1 The Clebsch School -- 2.4.2 The Journal Mathematische Annalen -- 2.4.3 Articles on Line Geometry, 1869 -- 2.5 BROADENING HIS HORIZONS IN BERLIN -- 2.5.1 The Professors in Berlin and Felix Klein -- 2.5.2 Acquaintances from the Mathematical Union: Kiepert, Lie, Stolz -- 2.5.3 Cayley's Metric and Klein's Non-Euclidean Interpretation -- 2.6 IN PARIS WITH SOPHUS LIE -- 2.6.1 Felix Klein and French Mathematicians -- 2.6.2 Collaborative Work with Sophus Lie -- 2.6.2.1 Notes on W-Configurations -- 2.6.2.2 Principal Tangent Curves of the Kummer Surface -- 2.6.3 A Report on Mathematics in Paris -- 2.7 THE FRANCO-PRUSSIAN WAR AND KLEIN'S HABILITATION -- 2.7.1 Wartime Service as a Paramedic and Its Effects -- 2.7.2 Habilitation -- 2.8 TIME AS A PRIVATDOZENT IN GÖTTINGEN -- 2.8.1 Klein's Teaching Activity and Its Context -- 2.8.2 An Overview of Klein's Research Results as a Privatdozent -- 2.8.3 Discussion Groups -- 2.8.3.1 A Three-Man Club with Clebsch and Riecke.
2.8.3.2 The Mathematical and Natural-Scientific Student Union -- 2.8.3.3 A Scientific Circle: Eskimo -- 2.8.3.4 The "Social Activity" of Bringing Mathematicians Together -- 3 A PROFESSORSHIP AT THE UNIVERSITY OF ERLANGEN -- 3.1 RESEARCH TRENDS AND DOCTORAL STUDENTS -- 3.1.1 The Vision of the Erlangen Program -- 3.1.2 Klein's Students in Erlangen -- 3.1.3 New Research Trends -- 3.1.3.1 On a New Type of Riemann Surface -- 3.1.3.2 The Theory of Equations -- 3.2 INAUGURAL LECTURE: A PLAN FOR MATHEMATICAL EDUCATION -- 3.3 FIRST TRIP TO GREAT BRITAIN, 1873 -- 3.4 TRIPS TO ITALY -- 3.5 DEVELOPING THE MATHEMATICAL INSTITUTION -- 3.6 FAMILY MATTERS -- 3.6.1 His Friends Marry and Klein Follows Suit -- 3.6.2 Klein's Father-in-Law, the Historian Karl Hegel -- 3.6.3 Anna Hegel, Felix Klein, and Their Family -- 4 A PROFESSORSHIP AT THE POLYTECHNIKUM IN MUNICH -- 4.1 A NEW INSTITUTE AND NEW TEACHING ACTIVITY -- 4.1.1 Creating a Mathematical Institute -- 4.1.2 Reorganizing the Curriculum -- 4.2 DEVELOPING HIS MATHEMATICAL INDIVIDUALITY -- 4.2.1 The Icosahedron Equation -- 4.2.2 Number Theory -- 4.2.3 Elliptic Modular Functions -- 4.2.4 Klein's Circle of Students in Munich -- 4.2.4.1 Phase I: 1875-1876 -- 4.2.4.2 Phase II: 1876-1880 -- 4.3 DISCUSSION GROUPS IN MUNICH -- 4.3.1 A Mathematical Discussion Group with Engineers and Natural Scientists -- 4.3.2 The Mathematical Student Union and the Mathematical Society -- 4.3.3 The Meeting of Natural Scientists in Munich, 1877 -- 4.4 "READY AGAIN FOR A UNIVERSITY IN A SMALL CITY" -- 5 A PROFESSORSHIP FOR GEOMETRY IN LEIPZIG -- 5.1 KLEIN'S START IN LEIPZIG AND HIS INAUGURAL ADDRESS -- 5.2 CREATING A NEW MATHEMATICAL INSTITUTION -- 5.3 TEACHING PROGRAM -- 5.3.1 Lectures: Organization, Reorientation, and Deviation from the Plan -- 5.3.2 The Mathematical Colloquium / Exercises / Seminar -- 5.4 THE KLEINIAN "FLOCK". 5.4.1 Post-Doctoral Mathematicians -- 5.4.2 Klein's Foreign Students in Leipzig -- 5.4.2.1 The First Frenchman and the First Briton -- 5.4.2.2 The First Americans -- 5.4.2.3 The Italians -- 5.4.2.4 Mathematicians from Switzerland and Austria-Hungary -- 5.4.2.5 Russian and Other Eastern European Contacts -- 5.5 FIELDS OF RESEARCH -- 5.5.1 Mathematical Physics / Physical Mathematics -- 5.5.1.1 Lamé's Function, Potential Theory, and Carl Neumann -- 5.5.1.2 On Riemann's Theory of Algebraic Functions and Their Integrals -- 5.5.2 Looking Toward Berlin -- 5.5.2.1 Gathering Sources -- 5.5.2.2 The Dirichlet Principle -- 5.5.2.3 Klein's Seminar on the Theory of Abelian Functions (1882) -- 5.5.2.4 Openness vs. Partiality -- 5.5.3 Looking Toward France -- 5.5.3.1 French Contributors to Mathematische Annalen -- 5.5.3.2 Klein's Correspondence with Poincaré -- 5.5.4 Three Fundamental Theorems -- 5.5.4.1 The Loop-Cut Theorem (Rückkehrschnitttheorem) -- 5.5.4.2 Theorem of the Limit-Circle (Grenzkreistheorem) -- 5.5.4.3 The (General) Fundamental Theorem -- 5.5.4.4 Remarks on the Proofs -- 5.5.5 The Polemic about and with Lazarus Fuchs -- 5.5.6 The Icosahedron Book -- 5.5.7 A Book on the Theory of Elliptic Modular Functions -- 5.5.7.1 Supplementing the Theory -- 5.5.7.2 Who Should Be the Editor? - Georg Pick -- 5.5.8 Hyperelliptic and Abelian Functions -- 5.6 FELIX KLEIN AND ALFRED ACKERMANN-TEUBNER -- 5.7 FELIX KLEIN IN LEIPZIG'S INTELLECTUAL COMMUNITIES -- 5.7.1 A Mathematicians' Circle -- 5.7.2 The Societas Jablonoviana -- 5.7.3 The Royal Saxon Society of Sciences in Leipzig -- 5.8 TURNING HIS BACK ON LEIPZIG -- 5.8.1 Weighing Offers from Oxford and Johns Hopkins -- 5.8.2 The Physicist Eduard Riecke Arranges Klein's Move to Göttingen -- 5.8.3 The Appointment of Sophus Lie as Klein's Successor - and the Reactions. 6 THE START OF KLEIN'S PROFESSORSHIP IN GÖTTINGEN, 1886-1892 -- 6.1 FAMILY CONSIDERATIONS -- 6.2 DEALING WITH COLLEAGUES, TEACHING, AND CURRICULUM PLANNING -- 6.2.1 The Relationship Between Klein and Schwarz -- 6.2.2 The Göttingen Privatdozenten Hölder and Schoenflies -- 6.2.3 Klein's Teaching in Context -- 6.3 INDEPENDENT AND COLLABORATIVE RESEARCH -- 6.3.1 The Theory of Finite Groups of Linear Substitutions: The Theory of Solving Equations of Higher Degree -- 6.3.2 Hyperelliptic and Abelian Functions -- 6.3.3 The Theory of Elliptic Modular Functions (Monograph) -- 6.3.4 The Theory of Automorphic Functions (Monograph) -- 6.3.5 The Theory of Lamé Functions and Potential Theory -- 6.3.6 Refreshing His Work on Geometry -- 6.3.7 Visions: Internationality, Crystallography, Hilbert's Invariant Theory -- 6.3.7.1 An Eye on Developments Abroad -- 6.3.7.2 Arthur Schoenflies and Crystallography -- 6.3.7.3 Felix Klein and Hilbert's Invariant Theory -- 6.4 BRINGING PEOPLE AND INSTITUTIONS TOGETHER -- 6.4.1 The Professorium in Göttingen -- 6.4.2 A Proposal to Relocate the Technische Hochschule in Hanover to Göttingen -- 6.4.3 The Idea of Reorganizing the Göttingen Society of Sciences -- 6.4.4 Felix Klein and the Founding of the German Mathematical Society -- 6.5 THE PIVOTAL YEAR OF 1892 -- 6.5.1 Refilling Vacant Professorships in Prussia -- 6.5.1.1 Berlin, Breslau, and Klein's System for Classifying Styles of Thought -- 6.5.1.2 Hiring a Successor for H.A. Schwarz in Göttingen -- 6.5.2 A Job Offer from the University of Munich and the Consequences -- 7 SETTING THE COURSE, 1892/93-1895 -- 7.1 KLEIN'S ASSISTANTS AND HIS PRINCIPLES FOR CHOOSING THEM -- 7.2 THE GÖTTINGEN MATHEMATICAL SOCIETY -- 7.3 TURNING TO SECONDARY SCHOOL TEACHERS -- 7.4 A TRIP TO THE UNITED STATES -- 7.4.1 The World's Fair in Chicago and the Mathematical Congress. 7.4.2 Twelve Lectures by Klein: The Evanston Colloquium -- 7.4.3 Traveling from University to University -- 7.4.4 Repercussions -- 7.5 THE BEGINNINGS OF WOMEN STUDYING MATHEMATICS -- 7.6 ACTUARIAL MATHEMATICS AS A COURSE OF STUDY -- 7.7 CONTACTING ENGINEERS AND INDUSTRIALISTS -- 7.8 THE ENCYKLOPÄDIE PROJECT -- 7.9 KLEIN SUCCEEDS IN HIRING DAVID HILBERT -- 8 THE FRUITS OF KLEIN'S EFFORTS, 1895-1913 -- 8.1 A CENTER FOR MATHEMATICS, NATURAL SCIENCES, AND TECHNOLOGY -- 8.1.1 The Göttingen Association -- 8.1.2 Applied Mathematics in the New Examination Regulations and the Consequences -- 8.1.3 Aeronautical Research -- 8.2 MAINTAINING HIS SCIENTIFIC REPUTATION -- 8.2.1 Automorphic Functions (Monograph) -- 8.2.2 Geometric Number Theory -- 8.2.3 A Monograph on the Theory of the Spinning Top -- 8.2.4 Inspiring Ideas in the Fields of Mathematical Physics and Technology -- 8.2.4.1 Hydrodynamics / Hydraulics -- 8.2.4.2 Statics -- 8.2.4.3 The Theory of Friction -- 8.2.4.4 The Special Theory of Relativity -- 8.3 PROGRAM: THE HISTORY, PHILOSOPHY, PSYCHOLOGY, ANDINSTRUCTION OF MATHEMATICS -- 8.3.1 The History of Mathematics -- 8.3.2 Philosophical Aspects -- 8.3.3 Psychological-Epistemological Classifications -- 8.3.4 The "Kleinian" Educational Reform -- 8.3.4.1 Suggestions for Reform -- 8.3.4.2 A Polemic about the Teaching of Analysis at the University -- 8.4 INTERNATIONAL SCIENTIFIC COOPERATION -- 8.5 EARLY RETIREMENT AND HONORS -- 8.5.1 Recovering and Working in the Hahnenklee Sanatorium -- 8.5.2 Max Liebermann's Portrait of Felix Klein -- 8.5.3 The Successors to Klein's Professorship -- 9 THE FIRST WORLD WAR AND THE POSTWAR PERIOD -- 9.1 POLITICAL ACTIVITY DURING THE FIRST WORLD WAR -- 9.1.1 The Vows of Allegiance of German Professors to Militarism -- 9.1.2 A Plea for Studying Abroad. 9.2 HISTORY OF MATHEMATICS, THE "CRY FOR HELP OF MODERNPHYSICS," AND EDITION PROJECTS. |
Record Nr. | UNINA-9910488722403321 |
Tobies Renate
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov |
Autore | Burns Robert G. |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (401 pages) |
Disciplina | 510.922 |
Soggetto topico |
Mathematicians
Matemàtics |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-030-96651-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996479368103316 |
Burns Robert G.
![]() |
||
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov |
Autore | Burns Robert G. |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (401 pages) |
Disciplina | 510.922 |
Soggetto topico |
Mathematicians
Matemàtics |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN | 3-030-96651-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910574854303321 |
Burns Robert G.
![]() |
||
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Kurt Gödel [[electronic resource] ] : The Genius of Metamathematics / / by William D. Brewer |
Autore | Brewer William D (William Dean) |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (500 pages) |
Disciplina | 511.30924 |
Collana | Springer Biographies |
Soggetto topico |
Mathematics
History Mathematical logic Physicists - Biography Astronomers - Biography Science - History Philosophy - History History of Mathematical Sciences Mathematical Logic and Foundations Biographies of Physicists and Astronomers History of Science History of Philosophy Matemàtics |
Soggetto genere / forma |
Biografies
Llibres electrònics |
ISBN |
9783031113093
9783031113086 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Prologue -- La Belle Époque in Brünn. Beginnings -- School Days. A New Nation -- Moving to the Capital. Student Life in 1920’s Vienna -- The Wiener Kreis and the Mathematical Colloquium. Graduate work -- Private Life in Vienna -- Gödel’s Doctoral Thesis. The Incompleteness Theorems -- The Mathematician in Vienna. Habilitation -- Matters of Health -- A Sojourn Abroad: 1933/34 – Princeton -- Back to Vienna. The First Breakdown -- ‘Commuting’ between Vienna and Princeton – The Late 1930’s. Marriage -- The Continuum Hypothesis -- Professional Uncertainty. A Long Journey Eastwards -- Princeton and the IAS – Philosophy, Einstein and von Neumann. A Bizarre Birthday Present: Gödel‘s Universe -- Reception, Recognition, Honors. Einstein’s Loss. The Professor at Princeton -- The 1960’s: Fame and Seclusion -- Later Years. Philosophy, Cosmology, Logic, Computability -- Gödel’s Legacy – The Lessons of an Unusual Life -- Epilogue. . |
Record Nr. | UNISA-996490347303316 |
Brewer William D (William Dean)
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|