top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE) / / Institute of Electrical and Electronics Engineers
2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE, , 2016
Descrizione fisica 1 online resource : illustrations
Disciplina 943.005
Soggetto topico Data mining
ISBN 1-5090-5785-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering
Record Nr. UNINA-9910172646903321
Piscataway, New Jersey : , : IEEE, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE) / / Institute of Electrical and Electronics Engineers
2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE, , 2016
Descrizione fisica 1 online resource : illustrations
Disciplina 943.005
Soggetto topico Data mining
ISBN 1-5090-5785-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering
Record Nr. UNISA-996279841403316
Piscataway, New Jersey : , : IEEE, , 2016
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part I / / edited by Xiaochun Yang [and seven others]
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part I / / edited by Xiaochun Yang [and seven others]
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (848 pages)
Disciplina 943.005
Collana Lecture Notes in Computer Science Series
Soggetto topico Data mining
ISBN 3-031-46661-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Time Series -- An Adaptive Data-Driven Imputation Model for Incomplete Event Series -- From Time Series to Multi-Modality: Classifying Multivariate Time Series via Both 1D and 2D Representations -- Exploring the Effectiveness of Positional Embedding on Transformer-based Architectures for Multivariate Time Series Classification -- Modeling of Repeated Measures for Time-to-Event Prediction -- A Method for Identifying the Timeliness of Manufacturing Data Based on Weighted Timeliness Graph -- STAD: Multivariate Time Series Anomaly Detection Based on Spatio-temporal Relationship -- Recommendation I -- Refined Node Type Graph Convolutional Network for Recommendation -- Multi-level Noise Filtering and Preference Propagation Enhanced Knowledge Graph Recommendation -- Enhancing Knowledge-aware Recommendation with Contrastive Learning -- Knowledge-Rich Influence Propagation Recommendation Algorithm Based on Graph Attention Networks -- A Novel Variational Autoencoder with Multi-Position Latent Self-Attention and Actor-Critic for Recommendation -- Fair Re-ranking Recommendation Based on Debiased Multi-Graph Representations -- Information Extraction -- FastNER: Speeding Up Inferences for Named Entity Recognition Tasks -- CPMFA: A Character Pair-Based Method for Chinese Nested Named Entity Recognition -- STMC-GCN: A Span Tagging Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction -- Exploring the Design Space of Unsupervised Blocking with Pre-trained Language Models in Entity Resolution -- Joint Modeling of Local and Global Semantics for Contrastive Entity Disambiguation -- Fine-grained Review Analysis using BERT with Attention: A Categorical and Rating-based Approach -- Emotional Analysis -- Discovery of Emotion Implicit Causes in Products based on Commonsense Reasoning -- Multi-modal Multi-emotion Emotional Support Conversation -- Exploiting Pseudo Future Contexts for Emotion Recognition in Conversations -- Generating Enlightened Suggestions based on Mental State Evolution for Emotional Support Conversation -- Deep One-Class Fine-Tuning for Imbalanced Short Text Classification in Transfer Learning -- EmoKnow: Emotion- and Knowledge-oriented Model for COVID-19 Fake News Detection -- Popular Songs: The Sentiment Surrounding the Conversation -- Market Sentiment Analysis based on Social Media and Trading Volume for Asset Price Movement Prediction -- Data Mining -- Efficient mining of high utility co-location patterns based on a query strategy -- Point-level Label-free Segmentation Framework for 3D Point Cloud Semantic Mining -- CD-BNN: Causal Discovery with Bayesian Neural Network -- A Preference-based Indicator Selection Hyper-heuristic for Optimization Problems -- An Elastic Scalable Grouping for Stateful Operators in Stream Computing Systems -- Incremental natural gradient boosting for probabilistic regression -- Discovering Skyline Periodic Itemset Patterns in Transaction Sequences -- Double-optimized CS-BP Anomaly Prediction for Control Operation Data -- Bridging the Interpretability Gap in Coupled Neural Dynamical Models -- Multidimensional Adaptative kNN Over Tracking Outliers (Makoto) -- Traffic -- MANet: An End-to-End Multiple Attention Network for Extracting Roads around EHV Transmission Lines from High-Resolution Remote Sensing Images -- Deep Reinforcement Learning for Solving the Trip Planning Query -- MDCN: Multi-Scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection -- Identifying Critical Congested Roads based on Traffic Flow-Aware Road Network Embedding -- A Cross-Region-based Framework for Supporting Car-Sharing -- Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks for Traffic Forecasting -- Transformer Based Driving Behavior Safety Prediction For New Energy Vehicles -- Graph Convolution Recurrent Denoising Diffusion Model for Multivariate Probabilistic Temporal Forecasting -- A Bottom-Up Sampling Strategy for Reconstructing Geospatial Data from Ultra Sparse Inputs -- Recommendation II -- Feature Representation Enhancing by Context Sensitive Information in CTR Prediction -- ProtoMix: Learnable Data Augmentation on Few-shot Features with Vector Quantization in CTR Prediction -- When Alignment Makes a Difference: A Content-Based Variational Model for Cold-Start CTR Prediction -- Dual-Ganularity Contrastive Learning for Session-based Recommendation -- Efficient Graph Collaborative Filtering with Multi-layer Output-enhanced Contrastive Learning -- Influence Maximization with Tag Revisited: Exploiting the Bi-Submodularity of the Tag-Based Influence Function -- Multi-Interest Aware Graph Convolution Network for Social Recommendation -- Enhancing Multimedia Recommendation through Item-Item Semantic Denoising and Global Preference Awareness -- Resident-based Store Recommendation Model for Community Commercial Planning.c.
Record Nr. UNISA-996565871103316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part IV / / edited by Xiaochun Yang [and seven others]
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part IV / / edited by Xiaochun Yang [and seven others]
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (717 pages)
Disciplina 943.005
Collana Lecture Notes in Computer Science Series
Soggetto topico Data mining
ISBN 3-031-46674-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning -- TeaE: an Efficient Method for Improving the Precision of Teaching Evaluation -- Graph Fusion Multimodal Named Entity Recognition Based on Auxiliary Relation Enhancement -- Sentence-level Event Detection without Triggers via Prompt Learning and Machine Reading Comprehension -- Multi-grained Logical Graph Network for Reasoning-based Machine Reading Comprehension -- Adaptive Prototype Learning with Common and Discriminative Features for Few-shot Relation Extraction -- Fine-grained Knowledge Enhancement for Empathetic Dialogue Generation -- Implicit Sentiment Extraction using Structure Generation with Sentiment Instructor Prompt Template -- SE-Prompt: Exploring Semantic Enhancement with Prompt Tuning for Relation Extraction -- Self-supervised Multi-view Clustering Framework with Graph Filtering and Contrast Fusion -- Semantic Selection and Multi-view Alignment for Image-Text Retrieval -- Voice Conversion with Denoising Diffusion Probabilistic GAN Models -- Symbolic & Acoustic: Multi-domain Music Emotion Modeling for Instrumental Music -- Document-level Relation Extraction with Relational Reasoning and Heterogeneous Graph Neural Networks -- A Chinese Named Entity Recognition Method based on Textual Information Perception Fusion -- Aspect-Based Sentiment Analysis via BERT and Multi-Scale CBAM -- A novel adaptive distribution distance-based feature selection method for video traffic identification -- SVIM: a Skeleton-based View-invariant Method for Online Gesture Recognition -- A Unified Information Diffusion Prediction Model based on Multi-task Learning -- Learning Knowledge Representation with Entity Concept Information -- Domain Adaptive Pre-trained Model for Mushroom Image Classification -- Training Noise Robust Deep Neural Networks with Self-supervised Learning -- Path integration enhanced graph attention network -- Graph Contrastive Learning with Hybrid Noise Augmentation for Recommendation -- User-Oriented Interest Representation on Knowledge Graph for Long-Tail Recommendation -- Multi-Self-Supervised Light Graph Convolution Network for Social Recommendation -- A Poisoning Attack Based on Variant Generative Adversarial Networks in Recommender Systems -- Label Correlation guided Feature Selection for Multi-label Learning -- Iterative Encode-and-Decode Graph Neural Network -- Community Detection in Temporal Biological Metabolic Networks based on Semi-NMF Method with Node Similarity Fusion -- UKGAT: Uncertain Knowledge Graph Embedding Enriched KGAT for Recommendation -- Knowledge Graph Link Prediction Model Based on Attention Graph Convolutional Network -- Knowledge Graph Embedding with Relation Rotation and Entity Adjustment by Quaternions -- Towards time-variant-aware Link Prediction in Dynamic Graph through Self-supervised Learning -- Adaptive Heterogeneous graph Contrastive clustering with Multi-Similarity -- Multi-Teacher Local Semantic Distillation from Graph Neural Networks -- AutoAM: An End-To-End Neural Model for Automatic and Universal Argument Mining -- Rethinking the Evaluation of Deep Neural Network Robustness -- A Visual Interpretation-Based Self-Improved Classification System Using Virtual Adversarial Training -- TSCMR:Two-Stage Cross-Modal Retrieval -- Effi-Emp: An AI based approach towards positive empathic expressions -- Industry Track Papers -- Research on Image Segmentation Algorithm Based on Level Set. Ping Wu ((AVIC Shenyang Aircraft Design & Research Institute) -- Predicting learners’ performance using MOOC clickstream -- A Fine-grained Verification Method for Blockchain Data Based on Merkle Path Sharding -- A Privacy Preserving Method for Trajectory Data Publishing Based on Geo-indistinguishability -- HA-CMNet: A Driver CTR Model for Vehicle-Cargo Matching in O2O Platform -- A Hybrid Intelligent Model SFAHP-ANFIS-PSO for Technical Capability Evaluation of Manufacturing Enterprises -- A method for data exchange and management in the military industry field. Ping Wu ((AVIC Shenyang Aircraft Design & Research Institute) -- Multi-region Quality Assessment based on Spatial-Temporal Community Detection from Computed Tomography Images.
Record Nr. UNISA-996565871503316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21–23, 2023, Proceedings, Part I / / edited by Xiaochun Yang, Heru Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21–23, 2023, Proceedings, Part I / / edited by Xiaochun Yang, Heru Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (848 pages)
Disciplina 943.005
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Computer vision
Computer systems
Education - Data processing
Application software
Artificial intelligence
Data Mining and Knowledge Discovery
Computer Vision
Computer System Implementation
Computers and Education
Computer and Information Systems Applications
Artificial Intelligence
ISBN 3-031-46661-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Time Series -- An Adaptive Data-Driven Imputation Model for Incomplete Event Series -- From Time Series to Multi-Modality: Classifying Multivariate Time Series via Both 1D and 2D Representations -- Exploring the Effectiveness of Positional Embedding on Transformer-based Architectures for Multivariate Time Series Classification -- Modeling of Repeated Measures for Time-to-Event Prediction -- A Method for Identifying the Timeliness of Manufacturing Data Based on Weighted Timeliness Graph -- STAD: Multivariate Time Series Anomaly Detection Based on Spatio-temporal Relationship -- Recommendation I -- Refined Node Type Graph Convolutional Network for Recommendation -- Multi-level Noise Filtering and Preference Propagation Enhanced Knowledge Graph Recommendation -- Enhancing Knowledge-aware Recommendation with Contrastive Learning -- Knowledge-Rich Influence Propagation Recommendation Algorithm Based on Graph Attention Networks -- A Novel Variational Autoencoder with Multi-Position Latent Self-Attention and Actor-Critic for Recommendation -- Fair Re-ranking Recommendation Based on Debiased Multi-Graph Representations -- Information Extraction -- FastNER: Speeding Up Inferences for Named Entity Recognition Tasks -- CPMFA: A Character Pair-Based Method for Chinese Nested Named Entity Recognition -- STMC-GCN: A Span Tagging Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction -- Exploring the Design Space of Unsupervised Blocking with Pre-trained Language Models in Entity Resolution -- Joint Modeling of Local and Global Semantics for Contrastive Entity Disambiguation -- Fine-grained Review Analysis using BERT with Attention: A Categorical and Rating-based Approach -- Emotional Analysis -- Discovery of Emotion Implicit Causes in Products based on Commonsense Reasoning -- Multi-modal Multi-emotion Emotional Support Conversation -- Exploiting Pseudo Future Contexts for Emotion Recognition in Conversations -- Generating Enlightened Suggestions based on Mental State Evolution for Emotional Support Conversation -- Deep One-Class Fine-Tuning for Imbalanced Short Text Classification in Transfer Learning -- EmoKnow: Emotion- and Knowledge-oriented Model for COVID-19 Fake News Detection -- Popular Songs: The Sentiment Surrounding the Conversation -- Market Sentiment Analysis based on Social Media and Trading Volume for Asset Price Movement Prediction -- Data Mining -- Efficient mining of high utility co-location patterns based on a query strategy -- Point-level Label-free Segmentation Framework for 3D Point Cloud Semantic Mining -- CD-BNN: Causal Discovery with Bayesian Neural Network -- A Preference-based Indicator Selection Hyper-heuristic for Optimization Problems -- An Elastic Scalable Grouping for Stateful Operators in Stream Computing Systems -- Incremental natural gradient boosting for probabilistic regression -- Discovering Skyline Periodic Itemset Patterns in Transaction Sequences -- Double-optimized CS-BP Anomaly Prediction for Control Operation Data -- Bridging the Interpretability Gap in Coupled Neural Dynamical Models -- Multidimensional Adaptative kNN Over Tracking Outliers (Makoto) -- Traffic -- MANet: An End-to-End Multiple Attention Network for Extracting Roads around EHV Transmission Lines from High-Resolution Remote Sensing Images -- Deep Reinforcement Learning for Solving the Trip Planning Query -- MDCN: Multi-Scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection -- Identifying Critical Congested Roads based on Traffic Flow-Aware Road Network Embedding -- A Cross-Region-based Framework for Supporting Car-Sharing -- Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks for Traffic Forecasting -- Transformer Based Driving Behavior Safety Prediction For New Energy Vehicles -- Graph Convolution Recurrent Denoising Diffusion Model for Multivariate Probabilistic Temporal Forecasting -- A Bottom-Up Sampling Strategy for Reconstructing Geospatial Data from Ultra Sparse Inputs -- Recommendation II -- Feature Representation Enhancing by Context Sensitive Information in CTR Prediction -- ProtoMix: Learnable Data Augmentation on Few-shot Features with Vector Quantization in CTR Prediction -- When Alignment Makes a Difference: A Content-Based Variational Model for Cold-Start CTR Prediction -- Dual-Ganularity Contrastive Learning for Session-based Recommendation -- Efficient Graph Collaborative Filtering with Multi-layer Output-enhanced Contrastive Learning -- Influence Maximization with Tag Revisited: Exploiting the Bi-Submodularity of the Tag-Based Influence Function -- Multi-Interest Aware Graph Convolution Network for Social Recommendation -- Enhancing MultimediaRecommendation through Item-Item Semantic Denoising and Global Preference Awareness -- Resident-based Store Recommendation Model for Community Commercial Planning.c.
Record Nr. UNINA-9910760274703321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21–23, 2023, Proceedings, Part IV / / edited by Xiaochun Yang, Heru Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
Advanced Data Mining and Applications : 19th International Conference, ADMA 2023, Shenyang, China, August 21–23, 2023, Proceedings, Part IV / / edited by Xiaochun Yang, Heru Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (717 pages)
Disciplina 943.005
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Computer vision
Computer systems
Education - Data processing
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer Vision
Computer System Implementation
Computers and Education
Computer and Information Systems Applications
ISBN 3-031-46674-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning -- TeaE: an Efficient Method for Improving the Precision of Teaching Evaluation -- Graph Fusion Multimodal Named Entity Recognition Based on Auxiliary Relation Enhancement -- Sentence-level Event Detection without Triggers via Prompt Learning and Machine Reading Comprehension -- Multi-grained Logical Graph Network for Reasoning-based Machine Reading Comprehension -- Adaptive Prototype Learning with Common and Discriminative Features for Few-shot Relation Extraction -- Fine-grained Knowledge Enhancement for Empathetic Dialogue Generation -- Implicit Sentiment Extraction using Structure Generation with Sentiment Instructor Prompt Template -- SE-Prompt: Exploring Semantic Enhancement with Prompt Tuning for Relation Extraction -- Self-supervised Multi-view Clustering Framework with Graph Filtering and Contrast Fusion -- Semantic Selection and Multi-view Alignment for Image-Text Retrieval -- Voice Conversion with Denoising Diffusion Probabilistic GAN Models -- Symbolic & Acoustic: Multi-domain Music Emotion Modeling for Instrumental Music -- Document-level Relation Extraction with Relational Reasoning and Heterogeneous Graph Neural Networks -- A Chinese Named Entity Recognition Method based on Textual Information Perception Fusion -- Aspect-Based Sentiment Analysis via BERT and Multi-Scale CBAM -- A novel adaptive distribution distance-based feature selection method for video traffic identification -- SVIM: a Skeleton-based View-invariant Method for Online Gesture Recognition -- A Unified Information Diffusion Prediction Model based on Multi-task Learning -- Learning Knowledge Representation with Entity Concept Information -- Domain Adaptive Pre-trained Model for Mushroom Image Classification -- Training Noise Robust Deep Neural Networks with Self-supervised Learning -- Path integration enhanced graph attention network -- Graph Contrastive Learning with HybridNoise Augmentation for Recommendation -- User-Oriented Interest Representation on Knowledge Graph for Long-Tail Recommendation -- Multi-Self-Supervised Light Graph Convolution Network for Social Recommendation -- A Poisoning Attack Based on Variant Generative Adversarial Networks in Recommender Systems -- Label Correlation guided Feature Selection for Multi-label Learning -- Iterative Encode-and-Decode Graph Neural Network -- Community Detection in Temporal Biological Metabolic Networks based on Semi-NMF Method with Node Similarity Fusion -- UKGAT: Uncertain Knowledge Graph Embedding Enriched KGAT for Recommendation -- Knowledge Graph Link Prediction Model Based on Attention Graph Convolutional Network -- Knowledge Graph Embedding with Relation Rotation and Entity Adjustment by Quaternions -- Towards time-variant-aware Link Prediction in Dynamic Graph through Self-supervised Learning -- Adaptive Heterogeneous graph Contrastive clustering with Multi-Similarity -- Multi-Teacher Local Semantic Distillation from Graph Neural Networks -- AutoAM: An End-To-End Neural Model for Automatic and Universal Argument Mining -- Rethinking the Evaluation of Deep Neural Network Robustness -- A Visual Interpretation-Based Self-Improved Classification System Using Virtual Adversarial Training -- TSCMR:Two-Stage Cross-Modal Retrieval -- Effi-Emp: An AI based approach towards positive empathic expressions -- Industry Track Papers -- Research on Image Segmentation Algorithm Based on Level Set. Ping Wu ((AVIC Shenyang Aircraft Design & Research Institute) -- Predicting learners’ performance using MOOC clickstream -- A Fine-grained Verification Method for Blockchain Data Based on Merkle Path Sharding -- A Privacy Preserving Method for Trajectory Data Publishing Based on Geo-indistinguishability -- HA-CMNet: A Driver CTR Model for Vehicle-Cargo Matching in O2O Platform -- A Hybrid Intelligent Model SFAHP-ANFIS-PSO for Technical Capability Evaluation of Manufacturing Enterprises -- A method for data exchange and management in the military industry field. Ping Wu ((AVIC Shenyang Aircraft Design & Research Institute) -- Multi-region Quality Assessment based on Spatial-Temporal Community Detection from Computed Tomography Images.
Record Nr. UNINA-9910760287603321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced data mining and applications : 18th International Conference, ADMA 2022, Brisbane, QLD, Australia, November 28-30, 2022, proceedings / / edited by Weitong Chen, [and three others]
Advanced data mining and applications : 18th International Conference, ADMA 2022, Brisbane, QLD, Australia, November 28-30, 2022, proceedings / / edited by Weitong Chen, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (552 pages)
Disciplina 943.005
Collana Lecture Notes in Computer Science
Soggetto topico Data mining
ISBN 3-031-22064-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Finance and Healthcare -- Application of Supplemental Sampling and Interpretable AI in Credit Scoring for Canadian Fintechs: Methods and Case Studies -- 1 Introduction -- 2 Supplementary Sampling -- 2.1 Notations -- 2.2 Theories -- 2.3 Sampling Strategies -- 3 Techniques of Credit Scoring -- 4 Empirical Studies -- 4.1 Data Source and Sample Facts -- 4.2 Model Development and Comparisons -- 4.3 Model Evaluation -- 5 Conclusion -- References -- A Deep Convolutional Autoencoder-Based Approach for Parkinson's Disease Diagnosis Through Speech Signals -- 1 Introduction -- 2 Related Works -- 3 Proposed Approach -- 3.1 Dataset -- 3.2 Deep Convolutional AutoEncoder (DCAE) -- 3.3 MultiLayer Perceptron (MLP) -- 4 Experimental Results -- 5 Conclusion -- References -- Mining the Potential Relationships Between Cancer Cases and Industrial Pollution Based on High-Influence Ordered-Pair Patterns -- 1 Introduction -- 2 High-Influence Ordered-Pair Pattern -- 3 Basic Algorithm for Mining HIOPPs -- 3.1 Property Analysis of HIOPP -- 3.2 Description of Basic Algorithm -- 4 Optimizing Algorithm for Mining HIOPPs -- 4.1 Feasibility of Participation Instances -- 4.2 Obtaining Participating Instances -- 5 Experiments -- 5.1 Effectiveness of Mining Results -- 5.2 Performance Evaluation -- 6 Conclusion -- References -- Finding Hidden Relationships Between Medical Concepts by Leveraging Metamap and Text Mining Techniques -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Data Collection and Analysis -- 4.1 Data Extraction from the Source -- 4.2 MetaMap Module - Processing Phase -- 4.3 MetaMap Module - Preparation Phase -- 4.4 Title and Abstract Fetching Module -- 4.5 Closed Discovery Module -- 5 System Evaluation -- 6 Result Evaluation -- 7 Conclusion and Future Work -- References.
Causality Discovery Based on Combined Causes and Multiple Causes in Drug-Drug Interaction -- 1 Introduction -- 2 Background -- 2.1 Combined Causes and Multiple Causes in DDI -- 2.2 Limitations of CBN -- 3 Proposed Method -- 4 Empirical Evaluation -- 5 Results and Discussions -- 6 Conclusion -- References -- An Integrated Medical Recommendation Mechanism Combining Promote Product Singular Value Decomposition and Knowledge Graph -- 1 Introduction -- 2 Proposed Methodology -- 2.1 Promote Product Singular Value Decomposition Algorithm -- 2.2 Knowledge Graph to Recommendation -- 3 Experiment -- 3.1 Environment and Dataset -- 3.2 Evaluation Metrics -- 3.3 Results and Analysis -- 4 Conclusion -- References -- Web and IoT Applications -- Joint Extraction of Entities and Relations in the News Domain -- 1 Introduction -- 2 Research Status -- 3 Methodology -- 3.1 Labeling Strategy for Central Entities -- 3.2 RoBERTa Presentation Layer -- 3.3 Improved BiLSTM* Layer -- 4 Experiment -- 4.1 Experimental Data and Experimental Environment -- 4.2 Evaluation Standard -- 4.3 Experimental Parameters -- 4.4 Experimental Design -- 4.5 Result Analysis -- 5 Conclusion -- References -- Event Detection from Web Data in Chinese Based on Bi-LSTM with Attention*-8pt -- 1 Introduction -- 2 Related Work -- 2.1 Pattern Matching Based Methods -- 2.2 Machine Learning Based Methods -- 3 ABiLSTM Model -- 3.1 Problem Formulation -- 3.2 Static Classification Model -- 3.3 Dynamic Model Maintenance -- 4 Experimental Evaluation -- 4.1 Dataset and Experimental Setup -- 4.2 Chinese Text Preprocessing -- 4.3 Sensitivity Analysis -- 4.4 Effectiveness Analysis -- 4.5 Dynamic Maintenance Comparison -- 5 Conclusion and Future Work -- References -- Sentiment Analysis of Tweets Using Deep Learning -- 1 Introduction -- 2 Related Work -- 2.1 Sentiment Analysis on Tweets.
2.2 Sentiment Analysis on Coronavirus Related Tweets -- 3 Data Collection and Pre-Processing -- 4 Methodology -- 4.1 Text Tokenization and Padding -- 4.2 Convolutional Neural Network Model (CNN) -- 4.3 Long Short-Term Memory (LSTM) -- 4.4 CNN-LSTM -- 4.5 Distiled Bidirectional Encoder Representation from Transformer (DistilBERT) -- 4.6 Stratified K-Fold Cross Validation -- 5 Experiments and Results -- 6 Conclusions -- References -- Cyber Attack Detection in IoT Networks with Small Samples: Implementation And Analysis -- 1 Introduction -- 2 Related Work -- 3 System Architecture -- 3.1 Network Topology -- 3.2 Attack Model -- 4 Threat Detection System -- 5 Modelling the Traffic Data and Evaluation -- 5.1 Results and Discussion -- 5.2 Supervised Methods -- 5.3 Unsupervised Methods -- 5.4 Comparison with Relatively Larger Dataset -- 6 Conclusion -- References -- SATB: A Testbed of IoT-Based Smart Agriculture Network for Dataset Generation -- 1 Introduction -- 2 Background and Related Work -- 2.1 Smart Agriculture -- 2.2 LoRaWAN -- 2.3 Related Work -- 3 SATB: A LoRaWAN SA Testbed -- 3.1 Components of SATB -- 3.2 Functionalities of SATB -- 4 A Case Study: Constructing an SA Dataset with SATB -- 4.1 Test Cases and Data Collection -- 4.2 Data Preprocessing -- 4.3 A Preliminary Study of the Dataset -- 5 Usage of the SATB Testbed -- 5.1 Development of Intrusion Detection Systems for SA -- 5.2 Preservation of Data Privacy and Integrity for SA -- 5.3 Development of Data-Driven Applications for SA -- 6 Conclusion -- References -- An Overview on Reducing Social Networks' Size -- 1 Introduction -- 2 Preliminaries -- 2.1 Problem Definition -- 2.2 Network Properties -- 3 Graph Sampling -- 3.1 Node Sampling -- 3.2 Edge Sampling -- 3.3 Traversal Based Sampling -- 4 Graph Coarsening -- 5 Recent Directions -- 6 Conclusion -- References.
AuCM: Course Map Data Analytics for Australian IT Programs in Higher Education -- 1 Introduction -- 2 Related Work -- 3 The AuCM Dataset -- 3.1 Data Scraping -- 3.2 Data Processing -- 4 Statistical Analysis of AuCM -- 4.1 Analysis of the Number of Courses -- 4.2 Analysis of Curriculum Design -- 4.3 Analysis of Core Curriculum -- 4.4 Analysis of Prerequisites -- 5 Concept Semantics in AuCM -- 5.1 Semantic Feature Extraction and Analysis -- 5.2 Concept Map Learning -- 6 Conclusion -- References -- Profit Maximization Using Social Networks in Two-Phase Setting -- 1 Introduction -- 2 Background and Problem Definition -- 3 Mathematical Model and Solution Methodologies -- 4 Experimental Evaluation -- 5 Conclusion and Future Direction -- References -- On-Device Application -- SESA: Fast Trajectory Compression Method Using Sub-trajectories Segmented by Stay Areas -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Extraction of Stay Area -- 3.2 Segmentation -- 3.3 SQUISH-E() -- 3.4 Integration -- 4 Experiment -- 4.1 Experimental Conditions -- 4.2 Experiment Results -- 4.3 Discussion -- 5 Conclusion and Future Work -- References -- Android Malware Detection Based on Stacking and Multi-feature Fusion -- 1 Introduction -- 2 Related Work -- 2.1 Features of Android Malware Detection -- 2.2 Feature Selection -- 2.3 Stacking Technique -- 3 Framework and Implementation of Android Malware -- 3.1 Feature Extraction and Preprocessing -- 3.2 Two-Level Feature Selection -- 3.3 Malware Detection Based on Stacking Structure -- 4 Experiments and Evaluations -- 4.1 Data Set and Experimental Environment -- 4.2 Experimental Process and Results -- 5 Conclusion -- References -- Influential Billboard Slot Selection Using Pruned Submodularity Graph -- 1 Introduction -- 2 Preliminaries and Problem Definition -- 3 Proposed Solution Approach -- 4 Experimental Evaluation.
4.1 Datasets Used -- 4.2 Experimental Setup -- 4.3 Algorithms Compared -- 4.4 Goals of the Experiments -- 4.5 Observations with Explanation -- 5 Conclusion and Future Research Directions -- References -- Quantifying Association Between Street-Level Urban Features and Crime Distribution Around Manhattan Subway Entrances -- 1 Introduction -- 2 Literature Review -- 2.1 Key Dimensions in Assessing Crimes Around Subway Stations -- 2.2 SVI, CV, and ML for Street Measures -- 3 Data and Methods -- 3.1 Hotspots of Crime Around Subway Stations in Manhattan -- 3.2 Analytical Framework -- 3.3 Data for Constructing Variables -- 4 Findings and Discussion -- 4.1 Regression Results -- 4.2 Urban Design Quality Matters -- 5 Conclusion -- References -- The Coherence and Divergence Between the Objective and Subjective Measurement of Street Perceptions for Shanghai -- 1 Introduction -- 2 Literature Review -- 3 Methods and Process -- 3.1 Analytical Framework -- 3.2 Site Investigation and Data Preparation -- 3.3 Quantifying Objective and Subjective Perception Scores -- 3.4 Coherence and Divergence of the Subjective and Objective Perceptions -- 3.5 Features that Cause Differences Between Objective and Subjective Measures -- 4 Results and Discussion -- 4.1 Spatial Mismatch Between Subjective and Objective Perceptions -- 4.2 Key Urban Features for Variances Between Two Models -- 5 Conclusion -- Appendix -- References -- Other Application -- A Comparative Study of Question Answering over Knowledge Bases -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setting -- 2.2 KBQA Approaches -- 2.3 Summary -- 3 Experimental Setup -- 4 Results -- 4.1 End-to-end Comparison -- 4.2 Running Time -- 4.3 Influence of Question Taxonomy -- 4.4 Effects of Quantity of Questions -- 5 Conclusion -- References.
A Deep Learning Framework for Removing Bias from Single-Photon Emission Computerized Tomography.
Record Nr. UNISA-996500062303316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 18th International Conference, ADMA 2022, Brisbane, QLD, Australia, November 28–30, 2022, Proceedings, Part I / / edited by Weitong Chen, Lina Yao, Taotao Cai, Shirui Pan, Tao Shen, Xue Li
Advanced Data Mining and Applications : 18th International Conference, ADMA 2022, Brisbane, QLD, Australia, November 28–30, 2022, Proceedings, Part I / / edited by Weitong Chen, Lina Yao, Taotao Cai, Shirui Pan, Tao Shen, Xue Li
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (552 pages)
Disciplina 943.005
006.312
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Database management
Data mining
Social sciences - Data processing
Data structures (Computer science)
Information theory
Artificial Intelligence
Database Management
Data Mining and Knowledge Discovery
Computer Application in Social and Behavioral Sciences
Data Structures and Information Theory
ISBN 9783031220647
3031220641
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Finance and Healthcare -- Application of Supplemental Sampling and Interpretable AI in Credit Scoring for Canadian Fintechs: Methods and Case Studies -- A Deep Convolutional Autoencoder-based Approach for Parkinson's Disease Diagnosis Through Speech Signals -- Mining the Potential Relationships Between Cancer Cases and Industrial Pollution Based on High-influence Ordered-pair Patterns -- Finding Hidden Relationships Between Medical Concepts By Leveraging Metamap And Text Mining Techniques -- Causality Discovery Based on Combined Causes and Multiple Causes in Drug-drug Interaction -- An Integrated Medical Recommendation Mechanism Combining Promote Product Singular Value Decomposition and Knowledge Graph -- Web and IoT Applications -- Joint Extraction of Entities and Relations in The News Domain -- Event Detection From Web Data in Chinese Based on Bi-LSTM with Attention -- Sentiment Analysis of Tweets Using Deep Learning -- Cyber Attack Detection in IoT Networks with Small Samples: Implementation and Analysis -- SATB: A Testbed of IoT-based Smart Agriculture Network for Dataset Generation -- An Overview on Reducing Social Networks' Size -- AuCM: Course Map Data Analytics for Australian IT Programs in Higher Education -- Profit Maximization using Social Networks in Two-Phase Setting -- On-device Application -- SESA: Fast Trajectory Compression Method Using Sub-trajectories Segmented by Stay Areas -- Android Malware Detection Based on Stacking and Multi-feature Fusion -- In uential Billboard Slot Selection using Pruned Submodularity Graph -- Quantifying Association Between Street-Level Urban Features and Crime Distribution Around Manhattan Subway Entrances -- The Coherence and Divergence Between the Objective and Subjective Measurements of Street Perceptions for Shanghai -- Other Applications -- A Comparative Study of Question Answering over Knowledge Bases -- A Deep Learning Framework for Removing Bias from Single-Photon Emission Computerized Tomography -- Popularity Forecasting for Emerging Research Topics at its Early Stage of Evolution -- Positive Unlabeled Learning by Sample Selection and Prototype Refinement -- Handling missing data with Markov boundary -- Pattern Mining -- An Efficient Method for outlying Aspect Mining based on Genetic Algorithm -- Effective Mining of Contrast Hybrid Patterns from Nominal-numerical Mixed Data -- TPFL: Test Input Prioritization for Deep Neural Networks Based on Fault Localization -- Mining Maximal Sub-prevalent Co-location Patterns Based on k-hop -- An Association Rule Mining-Based Framework for the Discovery of Anomalous Behavioral Patterns -- Mining E-closed High Utility Co-location Patterns From Spatial Data -- Graph Mining -- Implementation and Analysis of Centroid Displacement based k-Nearest Neighbors -- EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain -- Deterministic Graph-Walking Program Mining -- A Benchmarking Evaluation of Graph Neural Networks on Traffic Speed Prediction -- Multi-view Gated Graph Convolutional Network for Aspect-Level Sentiment Classification -- Decentralized Graph Processing for Reachability Queries -- Being Automated or Not? Risk Identification of Occupations with Graph Neural Networks.
Record Nr. UNINA-9910632486403321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advancements in smart computing and information security : first international conference, ASCIS 2022, Rajkot, India, November 24-26, 2022, revised selected papers, part I / / edited by Sridaran Rajagopal, Parvez Faruki, Kalpesh Popat
Advancements in smart computing and information security : first international conference, ASCIS 2022, Rajkot, India, November 24-26, 2022, revised selected papers, part I / / edited by Sridaran Rajagopal, Parvez Faruki, Kalpesh Popat
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (482 pages)
Disciplina 943.005
Collana Communications in Computer and Information Science
Soggetto topico Electronic data processing
Punched card systems
ISBN 3-031-23092-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Abstracts of Keynotes -- Post-pandemic Applications of AI and Machine Learning -- Smart and Soft Computing Methods for Prioritizing Software Requirements in Large-Scale Software Projects -- Your Readiness for Industry 4.0 -- Securing NexGen Automotives - Threats and Trends -- Cyber Attacks Classification and Attack Handling Methods Using Machine Learning Methods -- The Internet of Things (IoT) Ecosystem Revolution in the World of Global Sports -- Orchestration of Containers: Role of Artificial Intelligence -- Enterprise Cybersecurity Strategies in the Cloud -- Contents - Part I -- Contents - Part II -- Artificial Intelligence -- Galaxy Classification Using Deep Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Dataset Collection -- 3.2 Proposed Deep Galaxies CNN Model -- 3.3 Overview of Algorithms -- 4 Comparative Results -- 4.1 Model Accuracy -- 5 Conclusion and Future Scope -- References -- Word Sense Disambiguation for Hindi Language Using Neural Network -- 1 Introduction -- 2 Related Work -- 2.1 Background -- 2.2 Variants of Word Sense Disambiguation Work -- 2.3 Existing Approaches for Disambiguation -- 3 Proposed Approach for WSD -- 3.1 Architecture of the Proposed WSD Model -- 3.2 Implementation Details -- 4 Result Discussion -- 5 Conclusion and Future Directions -- References -- Social Media Addiction: Analysis on Impact of Self-esteem and Recommending Methods to Reduce Addiction -- 1 Introduction -- 2 Related Work -- 3 Measures -- 3.1 Bergen Social Media Addiction Scale (BSMAS) [5] -- 3.2 Rosenberg Self-esteem Scale (RSES) [5] -- 3.3 Recommendation Methods [14, 15] -- 3.4 Dataset Collection 1 -- 3.5 Dataset Collection 2 -- 4 Proposed Methodology -- 4.1 Statistical Analysis -- 4.2 Recommendation System -- 5 Results and Discussion -- 5.1 Statistical Analysis.
5.2 Recommendation System -- 6 Conclusion -- References -- A Combined Method for Document Image Enhancement Using Image Smoothing, Gray-Level Reduction and Thresholding -- 1 Introduction -- 2 Types of Noises -- 2.1 Speckle Noise -- 2.2 Gaussian Noise -- 2.3 Salt and Pepper Noise -- 3 Proposed Work for Document Image Enhancement -- 3.1 Edge Preserving Image Smoothing -- 3.2 Gray Level Reduction -- 3.3 Image Thresholding Using Otsu's Method -- 4 Experimentation and Results -- 5 Conclusions and Future Work -- References -- A Comparative Assessment of Deep Learning Approaches for Opinion Mining -- 1 Introduction -- 2 Literature Review -- 3 Tools for Opinion Mining -- 4 Deep Learning Techniques -- 4.1 Convolutional Neural Network (CNN) -- 4.2 Recurrent Neural Network (RNN) -- 4.3 Long Short Term Memory (LSTM) -- 4.4 Deep Neural Networks (DNN) -- 4.5 Deep Belief Networks (DBN) -- 4.6 Recursive Neural Network (RECNN) -- 4.7 Hybrid Neural Network -- 5 System Architecture -- 6 Advantages of Deep Learning -- 7 When to Use Deep Learning -- 8 Disadvantages of Deep Learning -- 9 Conclusion -- References -- Performance Enhancement in WSN Through Fuzzy C-Means Based Hybrid Clustering (FCMHC) -- 1 Introduction -- 2 Related Work -- 3 Network Model -- 3.1 Radio Model -- 3.2 Assumptions -- 4 Proposed Algorithm -- 4.1 Cluster Formation Phase -- 4.2 Cluster Head Selection Phase -- 4.3 Communication Phase -- 5 Analytical Evaluation of Performance -- 5.1 Performance Metrics -- 5.2 Simulation Parameters -- 5.3 Results and Discussion -- 6 Conclusion -- References -- A Review of Gait Analysis Based on Age and Gender Prediction -- 1 Introduction -- 2 Gait Analysis and Feature Extraction -- 2.1 Gait and Gait Cycle -- 2.2 Gait and Gait Cycle -- 2.3 Gait and Gait Cycle -- 2.4 Motivation and Application of GEI Motivation -- 3 Evolution Metric -- 4 Related Work.
5 Comparison and Summary of Related Research Work -- 6 Future Work -- 7 Limitations and Challenges -- 8 Conclusion -- References -- Handwritten Signature Verification Using Convolution Neural Network (CNN) -- 1 Introduction -- 1.1 About the Domain -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Converting Image to Binary -- 3.2 Noise Removal -- 3.3 Image Enlargement -- 4 Feature Extraction -- 5 Feature Selection -- 6 Classification -- 7 Conclusion and Future Work -- References -- Comparative Analysis of Energy Consumption in Text Processing Models -- 1 Introduction -- 2 Existing Approaches -- 3 Exploration of the Data-Set -- 3.1 Average Word Length -- 3.2 Average Character Length -- 3.3 Number of Comments -- 4 Modelling -- 4.1 Simple Machine Learning Model -- 4.2 DistilBERT Model -- 4.3 Conv1D Model -- 4.4 Gated Recurrence Unit - GRU Model -- 5 Results -- 6 Conclusion -- References -- Evolution Towards 6G Wireless Networks: A Resource Allocation Perspective with Deep Learning Approach - A Review -- 1 Introduction -- 1.1 6G Vision -- 1.2 Technical Objectives of 6G -- 2 Resource Allocation for 6G Wireless Networks -- 3 Summary of Deep Learning Algorithms Used for 6G Wireless Networks Resource Allocation -- 4 Conclusion and Future Scope -- Appendix -- References -- Automation of Rice Leaf Diseases Prediction Using Deep Learning Hybrid Model VVIR -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Results -- 5 Discussion -- References -- A Review Based on Machine Learning for Feature Selection and Feature Extraction -- 1 Introduction -- 2 Preliminaries -- 2.1 Feature Selection -- 2.2 Reducing the Dimensionality -- 3 Related Works -- 3.1 Feature Selection Approaches -- 3.2 Feature Extraction Approaches -- 4 Discussion -- 5 Conclusion -- References -- Automating Scorecard and Commentary Based on Umpire Gesture Recognition -- 1 Introduction.
2 Literature Survey -- 3 Methodology -- 3.1 Umpire Gestures -- 3.2 Dataset -- 3.3 Feature Extraction -- 3.4 Classification of Umpire Gestures -- 3.5 Scorecard Updating Feature -- 4 Results and Discussion -- 5 Conclusion -- References -- Rating YouTube Videos: An Improvised and Effective Approach -- 1 Introduction -- 2 Previous Work -- 3 Implementation -- 3.1 Comment Collection and Preprocessing -- 3.2 Sentiment Measure -- 3.3 Word Cloud -- 3.4 Video Rating -- 4 Performance Review of Proposed Approach -- 4.1 Major Application: Detection of Clickbait Videos -- 5 Limitations and Loopholes -- 6 Result -- 7 Conclusion -- 8 Future Work -- References -- Classification of Tweet on Disaster Management Using Random Forest -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Preprocessing -- 3.2 Training, Validation and Testing -- 3.3 Feature Extraction -- 3.4 Random Forest Classification -- 3.5 Location Extraction -- 4 Results and Discussions -- 5 Datasets -- 6 Experiment -- 7 Validation -- 8 Conclusions -- References -- Numerical Investigation of Dynamic Stress Distribution in a Railway Embankment Reinforced by Geogrid Based Weak Soil Formation Using Hybrid RNN-EHO -- 1 Introduction -- 2 Proposed Methodology -- 2.1 Model Clay Barrier's Compositional Characteristics -- 2.2 Geogrid -- 2.3 Measuring Subgrade Stiffness -- 2.4 Multi Objective Function -- 2.5 Improving Settlement-Based Geogrid using Hybrid RNN-EHO Technique -- 2.6 The Procedure of the EHO in Realizing the Learning of RNN -- 3 Results and Discussion -- 3.1 Uncertainty Analysis -- 4 Conclusion -- References -- Efficient Intrusion Detection and Classification Using Enhanced MLP Deep Learning Model -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 4 Results and Discussion -- 5 Conclusion -- References.
Classification of Medical Datasets Using Optimal Feature Selection Method with Multi-support Vector Machine -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 4 Results and Discussions -- 5 Conclusions -- References -- Predicting Students' Outcomes with Respect to Trust, Perception, and Usefulness of Their Instructors in Academic Help Seeking Using Fuzzy Logic Approach -- 1 Introduction -- 2 Literature Review -- 3 Proposed Work -- 4 Results and Discussions -- 5 Conclusion -- References -- Smart Computing -- Automatic Cotton Leaf Disease Classification and Detection by Convolutional Neural Network -- 1 Introduction -- 2 Literature Review -- 3 List of Cotton Diseases -- 4 Materials and Methods -- 4.1 Dataset and Data Augmentation -- 4.2 CNN Pre-trained Architectures -- 4.3 Classification by Proposed CNN -- 5 Results and Discussions of Research -- 5.1 Pre-trained Model -- 6 Conclusion -- References -- Analytical Review and Study on Emotion Recognition Strategies Using Multimodal Signals -- 1 Introduction -- 2 Literature Survey -- 2.1 Classification of Emotion Recognition Strategies -- 3 Research Gaps and Issues -- 4 Analysis and Discussion -- 4.1 Analysis with Respect to Publication years -- 4.2 Analysis on the Basis of Strategies -- 4.3 Analysis on the Basis of Implementation Tool -- 4.4 Analysis in Terms of Employed Datasets -- 4.5 Analysis on the Basis of Evaluation Measures -- 4.6 Analysis Using Evaluation Measures Values -- 5 Conclusion -- References -- An Image Performance Against Normal, Grayscale and Color Spaced Images -- 1 Introduction -- 2 Overview of Image Matching Techniques -- 2.1 SIFT -- 2.2 SURF -- 2.3 ORB -- 3 Experimental Results -- 3.1 L*A*B* Color Space -- 4 Conclusion -- References -- Study of X Ray Detection Using CNN in Machine Learning -- 1 Introduction -- 2 Literature Review -- 2.1 Methods.
3 Algorithm CNN Model Algorithm Model = Sequential().
Record Nr. UNISA-996508667303316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advancements in Smart Computing and Information Security : First International Conference, ASCIS 2022, Rajkot, India, November 24–26, 2022, Revised Selected Papers, Part I / / edited by Sridaran Rajagopal, Parvez Faruki, Kalpesh Popat
Advancements in Smart Computing and Information Security : First International Conference, ASCIS 2022, Rajkot, India, November 24–26, 2022, Revised Selected Papers, Part I / / edited by Sridaran Rajagopal, Parvez Faruki, Kalpesh Popat
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (482 pages)
Disciplina 943.005
006.3
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Application software
Computer engineering
Computer networks
Computers
Artificial Intelligence
Computer and Information Systems Applications
Computer Engineering and Networks
Computing Milieux
ISBN 9783031230929
3031230922
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Abstracts of Keynotes -- Post-pandemic Applications of AI and Machine Learning -- Smart and Soft Computing Methods for Prioritizing Software Requirements in Large-Scale Software Projects -- Your Readiness for Industry 4.0 -- Securing NexGen Automotives - Threats and Trends -- Cyber Attacks Classification and Attack Handling Methods Using Machine Learning Methods -- The Internet of Things (IoT) Ecosystem Revolution in the World of Global Sports -- Orchestration of Containers: Role of Artificial Intelligence -- Enterprise Cybersecurity Strategies in the Cloud -- Contents - Part I -- Contents - Part II -- Artificial Intelligence -- Galaxy Classification Using Deep Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Dataset Collection -- 3.2 Proposed Deep Galaxies CNN Model -- 3.3 Overview of Algorithms -- 4 Comparative Results -- 4.1 Model Accuracy -- 5 Conclusion and Future Scope -- References -- Word Sense Disambiguation for Hindi Language Using Neural Network -- 1 Introduction -- 2 Related Work -- 2.1 Background -- 2.2 Variants of Word Sense Disambiguation Work -- 2.3 Existing Approaches for Disambiguation -- 3 Proposed Approach for WSD -- 3.1 Architecture of the Proposed WSD Model -- 3.2 Implementation Details -- 4 Result Discussion -- 5 Conclusion and Future Directions -- References -- Social Media Addiction: Analysis on Impact of Self-esteem and Recommending Methods to Reduce Addiction -- 1 Introduction -- 2 Related Work -- 3 Measures -- 3.1 Bergen Social Media Addiction Scale (BSMAS) [5] -- 3.2 Rosenberg Self-esteem Scale (RSES) [5] -- 3.3 Recommendation Methods [14, 15] -- 3.4 Dataset Collection 1 -- 3.5 Dataset Collection 2 -- 4 Proposed Methodology -- 4.1 Statistical Analysis -- 4.2 Recommendation System -- 5 Results and Discussion -- 5.1 Statistical Analysis.
5.2 Recommendation System -- 6 Conclusion -- References -- A Combined Method for Document Image Enhancement Using Image Smoothing, Gray-Level Reduction and Thresholding -- 1 Introduction -- 2 Types of Noises -- 2.1 Speckle Noise -- 2.2 Gaussian Noise -- 2.3 Salt and Pepper Noise -- 3 Proposed Work for Document Image Enhancement -- 3.1 Edge Preserving Image Smoothing -- 3.2 Gray Level Reduction -- 3.3 Image Thresholding Using Otsu's Method -- 4 Experimentation and Results -- 5 Conclusions and Future Work -- References -- A Comparative Assessment of Deep Learning Approaches for Opinion Mining -- 1 Introduction -- 2 Literature Review -- 3 Tools for Opinion Mining -- 4 Deep Learning Techniques -- 4.1 Convolutional Neural Network (CNN) -- 4.2 Recurrent Neural Network (RNN) -- 4.3 Long Short Term Memory (LSTM) -- 4.4 Deep Neural Networks (DNN) -- 4.5 Deep Belief Networks (DBN) -- 4.6 Recursive Neural Network (RECNN) -- 4.7 Hybrid Neural Network -- 5 System Architecture -- 6 Advantages of Deep Learning -- 7 When to Use Deep Learning -- 8 Disadvantages of Deep Learning -- 9 Conclusion -- References -- Performance Enhancement in WSN Through Fuzzy C-Means Based Hybrid Clustering (FCMHC) -- 1 Introduction -- 2 Related Work -- 3 Network Model -- 3.1 Radio Model -- 3.2 Assumptions -- 4 Proposed Algorithm -- 4.1 Cluster Formation Phase -- 4.2 Cluster Head Selection Phase -- 4.3 Communication Phase -- 5 Analytical Evaluation of Performance -- 5.1 Performance Metrics -- 5.2 Simulation Parameters -- 5.3 Results and Discussion -- 6 Conclusion -- References -- A Review of Gait Analysis Based on Age and Gender Prediction -- 1 Introduction -- 2 Gait Analysis and Feature Extraction -- 2.1 Gait and Gait Cycle -- 2.2 Gait and Gait Cycle -- 2.3 Gait and Gait Cycle -- 2.4 Motivation and Application of GEI Motivation -- 3 Evolution Metric -- 4 Related Work.
5 Comparison and Summary of Related Research Work -- 6 Future Work -- 7 Limitations and Challenges -- 8 Conclusion -- References -- Handwritten Signature Verification Using Convolution Neural Network (CNN) -- 1 Introduction -- 1.1 About the Domain -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Converting Image to Binary -- 3.2 Noise Removal -- 3.3 Image Enlargement -- 4 Feature Extraction -- 5 Feature Selection -- 6 Classification -- 7 Conclusion and Future Work -- References -- Comparative Analysis of Energy Consumption in Text Processing Models -- 1 Introduction -- 2 Existing Approaches -- 3 Exploration of the Data-Set -- 3.1 Average Word Length -- 3.2 Average Character Length -- 3.3 Number of Comments -- 4 Modelling -- 4.1 Simple Machine Learning Model -- 4.2 DistilBERT Model -- 4.3 Conv1D Model -- 4.4 Gated Recurrence Unit - GRU Model -- 5 Results -- 6 Conclusion -- References -- Evolution Towards 6G Wireless Networks: A Resource Allocation Perspective with Deep Learning Approach - A Review -- 1 Introduction -- 1.1 6G Vision -- 1.2 Technical Objectives of 6G -- 2 Resource Allocation for 6G Wireless Networks -- 3 Summary of Deep Learning Algorithms Used for 6G Wireless Networks Resource Allocation -- 4 Conclusion and Future Scope -- Appendix -- References -- Automation of Rice Leaf Diseases Prediction Using Deep Learning Hybrid Model VVIR -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Results -- 5 Discussion -- References -- A Review Based on Machine Learning for Feature Selection and Feature Extraction -- 1 Introduction -- 2 Preliminaries -- 2.1 Feature Selection -- 2.2 Reducing the Dimensionality -- 3 Related Works -- 3.1 Feature Selection Approaches -- 3.2 Feature Extraction Approaches -- 4 Discussion -- 5 Conclusion -- References -- Automating Scorecard and Commentary Based on Umpire Gesture Recognition -- 1 Introduction.
2 Literature Survey -- 3 Methodology -- 3.1 Umpire Gestures -- 3.2 Dataset -- 3.3 Feature Extraction -- 3.4 Classification of Umpire Gestures -- 3.5 Scorecard Updating Feature -- 4 Results and Discussion -- 5 Conclusion -- References -- Rating YouTube Videos: An Improvised and Effective Approach -- 1 Introduction -- 2 Previous Work -- 3 Implementation -- 3.1 Comment Collection and Preprocessing -- 3.2 Sentiment Measure -- 3.3 Word Cloud -- 3.4 Video Rating -- 4 Performance Review of Proposed Approach -- 4.1 Major Application: Detection of Clickbait Videos -- 5 Limitations and Loopholes -- 6 Result -- 7 Conclusion -- 8 Future Work -- References -- Classification of Tweet on Disaster Management Using Random Forest -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Preprocessing -- 3.2 Training, Validation and Testing -- 3.3 Feature Extraction -- 3.4 Random Forest Classification -- 3.5 Location Extraction -- 4 Results and Discussions -- 5 Datasets -- 6 Experiment -- 7 Validation -- 8 Conclusions -- References -- Numerical Investigation of Dynamic Stress Distribution in a Railway Embankment Reinforced by Geogrid Based Weak Soil Formation Using Hybrid RNN-EHO -- 1 Introduction -- 2 Proposed Methodology -- 2.1 Model Clay Barrier's Compositional Characteristics -- 2.2 Geogrid -- 2.3 Measuring Subgrade Stiffness -- 2.4 Multi Objective Function -- 2.5 Improving Settlement-Based Geogrid using Hybrid RNN-EHO Technique -- 2.6 The Procedure of the EHO in Realizing the Learning of RNN -- 3 Results and Discussion -- 3.1 Uncertainty Analysis -- 4 Conclusion -- References -- Efficient Intrusion Detection and Classification Using Enhanced MLP Deep Learning Model -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 4 Results and Discussion -- 5 Conclusion -- References.
Classification of Medical Datasets Using Optimal Feature Selection Method with Multi-support Vector Machine -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 4 Results and Discussions -- 5 Conclusions -- References -- Predicting Students' Outcomes with Respect to Trust, Perception, and Usefulness of Their Instructors in Academic Help Seeking Using Fuzzy Logic Approach -- 1 Introduction -- 2 Literature Review -- 3 Proposed Work -- 4 Results and Discussions -- 5 Conclusion -- References -- Smart Computing -- Automatic Cotton Leaf Disease Classification and Detection by Convolutional Neural Network -- 1 Introduction -- 2 Literature Review -- 3 List of Cotton Diseases -- 4 Materials and Methods -- 4.1 Dataset and Data Augmentation -- 4.2 CNN Pre-trained Architectures -- 4.3 Classification by Proposed CNN -- 5 Results and Discussions of Research -- 5.1 Pre-trained Model -- 6 Conclusion -- References -- Analytical Review and Study on Emotion Recognition Strategies Using Multimodal Signals -- 1 Introduction -- 2 Literature Survey -- 2.1 Classification of Emotion Recognition Strategies -- 3 Research Gaps and Issues -- 4 Analysis and Discussion -- 4.1 Analysis with Respect to Publication years -- 4.2 Analysis on the Basis of Strategies -- 4.3 Analysis on the Basis of Implementation Tool -- 4.4 Analysis in Terms of Employed Datasets -- 4.5 Analysis on the Basis of Evaluation Measures -- 4.6 Analysis Using Evaluation Measures Values -- 5 Conclusion -- References -- An Image Performance Against Normal, Grayscale and Color Spaced Images -- 1 Introduction -- 2 Overview of Image Matching Techniques -- 2.1 SIFT -- 2.2 SURF -- 2.3 ORB -- 3 Experimental Results -- 3.1 L*A*B* Color Space -- 4 Conclusion -- References -- Study of X Ray Detection Using CNN in Machine Learning -- 1 Introduction -- 2 Literature Review -- 2.1 Methods.
3 Algorithm CNN Model Algorithm Model = Sequential().
Record Nr. UNINA-9910644261503321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui