Geographical & environmental modelling
| Geographical & environmental modelling |
| Pubbl/distr/stampa | Abingdon, Oxfordshire : , : Carfax Pub., , ©1997-2002 |
| Descrizione fisica | 1 online resource |
| Disciplina | 910.015118 |
| Soggetto topico |
Geography - Mathematical models
Environmental sciences - Mathematical models Ecology - Mathematical models Spatial analysis (Statistics) Modell Zeitschrift Umweltschutz |
| Soggetto genere / forma | Periodicals. |
| ISSN | 1469-8323 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Geographical and environmental modelling |
| Record Nr. | UNISA-996216918703316 |
| Abingdon, Oxfordshire : , : Carfax Pub., , ©1997-2002 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Geographical & environmental modelling
| Geographical & environmental modelling |
| Pubbl/distr/stampa | Abingdon, Oxfordshire, : Carfax Pub., ©1997-2002 |
| Descrizione fisica | 1 online resource |
| Disciplina | 910.015118 |
| Soggetto topico |
Geography - Mathematical models
Environmental sciences - Mathematical models Ecology - Mathematical models Spatial analysis (Statistics) Modell Zeitschrift Umweltschutz |
| Soggetto genere / forma | Periodicals. |
| ISSN | 1469-8323 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Geographical and environmental modelling |
| Record Nr. | UNINA-9910172120603321 |
| Abingdon, Oxfordshire, : Carfax Pub., ©1997-2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geographical Models with Mathematica
| Geographical Models with Mathematica |
| Autore | Dauphine Andre |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2017 |
| Descrizione fisica | 1 online resource (316 pages) |
| Disciplina |
910/.015118
910.015118 |
| ISBN |
9780081022306
0081022301 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Geographical Models with Mathematica -- Copyright -- Contents -- Introduction -- I.1. The scientific practice of the geographer -- I.2. The three forms of geography projects -- I.3. Plan of the work -- I.4. How should this work be read? -- I.5. Appendix 1: a general modeling language Mathematica -- PART 1: Modeling the Relationships between Societies and Nature -- 1. The Theoretical Context of Classical Geography -- 1.1. Environmentalism - a theory that is still rejected -- 1.2. The theoretical double paradox of classical geography -- 1.3. The general theory of systems and the theories derived therefrom -- 1.4. Conclusion -- 1.5. Appendix 2: Importing data within Mathematica -- 2. Statistical and Probability Models for Given Relationships Between Societies and the Natural Environment -- 2.1. Acknowledging the probability model for recorded data -- 2.2. Modeling the relationships between two or several variables -- 2.3. Temporalities and time series models -- 2.4. Conclusion -- 2.5. Appendix 3: chronological program processing -- 3. Models of Ordinary Dynamic Systems -- 3.1. Four lines of questioning to understand the behavior of a dynamic system -- 3.2. Initiation in the modeling of dynamic systems -- 3.3. Assets and restrictions of ODE models -- 3.4. More realistic models of geographical systems -- 3.5. Conclusion -- 3.6. Appendix 4: crowd behavior in catastrophic situations -- PART 2: Modeling Geographic Locations -- 4. Theories of Geographical Locations -- 4.1. Introduction to spatial economic theories -- 4.2. A new urban economy and a new economic geography -- 4.3. Conclusion -- 5. Theoretical Geolocation Models -- 5.1. Von Thünen and d'Alonso's monocentric and polycentric models -- 5.2. Steiner's model generalizes Weber's -- 5.3. Central place models in the making -- 5.4. Conclusion.
PART 3: Spatial Structures and Territorial Dynamics -- 6. Theories Used to Understand Territorial Structures and Dynamics -- 6.1. From terrestrial to geographical space -- 6.2. Some theories drawn from various fields and used to explain simple territorial forms -- 6.3. From morphology to morphogenesis -- 6.4. An overview of morphogenetic theories -- 6.5. Conclusion -- 6.6. Appendix 5: globalization at the root of a paradox: homogenization and global fracturing -- 7. Models of Basic Structures: Points and Fields -- 7.1. Modeling the point structures of a geographical space -- 7.2. Modeling geographical fields -- 7.3. Conclusion -- 7.4. Appendix 6: Introduction to the morphometric analysis of the Grenoble Alps -- 8. Models of Basic Structures: Networks -- 8.1. The two aspects of a network: graphs and matrices -- 8.2. Modeling the structure of a spatial network -- 8.3. Qualitative geographical models and graph theory -- 8.4. Modeling network dynamics -- 8.5. Conclusion -- 8.6. Appendix 7: A geometric approach to the network of French metropolises -- 9. Geographical Space as a Mixture of Basic Spatial Structures -- 9.1. Testing links between two elementary spatial structures -- 9.2. Modeling complex spatial structures: machine learning and choremes -- 9.3. Modeling multiscale spatial structures -- 9.4. Conclusion -- 10. Morphogenetic Macro and Micro-models -- 10.1. Time series typical of morphogenetic theories -- 10.2. Modeling the dynamics of territorial systems: from ODEs to PDEs -- 10.3. Cellular automata, Brownian motions and multi-agent systems -- 10.4. Conclusion -- 10.5. Appendix 8: simulating urban growth along the French Riviera with a cellular automata model -- Conclusion -- Bibliography -- Introduction -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Chapter 10 -- Index -- Back Cover. |
| Record Nr. | UNINA-9910583030303321 |
Dauphine Andre
|
||
| San Diego : , : Elsevier, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||