Cours de tracage des metaux en feuilles / A. Montagne
| Cours de tracage des metaux en feuilles / A. Montagne |
| Autore | Montagne, A. |
| Pubbl/distr/stampa | Paris : Editions Eyrolles, 1957 |
| Descrizione fisica | 226 p. : ill. ; 27 cm |
| Disciplina | 671.823 |
| Collana | L'enseignement technique et professionnel |
| Soggetto non controllato | Tracciatura |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNINA-990000035440403321 |
| Montagne, A. | ||
| Paris : Editions Eyrolles, 1957 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches
| Handbook of Flexible and Smart Sheet Forming Techniques : Industry 4. 0 Approaches |
| Autore | Kumar Ajay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (299 pages) |
| Disciplina | 671.823 |
| Altri autori (Persone) |
KumarParveen (Professor of mechanical engineering)
SinghHari GulatiVishal Kumar SinghPravin |
| Soggetto topico |
Industry 4.0
Sheet-metal |
| ISBN |
9781119986454
1119986451 9781119986430 1119986435 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Incremental Sheet Forming - A State-of-Art Review -- 1.1 Introduction to Incremental Sheet Forming -- 1.2 Incremental Sheet Forming Process -- 1.2.1 Single-Point Incremental Sheet Forming (SPISF) -- 1.2.2 Two-Point Incremental Sheet Forming (TPISF) -- 1.2.3 Double-Sided Incremental Forming -- 1.2.4 Hybrid Incremental Forming -- 1.2.5 Thermal-Assisted Incremental Forming (TAIF) -- 1.3 Materials for Incremental Sheet Forming -- 1.4 Formability Limits with AI Implementation -- 1.5 Conclusions and Future Scope -- References -- Chapter 2 Classification of Incremental Sheet Forming -- 2.1 Introduction -- 2.1.1 History -- 2.2 Classification of ISF -- 2.2.1 Classification Based on Forming Methods of ISF -- 2.2.1.1 SPIF -- 2.2.1.2 TPIF -- 2.2.1.3 MPIF -- 2.2.1.4 Hybrid-ISF -- 2.2.2 Classification Based on Forming Tools of ISF -- 2.2.3 Classification Based on Forming Path of ISF -- 2.2.4 Classification Based on Forming Machine of ISF -- 2.2.5 Classification Based on Hot Forming of ISF -- 2.3 Conclusion -- 2.4 Future Work -- References -- Chapter 3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming -- 3.1 Introduction -- 3.2 Process Parameters -- 3.2.1 Effects of Process Parameters on Surface Roughness -- 3.2.2 Effect of Process Parameters on Forming Force -- 3.2.3 Effect of Process Parameters on Formability -- 3.2.4 Effect of Process Parameters on Thickness Distribution -- 3.2.5 Effect of Process Parameters on Dimensional Accuracy -- 3.2.6 Effect of Process Parameters on the Processing Time -- 3.2.7 Effect of Process Parameters on Energy Consumption -- 3.3 Conclusion -- 3.4 Future Work -- Funding Statement -- Conflicts of Interest -- Acknowledgment -- References.
Chapter 4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Original Equipment -- 4.2.2 Methodology -- 4.3 Results and Discussion -- 4.3.1 Hot SPIF System -- 4.3.1.1 Forming Temperatures Range -- 4.3.1.2 Concept -- 4.3.1.3 Heating Units and Control -- System Validation -- 4.3.1.4 Forming Tool -- 4.3.1.5 Costs Assessment -- 4.3.2 Hot SPIF of Ti-6Al-4V -- 4.3.2.1 Overview -- 4.3.2.2 Temperature Cycles -- 4.3.2.3 Practices for Higher Accuracy -- 4.4 Conclusion -- References -- Chapter 5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review -- 5.1 Introduction -- 5.2 Crystallographic Texture -- 5.2.1 Introduction to Crystallographic Texture -- 5.2.2 Texture Evolution During ISF -- 5.2.2.1 Texture Evolution During ISF of Aluminum Alloys -- 5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF -- 5.3 Microstructure Evolution During ISF -- 5.3.1 Microstructures -- 5.3.2 Microstructure Evolution During ISF in Various Materials -- 5.3.2.1 AA5052 Aluminum Alloy -- 5.3.2.2 Dual Phase (DP590) Steel -- 5.4 Deformation Mechanism During ISF -- 5.4.1 Membrane Strain -- 5.4.2 Shear Deformation -- 5.4.3 Bending Under Tension (BUT) -- 5.5 Future Scope -- 5.6 Summary -- Abbreviations -- References -- Chapter 6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming -- 6.1 Introduction -- 6.1.1 Classification of ISF Based on Forming Methods -- 6.2 Experimental Setup -- 6.2.1 Machining Parameters in ISF -- 6.2.2 Tool Path Strategies -- 6.3 FE Analysis of ISF -- 6.3.1 Analysis of Stress on Parts -- 6.3.2 Forces Behavior in ISF -- 6.3.3 Stress Effect on Thinning Part -- 6.3.4 Applications of ISF -- 6.3.5 Result and Discussion -- 6.3.5.1 Stress Behavior -- 6.3.5.2 Force Behavior -- 6.3.5.3 Thinning Characteristics. 6.4 Conclusion -- 6.5 Future work -- References -- Chapter 7 Finite Element Simulation Approach in Incremental Sheet Forming Process -- 7.1 Introduction -- 7.2 Finite Element Simulation -- 7.2.1 Definition -- 7.2.2 History of Finite Element Method -- 7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.4 Categories and Types of Finite Element Method Simulation -- 7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process -- 7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process -- 7.3 Conclusion -- References -- Chapter 8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Data Collection -- 8.2.2 Problem Description -- 8.2.3 FMEA Analysis -- 8.2.4 Fault Tree Analysis -- 8.2.5 Fishbone Diagram -- 8.3 Result and Analysis -- 8.4 Discussion -- 8.5 Conclusion -- References -- Chapter 9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming -- 9.1 Introduction -- 9.2 Background -- 9.3 Communication Protocol Overview -- 9.3.1 HTTP: Hyper Text Transfer Protocol -- 9.3.2 CoAP: Constrained Application Protocols -- 9.3.3 MQTT: MQ Telemetry Transport -- 9.3.4 DDS: Data Distribution Services -- 9.3.5 AMQP: Advanced Message Queuing Protocol -- 9.3.6 XMPP: Extensible Messaging and Presence Protocol -- 9.4 Comparative Study of Communication Protocol for IoT Premise -- 9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated -- 9.6 Challenges and Related Issues -- 9.7 Conclusion and Future Scope -- References -- Chapter 10 Blockchain for the Internet of Things and Industry 4.0 Application -- 10.1 Introduction -- 10.2 Blockchain's Application in a Wide Range of Industries -- 10.2.1 Supply Chain -- 10.2.2 Financial Transactions. 10.2.3 Encryption of Data -- 10.2.4 Product Information -- 10.2.5 Peer-to-Peer Trading -- 10.3 Blockchain Plays in the Future of Our Economy -- 10.3.1 The End of Corruption -- 10.3.2 Integrity -- 10.3.3 Contracts Without the Middle Person -- 10.3.4 No Financial Stand -- 10.3.5 Easier Management Without Analytics -- 10.4 Changes in Society Using the Internet of Things and Blockchain -- 10.4.1 Changes Through Blockchain -- 10.4.2 Changes Through the Internet of Things -- 10.5 Blockchain Transform Industries and the Economy -- 10.6 Blockchain Support Swinburne's Industry 4.0 Strategy -- 10.7 Blockchain Technology's Impact on the Digital Economy -- 10.7.1 Changes in the Architecture -- 10.7.2 Networking and Verification Expenses Are Reduced -- 10.7.3 Automation -- 10.8 Chains Are Being Revolutionized by Blockchain Technology -- 10.8.1 Manual Procedures Are Being Replaced -- 10.8.2 Increased Traceability -- 10.8.3 Reliability and Trustworthiness Are Being Improved -- 10.8.4 Processing Transactions in a Timely and Effective Manner -- 10.9 Businesses That Use Blockchain Technology -- 10.9.1 Blockchain Can Boost Supply Chain Value -- 10.10 Real-World Use Cases for dApps and Smart Contracts -- 10.10.1 Financial Use Cases for Smart Contracts -- 10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts -- 10.10.3 Blockchain and Smart Contracts in the Legal Industry -- 10.10.4 Real Estate and Blockchain -- 10.10.5 Creating DAOs with Smart Contracts for Corporate Structures -- 10.10.6 Smart Contracts in Emerging Technology Applications -- 10.10.7 Smart Contracts' Potential Benefits in Other Industries -- 10.11 Blockchain Is About to Revolutionize the Courtroom -- 10.11.1 Enhanced Security Levels -- 10.11.2 Better Agreements -- 10.12 Conclusion -- References. Chapter 11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal -- 11.1 Introduction -- 11.1.1 Composite Material: Overview -- 11.1.2 Classification of Composite Materials -- 11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material -- 11.1.4 Advantages of Composites -- 11.1.5 Why Composites Are Replacing Traditional Sheet Metals -- 11.1.5.1 High Degree of Strength -- 11.1.5.2 Longer Life Span -- 11.1.5.3 Composites Allow New Design Possibilities -- 11.1.6 Applications of Hybrid Composites Over Sheet Metals -- 11.1.7 Failure Modes -- 11.1.8 Concerns About Disposal and Reuse -- 11.1.9 Problem Definition -- 11.1.10 Layout of the Project -- 11.1.11 Research Objectives -- 11.1.12 Research Application -- 11.2 Proposed Methodology -- 11.3 Experimental Procedure -- 11.3.1 Raw Materials -- 11.3.1.1 E-Glass Fiber (CSM) -- 11.3.1.2 Epoxy Resin (Araldite LY556) -- 11.3.1.3 Hardener (Aradur HY951) -- 11.3.1.4 Flat Copper Sheet -- 11.3.2 Mold Preparation -- 11.3.3 Releasing Agent -- 11.3.4 Plain Weave Copper Strips Mesh Preparation -- 11.3.5 Composite Preparation -- 11.3.6 De-Molding Process -- 11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites -- 11.3.7.1 Tensile Strength Testing -- 11.3.7.2 Flexural Strength Testing -- 11.3.7.3 Izod Impact Strength Testing -- 11.3.7.4 Shore D Hardness Testing -- 11.3.7.5 Density Testing -- 11.4 Results and Discussions -- 11.4.1 Tensile Strength -- 11.4.2 Flexural Strength -- 11.4.3 Izod Impact Strength -- 11.4.4 Shore D Hardness -- 11.4.5 Density -- 11.5 Conclusions -- 11.6 Future Scope -- References -- Chapter 12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems -- 12.1 Introduction: Background and Overview -- 12.1.1 Definition of Key Terms. 12.2 Description of Machining, Bending, and Assembly Processes. |
| Record Nr. | UNINA-9911019587603321 |
Kumar Ajay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lamiere grecate di acciaio / Centro Italiano sviluppo impieghi acciaio
| Lamiere grecate di acciaio / Centro Italiano sviluppo impieghi acciaio |
| Pubbl/distr/stampa | Milano : CISIA, 1983 |
| Descrizione fisica | 67 p. ; 29 cm |
| Disciplina | 671.823 |
| Collana | Dispensa tecnica |
| Soggetto topico | Lamiere in acciaio - Impiego [in] Edilizia |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISA-990006126690203316 |
| Milano : CISIA, 1983 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Manuale di lavorazione della lamiera / direzione e coordinamento: Renato Suzzani
| Manuale di lavorazione della lamiera / direzione e coordinamento: Renato Suzzani |
| Pubbl/distr/stampa | Milano : Tecniche nuove, 2004 |
| Descrizione fisica | 1 v. (various pagings) : ill. ; 24 cm |
| Disciplina | 671.823 |
| Altri autori (Persone) | Suzzani, Renatoauthor |
| Soggetto topico |
Sheet-metal - Mechanical properties
Sheet-metal work |
| ISBN | 8848115594 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991001512469707536 |
| Milano : Tecniche nuove, 2004 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Mechanics of sheet metal forming [[electronic resource]]
| Mechanics of sheet metal forming [[electronic resource]] |
| Autore | Marciniak Z |
| Edizione | [2nd ed /] |
| Pubbl/distr/stampa | Oxford, : Butterworth-Heinemann, 2002 |
| Descrizione fisica | 1 online resource (233 p.) |
| Disciplina | 671.823 |
| Altri autori (Persone) |
DuncanJ. L
HuS. J |
| Soggetto topico |
Sheet-metal - Plastic properties
Sheet-metal work - Mathematical models Plasticity Plates (Engineering) - Plastic properties |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-01373-0
9786611013738 0-08-049651-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Mechanics of Sheet Metal Forming; Copyright Page; Contents; Preface to the second edition; Preface to the first edition; Disclaimer; Introduction; Chapter 1. Material properties; 1.1 Tensile test; 1.2 Effect of properties on forming; 1.3 Other mechanical tests; 1.4 Exercises; Chapter 2. Sheet deformation processes; 2.1 Introduction; 2.2 Uniaxial tension; 2.3 General sheet processes (plane stress); 2.4 Yielding in plane stress; 2.5 The flow rule; 2.6 Work of plastic deformation; 2.7 Work hardening hypothesis; 2.8 Effective stress and strain functions; 2.9 Summary; 2.10 Exercises
Chapter 3. Deformation of sheet in plane stress3.1 Uniform sheet deformation processes; 3.2 Strain distributions; 3.3 Strain diagram; 3.4 Modes of deformation; 3.5 Effective stress-strain laws; 3.6 The stress diagram; 3.7 Principal tensions or tractions; 3.8 Summary; 3.9 Exercises; Chapter 4. Simplified stamping analysis; 4.1 Introduction; 4.2 Two-dimensional model of stamping; 4.3 Stretch and draw ratios in a stamping; 4.4 Three-dimensional stamping model; 4.5 Exercises; Chapter 5. Load instability and tearing; 5.1 Introduction; 5.2 Uniaxial tension of a perfect strip 5.3 Tension of an imperfect strip5.4 Tensile instability in stretching continuous sheet; 5.5 Factors affecting the forming limit curve; 5.6 The forming window; 5.7 Exercises; Chapter 6. Bending of sheet; 6.1 Introduction; 6.2 Variables in bending a continuous sheet; 6.3 Equilibrium conditions; 6.4 Choice of material model; 6.5 Bending without tension; 6.6 Elastic unloading and springback; 6.7 Small radius bends; 6.8 The bending line; 6.9 Bending a sheet in a vee-die; 6.10 Exercises; Chapter 7. Simplified analysis of circular shells; 7.1 Introduction; 7.2 The shell element 7.3 Equilibrium equations7.4 Approximate models of forming axisymmetric shells; 7.5 Applications of the simple theory; 7.6 Summary; 7.7 Exercises; Chapter 8. Cylindrical deep drawing; 8.1 Introduction; 8.2 Drawing the flange; 8.3 Cup height; 8.4 Redrawing cylindrical cups; 8.5 Wall ironing of deep-drawn cups; 8.6 Exercises; Chapter 9. Stretching circular shells; 9.1 Bulging with fluid pressure; 9.2 Stretching over a hemispherical punch; 9.3 Effect of punch shape and friction; 9.4 Exercises; Chapter 10. Combined bending and tension of sheet; 10.1 Introduction 10.2 Stretching and bending an elastic, perfectly plastic sheet10.3 Bending and stretching a strain-hardening sheet; 10.4 Bending a rigid, perfectly plastic sheet under tension; 10.5 Bending and unbending under tension; 10.6 Draw-beads; 10.7 Exercises; Chapter 11. Hydroforming; 11.1 Introduction; 11.2 Free expansion of a cylinder by internal pressure; 11.3 Forming a cylinder to a square section; 11.4 Constant thickness forming; 11.5 Low-pressure or sequential hydroforming; 11.6 Summary; 11.7 Exercises; Appendix A1: Yielding in three-dimensional stress state Appendix A2: Large strains: an alternative definition |
| Record Nr. | UNINA-9910457352403321 |
Marciniak Z
|
||
| Oxford, : Butterworth-Heinemann, 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mechanics of sheet metal forming [[electronic resource]]
| Mechanics of sheet metal forming [[electronic resource]] |
| Autore | Marciniak Z |
| Edizione | [2nd ed /] |
| Pubbl/distr/stampa | Oxford, : Butterworth-Heinemann, 2002 |
| Descrizione fisica | 1 online resource (233 p.) |
| Disciplina | 671.823 |
| Altri autori (Persone) |
DuncanJ. L
HuS. J |
| Soggetto topico |
Sheet-metal - Plastic properties
Sheet-metal work - Mathematical models Plasticity Plates (Engineering) - Plastic properties |
| ISBN |
1-281-01373-0
9786611013738 0-08-049651-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Mechanics of Sheet Metal Forming; Copyright Page; Contents; Preface to the second edition; Preface to the first edition; Disclaimer; Introduction; Chapter 1. Material properties; 1.1 Tensile test; 1.2 Effect of properties on forming; 1.3 Other mechanical tests; 1.4 Exercises; Chapter 2. Sheet deformation processes; 2.1 Introduction; 2.2 Uniaxial tension; 2.3 General sheet processes (plane stress); 2.4 Yielding in plane stress; 2.5 The flow rule; 2.6 Work of plastic deformation; 2.7 Work hardening hypothesis; 2.8 Effective stress and strain functions; 2.9 Summary; 2.10 Exercises
Chapter 3. Deformation of sheet in plane stress3.1 Uniform sheet deformation processes; 3.2 Strain distributions; 3.3 Strain diagram; 3.4 Modes of deformation; 3.5 Effective stress-strain laws; 3.6 The stress diagram; 3.7 Principal tensions or tractions; 3.8 Summary; 3.9 Exercises; Chapter 4. Simplified stamping analysis; 4.1 Introduction; 4.2 Two-dimensional model of stamping; 4.3 Stretch and draw ratios in a stamping; 4.4 Three-dimensional stamping model; 4.5 Exercises; Chapter 5. Load instability and tearing; 5.1 Introduction; 5.2 Uniaxial tension of a perfect strip 5.3 Tension of an imperfect strip5.4 Tensile instability in stretching continuous sheet; 5.5 Factors affecting the forming limit curve; 5.6 The forming window; 5.7 Exercises; Chapter 6. Bending of sheet; 6.1 Introduction; 6.2 Variables in bending a continuous sheet; 6.3 Equilibrium conditions; 6.4 Choice of material model; 6.5 Bending without tension; 6.6 Elastic unloading and springback; 6.7 Small radius bends; 6.8 The bending line; 6.9 Bending a sheet in a vee-die; 6.10 Exercises; Chapter 7. Simplified analysis of circular shells; 7.1 Introduction; 7.2 The shell element 7.3 Equilibrium equations7.4 Approximate models of forming axisymmetric shells; 7.5 Applications of the simple theory; 7.6 Summary; 7.7 Exercises; Chapter 8. Cylindrical deep drawing; 8.1 Introduction; 8.2 Drawing the flange; 8.3 Cup height; 8.4 Redrawing cylindrical cups; 8.5 Wall ironing of deep-drawn cups; 8.6 Exercises; Chapter 9. Stretching circular shells; 9.1 Bulging with fluid pressure; 9.2 Stretching over a hemispherical punch; 9.3 Effect of punch shape and friction; 9.4 Exercises; Chapter 10. Combined bending and tension of sheet; 10.1 Introduction 10.2 Stretching and bending an elastic, perfectly plastic sheet10.3 Bending and stretching a strain-hardening sheet; 10.4 Bending a rigid, perfectly plastic sheet under tension; 10.5 Bending and unbending under tension; 10.6 Draw-beads; 10.7 Exercises; Chapter 11. Hydroforming; 11.1 Introduction; 11.2 Free expansion of a cylinder by internal pressure; 11.3 Forming a cylinder to a square section; 11.4 Constant thickness forming; 11.5 Low-pressure or sequential hydroforming; 11.6 Summary; 11.7 Exercises; Appendix A1: Yielding in three-dimensional stress state Appendix A2: Large strains: an alternative definition |
| Record Nr. | UNINA-9910784337803321 |
Marciniak Z
|
||
| Oxford, : Butterworth-Heinemann, 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mechanics of sheet metal forming [e-book] / Z. Marciniak, J.L. Duncan, S.J. Hu
| Mechanics of sheet metal forming [e-book] / Z. Marciniak, J.L. Duncan, S.J. Hu |
| Autore | Marciniak, Z. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Oxford : Butterworth-Heinemann, 2002 |
| Descrizione fisica | xx, 211 p. : ill. ; 25 cm |
| Disciplina | 671.823 |
| Altri autori (Persone) |
Duncan, J. L.
Hu, S. J. |
| Soggetto topico |
Sheet-metal - Mechanical properties
Sheet-metal work |
| Soggetto genere / forma | Electronic books. |
| ISBN |
9780750653008
0750653000 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Material properties; General deformation processes; Deformation of sheet in plane stress; Simplified stamping analysis; Load instability and tearing; Bending of sheet; Simplified analysis of circular shells; Cylindrical deep drawing; Stretching over axisymmetric punches; Bending under tension; Hydroforming; Yielding in three dimensional stress state; Large strains
Material properties -- Sheet deformation processes -- Deformation of sheet in plane stress -- Simplified stamping analysis -- Load instability and tearing -- Bending of sheet -- Simplified analysis of circular shells -- Cylindrical deep drawing -- Stretching circular shells -- Combined bending and tension of sheet -- Hydroforming |
| Record Nr. | UNISALENTO-991003224859707536 |
Marciniak, Z.
|
||
| Oxford : Butterworth-Heinemann, 2002 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Multiscale Modelling in Sheet Metal Forming / / edited by Dorel Banabic
| Multiscale Modelling in Sheet Metal Forming / / edited by Dorel Banabic |
| Edizione | [1st ed. 2016.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
| Descrizione fisica | 1 online resource (XI, 405 p. 137 illus.) |
| Disciplina | 671.823 |
| Collana | ESAFORM Bookseries on Material Forming |
| Soggetto topico |
Manufactures
Materials science Nanotechnology Manufacturing, Machines, Tools, Processes Characterization and Evaluation of Materials Nanotechnology and Microengineering |
| ISBN | 3-319-44070-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- List of the authors -- 1. Plastic Behaviour of Sheet Metals, by Dan-Sorin Comsa, Dorel Banabic, Jerzy Gawad -- 2. Crystallographic Texture and Plastic Anisotropy, by Hans Joachim Bunge, Robert Schwarzer -- 3. Multiscale Modelling on Plastic Anisotropy, by Jerzy Gawad, Albert Van Bael, Paul Van Houtte -- 4. Modelling of the Voids Growth in Ductile Fracture, by Mihai Gologanu, Dan-Sorin Comsa, Abdolvahed Kami, Dorel Banabic -- 5. Advanced Models for the Prediction of Forming Limit Curves, by Dorel Banabic, Dan-Sorin Comsa, Abdolvahed Kami, Mihai Gologanu -- 6. Anisotropic Damage in Elasto-Plastic Materials with Structural Defects, by Sanda Tigoiu -- 7. Modelling the Portevin - Le Chatelier Effect. A Study on Plastic Instabilities and Pattern Formation, by Cristian Faciu -- Appendix -- References -- Author Index -- Subject Index. |
| Record Nr. | UNINA-9910136008303321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sheet Metal 2021
| Sheet Metal 2021 |
| Autore | Merklein M |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Zurich : , : Trans Tech Publications, Limited, , 2021 |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 671.823 |
| Altri autori (Persone) |
DuflouJ
FratiniL HagenahH MartinsP MeschutG MicariF |
| Collana | Key Engineering Materials |
| Soggetto topico | Sheet metal work |
| ISBN |
1-5231-4518-8
3-0357-3693-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Sheet Metal 2021 -- Preface -- Table of Contents -- Chapter 1: Joining by Forming -- New Approach for Versatile Self Piercing Riveting: Joining System and Auxiliary Part -- Influence of the Rivet Coating on the Friction during Self-Piercing Riveting -- Investigation of Different Joining by Forming Strategies when Connecting Different Metals without Auxiliary Elements -- Friction Characterisation for a Tumbling Self-Piercing Riveting Process -- Modeling of Stiffness Anisotropy in Simulation of Self-Piercing Riveted Components -- Determination of the Interface Structural Resolution of an Industrial X-Ray Computed Tomograph Using a Spherical Specimen and a Gap Specimen Consisting of Gauge Blocks -- Temperature Dependent Modelling of Fibre-Reinforced Thermoplastic Organo-Sheet Material for Forming and Joining Process Simulations -- A Finite Plasticity Gradient-Damage Model for Sheet Metals during Forming and Clinching -- Effect of Different Tool Geometries on the Mechanical Properties of Al-Al Clinch Joints -- Load Path Transmission in Joining Elements -- Development of a Method for the Identification of Friction Coefficients in Sheet Metal Materials for the Numerical Simulation of Clinching Processes -- A Method for Characterization of Geometric Deviations in Clinch Points with Computed Tomography and Transient Dynamic Analysis -- A First Approach for the Treatment of Galvanic Corrosion and of Load-Bearing Capacity of Clinched Joints -- Approach for the Automated Analysis of Geometrical Clinch Joint Characteristics -- Surface Treatment to Promote Joining of Glass Fiber Reinforced Plastic and AZ31 Magnesium Alloy for Fiber Metal Laminates via Hot Metal Pressing -- New Joining Concepts for Self-Pierce Riveting -- Numerical and Experimental Fracture Mechanical Investigations of Clinchable Sheet Metals Made of HCT590X -- Chapter 2: Forming.
Stretch Forming of Ti-6Al-4V Hybrid Parts at Elevated Temperatures -- Introducing Residual Stresses on Sheet Metals by Slide Hardening under Stress Superposition -- Assessment of Springback Behaviour of 800-1200 MPa Dual-Phase Steel Grades -- Functional Gradation in Precipitation Hardenable AA7075 Alloy by Differential Cooling Strategies -- Towards Automatic Part Identification in Sheet Metal Workshops -- Effect of Stretching on Springback in Rotary Stretch Bending of Aluminium Alloy Profiles -- Investigation of the Influence of a Superimposed Oscillated Forming Process on Forming Characteristics -- Chapter 3: Incremental Forming -- Development of Magnetic Field-Assisted Single-Point Incremental Forming -- Multistep Incremental Forming beyond 100° -- On the Effectiveness of SPIF Process to Re-Form End-of-Life Components as Compared to Conventional Forming Approach -- Incremental Roller-Flanging of Thick Metal Sheets -- Geometry Compensation Methods for Increasing the Accuracy of the SPIF Process -- Chapter 4: Welding and Bonding -- Influence of Roughness and Curing Temperature on the Strength of Aluminum Adhesively Bonded Joints -- Laser Welding of Laser Powder Bed Fusion Manufactured Inconel 718: Microstructure and Mechanical Properties -- Laser Welding of Laser Powder Bed Fusion (LPBF) Manufactured 316L Stainless Steel Lap Joint -- Microstructural Evolution and Tensile Strength of Laser-Welded Butt Joints of Ultra-High Strength Steels: Low and High Alloy Steels -- Microstructure and Formability of Laser Welded Dissimilar Butt Joints of Austenitic-Ferritic Stainless Steels -- Chapter 5: Characterisation -- Investigation of the Micro Hardness at the Cut Surface of Fine Blanked Parts with Variation of Sheet Material and Cutting Temperature -- Material Model for the Production of Steel Fibers by Notch Rolling and Fulling. The Frictional Force between Slug and Die in Shear Cutting after Material Separation -- Fracture Characterisation by Butterfly-Tests and Damage Modelling of Advanced High Strength Steels -- Determination of the Biaxial Anisotropy Coefficient Using a Single Layer Sheet Metal Compression Test -- Local Strain Measurement in Tensile Test for an Optimized Characterization of Packaging Steel for Finite Element Analysis -- Keyword Index -- Author Index. |
| Record Nr. | UNINA-9911007138703321 |
Merklein M
|
||
| Zurich : , : Trans Tech Publications, Limited, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||