top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electrochemically Engineering of Nanoporous Materials / / Abel Santos
Electrochemically Engineering of Nanoporous Materials / / Abel Santos
Autore Santos Abel
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2018
Descrizione fisica 1 online resource (158 pages)
Disciplina 671.734
Soggetto topico Electrochemical metallizing
ISBN 3-03897-269-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Special Issue Editor vii -- Preface to "Electrochemically Engineering of Nanoporous Materials" . ix -- Abel Santos Electrochemical Engineering of Nanoporous Materials Reprinted from: Nanomaterials 2018, 8, 691, doi: 10.3390/nano8090691 1 -- Ali Aldalbahi, Mostafizur Rahaman, Mohammed Almoiqli, Abdelrazig Hamedelniel and Abdulaziz Alrehaili Single-Walled Carbon Nanotube (SWCNT) Loaded Porous Reticulated Vitreous Carbon (RVC) Electrodes Used in a Capacitive Deionization (CDI) Cell for Effective Desalination Reprinted from: Nanomaterials 2018, 8, 527, doi: 10.3390/nano8070527 3 -- Xian Li, Samantha Pustulka, Scott Pedu, Thomas Close, Yuan Xue, Christiaan Richter and Patricia Taboada-Serrano Titanium Dioxide Nanotubes as Model Systems for Electrosorption Studies Reprinted from: Nanomaterials 2018, 8, 404, doi: 10.3390/nano8060404 23 -- Abdalla Abdelwahab, Jesica Castelo-Quib´en, Jos ´e F. Vivo-Vilches, Mar´ıa P ´erez-Cadenas, Francisco J. Maldonado-H ´odar, Francisco Carrasco-Mar´ın and Agust´ın F. P´erez-Cadenas Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction Reprinted from: Nanomaterials 2018, 8, 266, doi: 10.3390/nano8040266 36 -- Mohamed Salaheldeen, Victor Vega, Angel Ibabe, Miriam Jaafar, Agustina Asenjo, Agustin Fernandez and Victor M. Prida Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure Reprinted from: Nanomaterials 2018, 8, 227, doi: 10.3390/nano8040227 51 -- Po-Hsin Wang, Tzong-Liu Wang, Wen-Churng Lin, Hung-Yin Lin, Mei-Hwa Lee and Chien-Hsin Yang Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors Reprinted from: Nanomaterials 2018, 8, 225, doi: 10.3390/nano8040225 62 -- Po-Hsin Wang, Tzong-Liu Wang, Wen-Churng Lin, Hung-Yin Lin, Mei-Hwa Lee and Chien-Hsin Yang Enhanced Supercapacitor Performance Using Electropolymerization of Self-Doped Polyaniline on Carbon Film Reprinted from: Nanomaterials 2018, 8, 214, doi: 10.3390/nano8040214 79 -- Steven J. P. McInnes, Thomas J. Macdonald, Ivan P. Parkin, Thomas Nann and Nicolas H. Voelcker Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules Reprinted from: Nanomaterials 2018, 8, 205, doi: 10.3390/nano8040205 91 -- v Yang Liu, Jieyu Zhang, Ying Li, Yemin Hu, Wenxian Li, Mingyuan Zhu, Pengfei Hu, Shulei Chou and Guoxiu Wang Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries Reprinted from: Nanomaterials 2017, 7, 368, doi: 10.3390/nano7110368 103 -- Maria Porta-i-Batalla, Elisabet Xifr´e-P´erez, Chris Eckstein, Josep Ferr ´e-Borrull and Lluis F. Marsal 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release Reprinted from: Nanomaterials 2017, 7, 227, doi: 10.3390/nano7080227 115 -- Wojciech J. Stepniowski and Wojciech Z. Misiolek Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation Reprinted from: Nanomaterials 2018, 8, 379, doi: 10.3390/nano8060379 127.
Record Nr. UNINA-9910765704903321
Santos Abel  
Basel, Switzerland : , : MDPI, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ionic Conductive Polymers for Electrochemical Devices / / Riccardo Narducci
Ionic Conductive Polymers for Electrochemical Devices / / Riccardo Narducci
Autore Narducci Riccardo
Pubbl/distr/stampa Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022
Descrizione fisica 1 online resource (176 pages)
Disciplina 671.734
Soggetto topico Electrochemical metallizing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674025603321
Narducci Riccardo  
Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro process and quality control of plasma spraying / / Guozheng Ma, Shuying Chen and Haidou Wang
Micro process and quality control of plasma spraying / / Guozheng Ma, Shuying Chen and Haidou Wang
Autore Ma Guozheng
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Descrizione fisica 1 online resource (679 pages)
Disciplina 671.734
Collana Springer series in advanced manufacturing
Soggetto topico Plasma spraying
ISBN 981-19-2742-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- 503740_1_En_BookFrontmatter_OnlinePDF -- Preface -- Contents -- 503740_1_En_1_Chapter_OnlinePDF -- 1 Introduction -- 1.1 Technical Principle of Plasma Spraying -- 1.1.1 Plasma -- 1.1.2 Plasma Arc -- 1.1.3 Basic Process of Plasma Spraying -- 1.1.4 Working Gas for Plasma Spraying -- 1.2 Development and Characteristics of Plasma Spraying -- 1.2.1 Development History of Plasma Spraying -- 1.2.2 Technical Characteristics of Plasma Spraying -- 1.3 Typical Plasma Spraying Technology -- 1.3.1 Conventional Plasma Spraying (PS) -- 1.3.2 Supersonic Plasma Spraying (SPS) -- 1.3.3 Low Pressure Plasma Spraying (LPPS) -- 1.3.4 Water-stabilized Plasma Spraying (WSPS) -- 1.3.5 Tricathode Plasma Spraying -- 1.3.6 Suspension Plasma Spraying -- 1.3.7 Reactive Plasma Spraying -- 1.4 Developing Direction of Plasma Spraying Technology -- 1.4.1 Development Prospects of Basic Theory -- 1.4.2 Trends for Hardware Development -- 1.4.3 Prospects of Spraying Materials -- References -- 503740_1_En_2_Chapter_OnlinePDF -- 2 Microcosmic Interaction Between Plasma Jet and Spraying Particles -- 2.1 Basic Characteristics of Plasma Jet -- 2.1.1 Simulation and Experiment of Gas Ionization Characteristics in Spray Gun -- 2.1.2 Mathematical Model of Flow Field of Plasma Jet -- 2.1.3 Temperature Field Distribution Characteristics of Plasma Jet -- 2.1.4 Velocity Field Distribution Characteristics of Plasma Jet -- 2.1.5 Composition Characteristics of Plasma Jet -- 2.2 Heat Transfer in Jet and Formation of Spraying Droplets -- 2.2.1 Temperature Monitoring of Particles -- 2.2.2 Heating-up and Evaporation of Particles -- 2.2.3 Effect of Process Parameters on Particle Temperature -- 2.3 Momentum Transfer and Particle Acceleration in Jet -- 2.3.1 Particle Velocity Monitoring -- 2.3.2 Force Analysis of Particles -- 2.3.3 Effect of Process Parameters on Particle Velocity.
2.4 Mass Transfer in Jet and Physical and Chemical Reaction of In-Flight Particles -- 2.4.1 Particle Quenching Collector -- 2.4.2 Physical Refinement of Particles -- 2.4.3 Reaction of Particles with Ambient Air -- 2.4.4 Self-reaction of Particles -- References -- 503740_1_En_3_Chapter_OnlinePDF -- 3 Impact Spread Behavior of Flying Droplets and Properties of Splats -- 3.1 General Characteristics of Droplet Impact Process -- 3.1.1 Deposition Characteristic Parameters of Droplet -- 3.1.2 Mechanisms of Droplet Spreading -- 3.1.3 Factors Influencing the Droplet Spreading Process -- 3.1.4 Monitoring the Droplet Spreading Process -- 3.1.5 Characteristics of Droplet Grain Growth -- 3.2 Numerical Simulation of Droplet Impact Behavior -- 3.2.1 Simulation of Droplet Impact and Spreading Process -- 3.2.2 Boundaries and Conditions for Droplet Impact Simulation -- 3.2.3 Physical Model of Droplet Impact Process -- 3.2.4 Influence of Viscosity Coefficient on Droplet Spreading Process -- 3.3 Capture of Splats and Fundamentals of Image Analyses -- 3.3.1 Acquisition Device of a Single Splat -- 3.3.2 Image Processing Functions -- 3.3.3 The Process of Extracting Splats -- 3.3.4 Splat Morphological Parameters -- 3.4 Solidification Morphology of Splats -- 3.4.1 Typical Morphology of Splats -- 3.4.2 Effect of Typical Parameters on the Appearance of Splats -- 3.4.3 Statistical Characteristics of Splat Morphology -- 3.4.4 Statistical Signation of Splat Solidification Types -- 3.5 Evaluating the Bonding Strength of Splats -- 3.5.1 Scratch Measurement Mechanism -- 3.5.2 Morphology of Typical Splats -- 3.5.3 Multiple Physical Signals During the Debonding of Splats -- 3.5.4 Debonding Process and Mechanism of Splats -- 3.5.5 Characterization of Bonding Strength of Splats -- 3.6 Evaluating the Residual Stress of Splats -- 3.6.1 Principle of the FIB-DIC Residual Stress Test.
3.6.2 Principle of the DIC Non-contact Strain Test -- 3.6.3 Calibration of Stress Release Coefficient -- 3.6.4 Residual Stress Measurement of Typical Particles -- 3.6.5 Error Analysis of Residual Stress Testing Process -- 3.6.6 Formation Mechanism of Droplet Residual Stress -- References -- 503740_1_En_4_Chapter_OnlinePDF -- 4 Characterization of Primary Defects and Quality Evaluation of Coatings -- 4.1 Microscopic Process of Coating Growth -- 4.1.1 Space Distribution of Particles -- 4.1.2 Wetting Mechanism of First-layered Flattening Particles -- 4.1.3 Wetting Mechanism of Follow-up Flattening Particles -- 4.1.4 Pore Forming Mechanism in Coating -- 4.2 Characterization Methods of Coating Porosity -- 4.2.1 Image Analysis Method -- 4.2.2 Three-dimensional Computed Tomography Method -- 4.2.3 Weighing Method -- 4.2.4 Drainage Method -- 4.2.5 Electrolytic Coloring -- 4.2.6 Air Permeability Comparison Method -- 4.2.7 Small-Angle Neutron Scattering Method -- 4.2.8 Microwave Method -- 4.2.9 Ultrasonic Method -- 4.3 Quantitative Characterization of Coating Bonding Strength -- 4.3.1 Traditional Test Method -- 4.3.2 Bonding Strength Measurement with the Static Load Indentation Method and Acoustic Emission Technology -- 4.3.3 Bonding Strength Measurement Impact Indentation Method and Acoustic Emission Technology -- 4.3.4 Other Testing Methods -- 4.4 Testing Method for Residual Stress of Coatings -- 4.4.1 Nondestructive Testing -- 4.4.2 Mechanical Method -- 4.4.3 Nanoindentation Method -- 4.4.4 Focused Ion Beam-Electron Beam Method -- 4.5 Other Performance Tests for Coatings -- 4.5.1 Microhardness Test -- 4.5.2 Elastic Modulus -- 4.5.3 Fracture Toughness -- References -- 503740_1_En_5_Chapter_OnlinePDF -- 5 Coating Quality Control Based on Traditional Process Measures -- 5.1 Pretreatment Process -- 5.1.1 Sand Blasting -- 5.1.2 Dry Ice-Assisted Deposition.
5.1.3 Mechanical Roughing -- 5.1.4 Laser Texturing -- 5.2 Traditional Optimization of Spraying Process Parameters -- 5.2.1 Typical Adjustable Spraying Parameters -- 5.2.2 Orthogonal Experiment Method -- 5.2.3 Response Surface Method -- 5.2.4 Neural Network Method -- 5.2.5 Other Methods -- 5.3 Afterprocessing-Heat Treatments -- 5.3.1 Laser Remelting -- 5.3.2 Induction Remelting -- 5.3.3 Electron Beam Remelting -- 5.3.4 Argon Arc Remelting -- 5.3.5 Homogeneous Heat Treatment -- 5.3.6 Hot Isostatic Pressing -- 5.3.7 Flame Remelting -- 5.4 Afterprocessing-Other Methods -- 5.4.1 Hole Sealing Treatment -- 5.4.2 Ultrasonic Shock Treatment -- 5.4.3 Steam Treatment -- 5.4.4 Electro Polarization Treatment Process -- References -- 503740_1_En_6_Chapter_OnlinePDF -- 6 Coating Quality Control Based on State Optimization of Droplets and Splats -- 6.1 Microstructure and Deoxidation Reaction Control of BaTiO3 Coating -- 6.1.1 Experimental Process -- 6.1.2 Effect of Spraying Atmosphere on Microstructure and Mechanical Properties of BaTiO3 Coating -- 6.1.3 Defect Formation Mechanisms of BaTiO3 Coatings in Different Atmospheric Conditions -- 6.1.4 Dielectric Properties of BaTiO3 Coating and Its Oxygen Loss and Reduction Mechanism -- 6.2 Micro Formation Mechanism and Microstructure Control of WC-10Co4Cr Coating -- 6.2.1 Experimental Process -- 6.2.2 Behavior and Interaction Mechanisms of WC Particles During Flighting, Spreading and Solidification -- 6.2.3 Evolution of Original Structural Characteristics of WC Coating -- 6.2.4 Evolution of WC Coating Microstructure Characteristics -- 6.3 Quality Optimization of the Fe-Based Amorphous Coatings -- 6.3.1 Test Methods and Equipment -- 6.3.2 Droplet Flight Characteristics of Fe-Based Amorphous Alloy Coatings -- 6.3.3 Solidification Types of Flat Particles and Its Mechanisms.
6.3.4 Phase Characteristics of Coating and Determination of Amorphous Phase Content -- 6.3.5 Micromorphology and Mechanical Properties of Fe-Based Amorphous Alloy Coatings -- 6.4 Quality Optimization of the Thermal Barrier Coatings -- 6.4.1 Condition Monitoring of In-flight Particles -- 6.4.2 Analysis of Physicochemical Properties and Spreading Morphology of Droplets -- 6.4.3 Microstructure Characteristics of Coatings -- 6.4.4 Microcosmic Defects and Properties -- 6.4.5 Thermal Insulation Properties -- 6.4.6 High-Temperature Oxidation Resistance -- 6.4.7 Thermal Shock Resistance -- References -- 503740_1_En_7_Chapter_OnlinePDF -- 7 Typical Plasma Sprayed Coatings and Applications -- 7.1 Typical Wear Resistance Coatings and Applications -- 7.1.1 Tribological Properties of Typical Amorphous Coatings -- 7.1.2 Tribological Properties of Typical Alloy Coatings -- 7.1.3 Tribological Properties of Oxide Ceramic Coatings -- 7.1.4 Tribological Properties of Carbide Ceramic Coatings -- 7.2 Typical Thermal Barrier Coatings and Applications -- 7.2.1 Novel Thermal Barrier Coatings -- 7.2.2 Typical Structures of Plasma Sprayed Thermal Barrier Coatings -- 7.2.3 Properties of Thermal Barrier Coatings -- 7.3 Typical Functional Coatings and Applications -- 7.3.1 Stealth Absorbent Coating -- 7.3.2 Biomedical Coating -- 7.3.3 Solid Oxide Fuel Cell Coating -- 7.3.4 Bionic Superhydrophobic Coating -- References.
Record Nr. UNINA-9910592994303321
Ma Guozheng  
Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma and Thermal Spraying / / by Juraj Ružbarský, Anton Panda
Plasma and Thermal Spraying / / by Juraj Ružbarský, Anton Panda
Autore Ružbarský Juraj
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (X, 108 p. 64 illus.)
Disciplina 671.734
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Surfaces (Technology)
Thin films
Coatings
Tribology
Corrosion and anti-corrosives
Manufactures
Surfaces, Interfaces and Thin Film
Corrosion
Machines, Tools, Processes
ISBN 3-319-46273-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Plasma Jet -- Formation of Plasma Sprayed Coating -- Basic Properties of Plasma Coatings -- Adhesion of Plasma Sprayed Coatings to Basic Backplate -- Plasma Spraying Equipment -- Thermal Spraying -- Adhesion Tests -- Thermal Fatigue Tests.
Record Nr. UNINA-9910254150503321
Ružbarský Juraj  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solution Precursor Plasma Spray System / / by Noppakun Sanpo
Solution Precursor Plasma Spray System / / by Noppakun Sanpo
Autore Sanpo Noppakun
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (112 p.)
Disciplina 671.734
Collana SpringerBriefs in Materials
Soggetto topico Tribology
Corrosion and anti-corrosives
Coatings
Chemical engineering
Plasma (Ionized gases)
Tribology, Corrosion and Coatings
Industrial Chemistry/Chemical Engineering
Plasma Physics
ISBN 3-319-07025-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Literature Review -- Experimental Methods -- Influence of the different organic chelating agents on the topography, physical properties and phase of SPPS-deposited spinel ferrite splats -- Effect of the chelating agent contents on the topography composition and phase of SPPS-deposited cobalt ferrite splats -- Conclusions -- Future Perspectives.
Record Nr. UNINA-9910298461303321
Sanpo Noppakun  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal spraying for power generation components [[electronic resource] /] / Klaus Erich Schneider ... [et al.]
Thermal spraying for power generation components [[electronic resource] /] / Klaus Erich Schneider ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (287 p.)
Disciplina 671.734
Altri autori (Persone) SchneiderKlaus Erich
Soggetto topico Metal spraying
Power (Mechanics)
Soggetto genere / forma Electronic books.
ISBN 1-280-72287-8
9786610722877
3-527-60934-2
3-527-60938-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Spraying for Power Generation Components; Preface; Acknowledgement; The Authors of this Book; Contents; 1 Introduction; 1.1 Requirements for Materials and Coatings in Powerplants; 1.2 Examples of Coatings in Gas Turbines; 1.3 Definition of Thermal Spraying (THSP); 1.4 Thermal-Spraying Systems; 1.5 Coatings for Power-Generation Components; 1.6 The Complete Manufacturing and Coating Process; 1.7 Coating-Process Development; 1.8 Tasks for "Target" Readers; 2 Practical Experience Today; 2.1 Coating Processes; 2.2 Basics of Thermal Spraying; 2.3 Feedstock; 2.3.1 Wire; 2.3.2 Powder
2.3.2.1 Powder Types2.3.2.2 Powder-Production Processes and Morphologies; 2.3.2.3 Powder Characterization; 2.3.2.4 Powders for Power-Generation Applications; 2.4 Thermal-Spraying Equipment; 2.4.1 Example of a Low-Pressure Plasma-Coating System; 2.4.2 Flame and Arc Spray Torches; 2.4.3 HVOF Process; 2.4.3.1 Comparison of HVOF Fuels; 2.4.3.2 A Brief Overview of the Major Existing HVOF Systems; 2.4.3.3 Possible Improvements of HVOF Systems; 2.4.4 Plasma Process; 2.4.4.1 A Brief Overview of Plasma Torches; 2.4.4.2 Possible Improvements of Plasma Systems
2.5 Work Flow and Important Coating Hardware2.5.1 Powder Preparation and Powder-Delivery System; 2.5.1.1 Powder Preparation; 2.5.1.2 Powder Delivery and Injection System; 2.5.1.3 Powder Injection and Plasma/Hot Gas Jet; 2.5.1.4 Injector Plugging and "Spitting"; 2.5.1.5 Powder Buildup at the Front Nozzle Wall; 2.5.2 Cooling System; 2.5.3 Power-Supply System; 2.5.4 Gas Supply and Distribution System; 2.5.5 Manipulation Systems; 2.5.6 Fixtures and Masking; 2.6 Examples of Coated Power-Generation Components; 2.7 Production Experience; 2.7.1 Surface Preparation
2.7.1.1 Internal Plasma and Transferred Arc2.7.2 Process and Systems; 2.7.2.1 The Programming of the Coating Process; 2.7.3 Finishing; 2.7.4 Repair of Turbine Parts; 2.7.4.1 Coating Removal, Stripping; 2.7.4.2 Restoration of the Base Materials; 2.7.4.3 Refurbishing, Recoating; 2.8 Commercial; 2.8.1 General; 2.8.2 Surface Preparation; 2.8.3 Coating Equipment; 2.8.4 Finishing; 3 Quality and Process Capability; 3.1 Quality Assurance; 3.2 Sources of Process Variations; 3.2.1 Special Causes of Coating-Process Variation; 3.2.2 Stochastic Nature of a Spray Process; 3.2.2.1 Arc and Jet Pulsations
3.2.2.2 Powder-Size Distribution3.2.2.3 Powder Injection; 3.2.2.4 Powder Shape; 3.2.2.5 Particle Bonding; 3.2.2.6 Gun and Component Motion and Positioning; 3.2.3 Drifting; 3.2.4 Stability of the Quality Control; 3.3 Process Capability and Stable Process; 3.3.1 Definition of Process Capability; 3.3.2 Definition of a Stable Coating Process; 3.3.3 Operational Window; 3.3.4 What Process Capability is Required?; 3.3.5 Additional Factors that Affect the Process Capability; 3.3.6 Case Study: Achievable Process Capability; 3.3.6.1 Part Complexity
3.3.6.2 Mutual Position of the Gun and Component Fixtures
Record Nr. UNINA-9910144703403321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal spraying for power generation components / Klaus Erich Schneider ... [et al.]
Thermal spraying for power generation components / Klaus Erich Schneider ... [et al.]
Pubbl/distr/stampa Weinheim : Wiley-VCH, c2006
Descrizione fisica xiv, 271 p. : Ill. ; 25 cm
Disciplina 671.734
Altri autori (Persone) Schneider, Klaus Erichauthor
Belashchenko, Vladimir
Dratwinski, Marian
Siegmann, Stephan
Zagorski, Alexander
Soggetto topico Metal spraying
Power (Mechanics)
ISBN 3527313370
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002510439707536
Weinheim : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Thermal spraying for power generation components [[electronic resource] /] / Klaus Erich Schneider ... [et al.]
Thermal spraying for power generation components [[electronic resource] /] / Klaus Erich Schneider ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (287 p.)
Disciplina 671.734
Altri autori (Persone) SchneiderKlaus Erich
Soggetto topico Metal spraying
Power (Mechanics)
ISBN 1-280-72287-8
9786610722877
3-527-60934-2
3-527-60938-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Spraying for Power Generation Components; Preface; Acknowledgement; The Authors of this Book; Contents; 1 Introduction; 1.1 Requirements for Materials and Coatings in Powerplants; 1.2 Examples of Coatings in Gas Turbines; 1.3 Definition of Thermal Spraying (THSP); 1.4 Thermal-Spraying Systems; 1.5 Coatings for Power-Generation Components; 1.6 The Complete Manufacturing and Coating Process; 1.7 Coating-Process Development; 1.8 Tasks for "Target" Readers; 2 Practical Experience Today; 2.1 Coating Processes; 2.2 Basics of Thermal Spraying; 2.3 Feedstock; 2.3.1 Wire; 2.3.2 Powder
2.3.2.1 Powder Types2.3.2.2 Powder-Production Processes and Morphologies; 2.3.2.3 Powder Characterization; 2.3.2.4 Powders for Power-Generation Applications; 2.4 Thermal-Spraying Equipment; 2.4.1 Example of a Low-Pressure Plasma-Coating System; 2.4.2 Flame and Arc Spray Torches; 2.4.3 HVOF Process; 2.4.3.1 Comparison of HVOF Fuels; 2.4.3.2 A Brief Overview of the Major Existing HVOF Systems; 2.4.3.3 Possible Improvements of HVOF Systems; 2.4.4 Plasma Process; 2.4.4.1 A Brief Overview of Plasma Torches; 2.4.4.2 Possible Improvements of Plasma Systems
2.5 Work Flow and Important Coating Hardware2.5.1 Powder Preparation and Powder-Delivery System; 2.5.1.1 Powder Preparation; 2.5.1.2 Powder Delivery and Injection System; 2.5.1.3 Powder Injection and Plasma/Hot Gas Jet; 2.5.1.4 Injector Plugging and "Spitting"; 2.5.1.5 Powder Buildup at the Front Nozzle Wall; 2.5.2 Cooling System; 2.5.3 Power-Supply System; 2.5.4 Gas Supply and Distribution System; 2.5.5 Manipulation Systems; 2.5.6 Fixtures and Masking; 2.6 Examples of Coated Power-Generation Components; 2.7 Production Experience; 2.7.1 Surface Preparation
2.7.1.1 Internal Plasma and Transferred Arc2.7.2 Process and Systems; 2.7.2.1 The Programming of the Coating Process; 2.7.3 Finishing; 2.7.4 Repair of Turbine Parts; 2.7.4.1 Coating Removal, Stripping; 2.7.4.2 Restoration of the Base Materials; 2.7.4.3 Refurbishing, Recoating; 2.8 Commercial; 2.8.1 General; 2.8.2 Surface Preparation; 2.8.3 Coating Equipment; 2.8.4 Finishing; 3 Quality and Process Capability; 3.1 Quality Assurance; 3.2 Sources of Process Variations; 3.2.1 Special Causes of Coating-Process Variation; 3.2.2 Stochastic Nature of a Spray Process; 3.2.2.1 Arc and Jet Pulsations
3.2.2.2 Powder-Size Distribution3.2.2.3 Powder Injection; 3.2.2.4 Powder Shape; 3.2.2.5 Particle Bonding; 3.2.2.6 Gun and Component Motion and Positioning; 3.2.3 Drifting; 3.2.4 Stability of the Quality Control; 3.3 Process Capability and Stable Process; 3.3.1 Definition of Process Capability; 3.3.2 Definition of a Stable Coating Process; 3.3.3 Operational Window; 3.3.4 What Process Capability is Required?; 3.3.5 Additional Factors that Affect the Process Capability; 3.3.6 Case Study: Achievable Process Capability; 3.3.6.1 Part Complexity
3.3.6.2 Mutual Position of the Gun and Component Fixtures
Record Nr. UNINA-9910830188403321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal spraying for power generation components / / Klaus Erich Schneider ... [et al.]
Thermal spraying for power generation components / / Klaus Erich Schneider ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (287 p.)
Disciplina 671.734
Altri autori (Persone) SchneiderKlaus Erich
Soggetto topico Metal spraying
Power (Mechanics)
ISBN 1-280-72287-8
9786610722877
3-527-60934-2
3-527-60938-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thermal Spraying for Power Generation Components; Preface; Acknowledgement; The Authors of this Book; Contents; 1 Introduction; 1.1 Requirements for Materials and Coatings in Powerplants; 1.2 Examples of Coatings in Gas Turbines; 1.3 Definition of Thermal Spraying (THSP); 1.4 Thermal-Spraying Systems; 1.5 Coatings for Power-Generation Components; 1.6 The Complete Manufacturing and Coating Process; 1.7 Coating-Process Development; 1.8 Tasks for "Target" Readers; 2 Practical Experience Today; 2.1 Coating Processes; 2.2 Basics of Thermal Spraying; 2.3 Feedstock; 2.3.1 Wire; 2.3.2 Powder
2.3.2.1 Powder Types2.3.2.2 Powder-Production Processes and Morphologies; 2.3.2.3 Powder Characterization; 2.3.2.4 Powders for Power-Generation Applications; 2.4 Thermal-Spraying Equipment; 2.4.1 Example of a Low-Pressure Plasma-Coating System; 2.4.2 Flame and Arc Spray Torches; 2.4.3 HVOF Process; 2.4.3.1 Comparison of HVOF Fuels; 2.4.3.2 A Brief Overview of the Major Existing HVOF Systems; 2.4.3.3 Possible Improvements of HVOF Systems; 2.4.4 Plasma Process; 2.4.4.1 A Brief Overview of Plasma Torches; 2.4.4.2 Possible Improvements of Plasma Systems
2.5 Work Flow and Important Coating Hardware2.5.1 Powder Preparation and Powder-Delivery System; 2.5.1.1 Powder Preparation; 2.5.1.2 Powder Delivery and Injection System; 2.5.1.3 Powder Injection and Plasma/Hot Gas Jet; 2.5.1.4 Injector Plugging and "Spitting"; 2.5.1.5 Powder Buildup at the Front Nozzle Wall; 2.5.2 Cooling System; 2.5.3 Power-Supply System; 2.5.4 Gas Supply and Distribution System; 2.5.5 Manipulation Systems; 2.5.6 Fixtures and Masking; 2.6 Examples of Coated Power-Generation Components; 2.7 Production Experience; 2.7.1 Surface Preparation
2.7.1.1 Internal Plasma and Transferred Arc2.7.2 Process and Systems; 2.7.2.1 The Programming of the Coating Process; 2.7.3 Finishing; 2.7.4 Repair of Turbine Parts; 2.7.4.1 Coating Removal, Stripping; 2.7.4.2 Restoration of the Base Materials; 2.7.4.3 Refurbishing, Recoating; 2.8 Commercial; 2.8.1 General; 2.8.2 Surface Preparation; 2.8.3 Coating Equipment; 2.8.4 Finishing; 3 Quality and Process Capability; 3.1 Quality Assurance; 3.2 Sources of Process Variations; 3.2.1 Special Causes of Coating-Process Variation; 3.2.2 Stochastic Nature of a Spray Process; 3.2.2.1 Arc and Jet Pulsations
3.2.2.2 Powder-Size Distribution3.2.2.3 Powder Injection; 3.2.2.4 Powder Shape; 3.2.2.5 Particle Bonding; 3.2.2.6 Gun and Component Motion and Positioning; 3.2.3 Drifting; 3.2.4 Stability of the Quality Control; 3.3 Process Capability and Stable Process; 3.3.1 Definition of Process Capability; 3.3.2 Definition of a Stable Coating Process; 3.3.3 Operational Window; 3.3.4 What Process Capability is Required?; 3.3.5 Additional Factors that Affect the Process Capability; 3.3.6 Case Study: Achievable Process Capability; 3.3.6.1 Part Complexity
3.3.6.2 Mutual Position of the Gun and Component Fixtures
Record Nr. UNINA-9910841622703321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui