top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Autore Budevski E (Evgeni)
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (424 p.)
Disciplina 541.37
670.7/32
670.732
Altri autori (Persone) StaikovGeorgi
LorenzW. J
Collana Advances in electrochemical science and engineering
Soggetto topico Electroplating
Metals - Surfaces
Crystal growth
Soggetto genere / forma Electronic books.
ISBN 1-281-75852-3
9786611758523
3-527-61493-1
3-527-61492-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrochemical Phase Formation and Growth; Contents; 1 Fundamentals of Electrocrystallization of Metals; 1.1 Thermodynamic and Kinetic Aspects; 1.2 Metal Deposition Mechanisms; 1.3 Topics of this Book; 2 Crystalline Metal Surfaces; 2.1 Structural Aspects; Close-packed 2D and 3D crystal structures; Crystal imperfections and surface inhomogeneities; Surface reconstruction; Surface roughness and the kink position; Step roughness; 2.2 Atomic Dynamics; Atom exchange frequencies; Local, partial, and overall current densities; Kink atoms and the Nernst equilibrium potential
Exchange current density of kink atomsConcentration of adatoms; Exchange current density of adatoms; Mean residence time and surface displacement of adatoms; 2.3 Surface Profile Mobility; Surface diffusion and mean displacement of adatoms; Surface diffusion . The exact solution; Direct transfer; Current density on a stepped crystal face; 2.4 Conclusions; 3 Underpotential Deposition of Metals-2D Phases; 3.1 Historical Background; 3.2 Phenomenology; 3.3 Thermodynamics; Thermodynamic formalism; Adsorption isotherm models; Experimental results; 3.4 Structures of 2D Meads Phases
Degree of registryInternal strain; Electrochemical results; Comparative and ex situ UHV results; In situ surface analytical results; 3.5 Kinetics; Quasi-homogeneous substrate surface approach; Inhomogeneous substrate surface approach; Phase transitions; 3.6 2D and 3D Me-S Alloy Formation; Phenomenology; Thermodynamics; Structures of 2D and 3D Me-alloys; Kinetics; 3.7 Conclusion; 4 Initial Stages of Bulk Phase Formation; 4.1 Equilibrium Form of Crystals and Forms of Growth; Equilibrium form; Crystal-substrate interaction; Gibbs-Wulff-Kaishew theorem; Two dimensional crystal; Forms of growth
Energy of cluster formation3D nucleation; 2D nucleation; Gibbs-Thomson equation; 4.2 Nucleation Rate; Classical approach (Volmer and Weber); Kinetic approach (Becker and Doering); Binding energies and energy of nucleation; Atomistic model; Nucleation rate equation; Small cluster model; Experimental results; 4.3 3D Phase Formation on UPD Modified Foreign Substrate Surfaces; UPD-OPD transitions; Nucleation and growth; Epitaxy; Experimental results; 4.4 Conclusions; 5 Growth of Crystalline Faces; 5.1 Dislocation-Free Crystal Faces; Preparation of single crystal faces by electrodeposition
Double pulse techniqueNucleation rate-overvoltage dependence; Time distribution of the nucleation events; Form of growth of monatomic layers; Propagation rate of monatomic steps; Space distribution of nucleation events; Propagation rate of polyatomic steps; Mechanism of metal deposition and adatom concentration; 5.2 Growth Kinetics of Perfect Faces; Mononuclear layer-by-layer growth; Multinuclear monolayer formation; Deposition kinetics on quasi-perfect crystal faces; 5.3 Real Crystal Faces; Dislocations; Spiral growth mechanism; Theory of spiral growth; Growth morphology
Steady state and transient current densities
Record Nr. UNINA-9910144261803321
Budevski E (Evgeni)  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Autore Budevski E (Evgeni)
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (424 p.)
Disciplina 541.37
670.7/32
670.732
Altri autori (Persone) StaikovGeorgi
LorenzW. J
Collana Advances in electrochemical science and engineering
Soggetto topico Electroplating
Metals - Surfaces
Crystal growth
ISBN 1-281-75852-3
9786611758523
3-527-61493-1
3-527-61492-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrochemical Phase Formation and Growth; Contents; 1 Fundamentals of Electrocrystallization of Metals; 1.1 Thermodynamic and Kinetic Aspects; 1.2 Metal Deposition Mechanisms; 1.3 Topics of this Book; 2 Crystalline Metal Surfaces; 2.1 Structural Aspects; Close-packed 2D and 3D crystal structures; Crystal imperfections and surface inhomogeneities; Surface reconstruction; Surface roughness and the kink position; Step roughness; 2.2 Atomic Dynamics; Atom exchange frequencies; Local, partial, and overall current densities; Kink atoms and the Nernst equilibrium potential
Exchange current density of kink atomsConcentration of adatoms; Exchange current density of adatoms; Mean residence time and surface displacement of adatoms; 2.3 Surface Profile Mobility; Surface diffusion and mean displacement of adatoms; Surface diffusion . The exact solution; Direct transfer; Current density on a stepped crystal face; 2.4 Conclusions; 3 Underpotential Deposition of Metals-2D Phases; 3.1 Historical Background; 3.2 Phenomenology; 3.3 Thermodynamics; Thermodynamic formalism; Adsorption isotherm models; Experimental results; 3.4 Structures of 2D Meads Phases
Degree of registryInternal strain; Electrochemical results; Comparative and ex situ UHV results; In situ surface analytical results; 3.5 Kinetics; Quasi-homogeneous substrate surface approach; Inhomogeneous substrate surface approach; Phase transitions; 3.6 2D and 3D Me-S Alloy Formation; Phenomenology; Thermodynamics; Structures of 2D and 3D Me-alloys; Kinetics; 3.7 Conclusion; 4 Initial Stages of Bulk Phase Formation; 4.1 Equilibrium Form of Crystals and Forms of Growth; Equilibrium form; Crystal-substrate interaction; Gibbs-Wulff-Kaishew theorem; Two dimensional crystal; Forms of growth
Energy of cluster formation3D nucleation; 2D nucleation; Gibbs-Thomson equation; 4.2 Nucleation Rate; Classical approach (Volmer and Weber); Kinetic approach (Becker and Doering); Binding energies and energy of nucleation; Atomistic model; Nucleation rate equation; Small cluster model; Experimental results; 4.3 3D Phase Formation on UPD Modified Foreign Substrate Surfaces; UPD-OPD transitions; Nucleation and growth; Epitaxy; Experimental results; 4.4 Conclusions; 5 Growth of Crystalline Faces; 5.1 Dislocation-Free Crystal Faces; Preparation of single crystal faces by electrodeposition
Double pulse techniqueNucleation rate-overvoltage dependence; Time distribution of the nucleation events; Form of growth of monatomic layers; Propagation rate of monatomic steps; Space distribution of nucleation events; Propagation rate of polyatomic steps; Mechanism of metal deposition and adatom concentration; 5.2 Growth Kinetics of Perfect Faces; Mononuclear layer-by-layer growth; Multinuclear monolayer formation; Deposition kinetics on quasi-perfect crystal faces; 5.3 Real Crystal Faces; Dislocations; Spiral growth mechanism; Theory of spiral growth; Growth morphology
Steady state and transient current densities
Record Nr. UNISA-996203158703316
Budevski E (Evgeni)  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Autore Budevski E (Evgeni)
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (424 p.)
Disciplina 541.37
670.7/32
670.732
Altri autori (Persone) StaikovGeorgi
LorenzW. J
Collana Advances in electrochemical science and engineering
Soggetto topico Electroplating
Metals - Surfaces
Crystal growth
ISBN 1-281-75852-3
9786611758523
3-527-61493-1
3-527-61492-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrochemical Phase Formation and Growth; Contents; 1 Fundamentals of Electrocrystallization of Metals; 1.1 Thermodynamic and Kinetic Aspects; 1.2 Metal Deposition Mechanisms; 1.3 Topics of this Book; 2 Crystalline Metal Surfaces; 2.1 Structural Aspects; Close-packed 2D and 3D crystal structures; Crystal imperfections and surface inhomogeneities; Surface reconstruction; Surface roughness and the kink position; Step roughness; 2.2 Atomic Dynamics; Atom exchange frequencies; Local, partial, and overall current densities; Kink atoms and the Nernst equilibrium potential
Exchange current density of kink atomsConcentration of adatoms; Exchange current density of adatoms; Mean residence time and surface displacement of adatoms; 2.3 Surface Profile Mobility; Surface diffusion and mean displacement of adatoms; Surface diffusion . The exact solution; Direct transfer; Current density on a stepped crystal face; 2.4 Conclusions; 3 Underpotential Deposition of Metals-2D Phases; 3.1 Historical Background; 3.2 Phenomenology; 3.3 Thermodynamics; Thermodynamic formalism; Adsorption isotherm models; Experimental results; 3.4 Structures of 2D Meads Phases
Degree of registryInternal strain; Electrochemical results; Comparative and ex situ UHV results; In situ surface analytical results; 3.5 Kinetics; Quasi-homogeneous substrate surface approach; Inhomogeneous substrate surface approach; Phase transitions; 3.6 2D and 3D Me-S Alloy Formation; Phenomenology; Thermodynamics; Structures of 2D and 3D Me-alloys; Kinetics; 3.7 Conclusion; 4 Initial Stages of Bulk Phase Formation; 4.1 Equilibrium Form of Crystals and Forms of Growth; Equilibrium form; Crystal-substrate interaction; Gibbs-Wulff-Kaishew theorem; Two dimensional crystal; Forms of growth
Energy of cluster formation3D nucleation; 2D nucleation; Gibbs-Thomson equation; 4.2 Nucleation Rate; Classical approach (Volmer and Weber); Kinetic approach (Becker and Doering); Binding energies and energy of nucleation; Atomistic model; Nucleation rate equation; Small cluster model; Experimental results; 4.3 3D Phase Formation on UPD Modified Foreign Substrate Surfaces; UPD-OPD transitions; Nucleation and growth; Epitaxy; Experimental results; 4.4 Conclusions; 5 Growth of Crystalline Faces; 5.1 Dislocation-Free Crystal Faces; Preparation of single crystal faces by electrodeposition
Double pulse techniqueNucleation rate-overvoltage dependence; Time distribution of the nucleation events; Form of growth of monatomic layers; Propagation rate of monatomic steps; Space distribution of nucleation events; Propagation rate of polyatomic steps; Mechanism of metal deposition and adatom concentration; 5.2 Growth Kinetics of Perfect Faces; Mononuclear layer-by-layer growth; Multinuclear monolayer formation; Deposition kinetics on quasi-perfect crystal faces; 5.3 Real Crystal Faces; Dislocations; Spiral growth mechanism; Theory of spiral growth; Growth morphology
Steady state and transient current densities
Record Nr. UNINA-9910830791003321
Budevski E (Evgeni)  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Electrochemical phase formation and growth [[electronic resource] ] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Autore Budevski E (Evgeni)
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (424 p.)
Disciplina 541.37
670.7/32
670.732
Altri autori (Persone) StaikovGeorgi
LorenzW. J
Collana Advances in electrochemical science and engineering
Soggetto topico Electroplating
Metals - Surfaces
Crystal growth
ISBN 1-281-75852-3
9786611758523
3-527-61493-1
3-527-61492-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrochemical Phase Formation and Growth; Contents; 1 Fundamentals of Electrocrystallization of Metals; 1.1 Thermodynamic and Kinetic Aspects; 1.2 Metal Deposition Mechanisms; 1.3 Topics of this Book; 2 Crystalline Metal Surfaces; 2.1 Structural Aspects; Close-packed 2D and 3D crystal structures; Crystal imperfections and surface inhomogeneities; Surface reconstruction; Surface roughness and the kink position; Step roughness; 2.2 Atomic Dynamics; Atom exchange frequencies; Local, partial, and overall current densities; Kink atoms and the Nernst equilibrium potential
Exchange current density of kink atomsConcentration of adatoms; Exchange current density of adatoms; Mean residence time and surface displacement of adatoms; 2.3 Surface Profile Mobility; Surface diffusion and mean displacement of adatoms; Surface diffusion . The exact solution; Direct transfer; Current density on a stepped crystal face; 2.4 Conclusions; 3 Underpotential Deposition of Metals-2D Phases; 3.1 Historical Background; 3.2 Phenomenology; 3.3 Thermodynamics; Thermodynamic formalism; Adsorption isotherm models; Experimental results; 3.4 Structures of 2D Meads Phases
Degree of registryInternal strain; Electrochemical results; Comparative and ex situ UHV results; In situ surface analytical results; 3.5 Kinetics; Quasi-homogeneous substrate surface approach; Inhomogeneous substrate surface approach; Phase transitions; 3.6 2D and 3D Me-S Alloy Formation; Phenomenology; Thermodynamics; Structures of 2D and 3D Me-alloys; Kinetics; 3.7 Conclusion; 4 Initial Stages of Bulk Phase Formation; 4.1 Equilibrium Form of Crystals and Forms of Growth; Equilibrium form; Crystal-substrate interaction; Gibbs-Wulff-Kaishew theorem; Two dimensional crystal; Forms of growth
Energy of cluster formation3D nucleation; 2D nucleation; Gibbs-Thomson equation; 4.2 Nucleation Rate; Classical approach (Volmer and Weber); Kinetic approach (Becker and Doering); Binding energies and energy of nucleation; Atomistic model; Nucleation rate equation; Small cluster model; Experimental results; 4.3 3D Phase Formation on UPD Modified Foreign Substrate Surfaces; UPD-OPD transitions; Nucleation and growth; Epitaxy; Experimental results; 4.4 Conclusions; 5 Growth of Crystalline Faces; 5.1 Dislocation-Free Crystal Faces; Preparation of single crystal faces by electrodeposition
Double pulse techniqueNucleation rate-overvoltage dependence; Time distribution of the nucleation events; Form of growth of monatomic layers; Propagation rate of monatomic steps; Space distribution of nucleation events; Propagation rate of polyatomic steps; Mechanism of metal deposition and adatom concentration; 5.2 Growth Kinetics of Perfect Faces; Mononuclear layer-by-layer growth; Multinuclear monolayer formation; Deposition kinetics on quasi-perfect crystal faces; 5.3 Real Crystal Faces; Dislocations; Spiral growth mechanism; Theory of spiral growth; Growth morphology
Steady state and transient current densities
Record Nr. UNINA-9910841017703321
Budevski E (Evgeni)  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui