top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Practical process control [[electronic resource] ] : tuning and troubleshooting / / Cecil L. Smith
Practical process control [[electronic resource] ] : tuning and troubleshooting / / Cecil L. Smith
Autore Smith Cecil L
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (445 p.)
Disciplina 670.42
670.42/75
670.4275
Soggetto topico Process control
Soggetto genere / forma Electronic books.
ISBN 1-282-02212-1
9786612022128
0-470-43148-2
0-470-43149-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PRACTICAL PROCESS CONTROL; CONTENTS; Preface; 1. Introduction; 1.1 The Process Industries and Regulatory Control; 1.2 P&I Diagrams; 1.3 Regulatory Control Example; 1.4 Control Loop; 1.5 Example Process; 1.6 Cascade Control; 1.7 Summary; Literature Cited; 2. Gain or Sensitivity; 2.1 Process Design Versus Process Control; 2.2 What Do We Mean by "Process Gain"; 2.3 Linear Versus Nonlinear Processes; 2.4 Operating Lines and Gains from Process Tests; 2.5 Action; 2.6 Impact of Process Nonlinearities on Tuning; 2.7 Scheduled Tuning; 2.8 Heat Transfer Processes; 2.9 Vacuum Processes; 2.10 Summary
Literature Cited3. Process Dynamics; 3.1 First-Order Lag and Time Constant; 3.2 Integrating Process; 3.3 Self-Regulated Versus Non-Self-Regulated Processes; 3.4 Dead Time; 3.5 Measurement Issues; 3.6 Effect of Dead Time on Loop Performance; 3.7 Mixing; 3.8 Process Models; 3.9 Approximating Time Constants; 3.10 Ultimate Gain and Ultimate Period; 3.11 Damping; 3.12 Simple Performance Measures; 3.13 The Integral Criteria; 3.14 Summary; 4. Controller Modes and Mode Selection; 4.1 Mode Characteristics; 4.2 Options for Tuning Coefficients; 4.3 Computing the PID Control Equation
4.4 Mode Combinations4.5 Flow Control; 4.6 Level Control; 4.7 Nonlinear Algorithms; 4.8 Level-to-Flow Cascade; 4.9 Summary; 5. Proportional Mode; 5.1 Control Equation; 5.2 Regulators; 5.3 The Proportional Band; 5.4 Bumpless Transfer; 5.5 Set-Point Changes; 5.6 Disturbance or Load Changes; 5.7 Proportional Control of Simple Models; 5.8 Adjusting the Controller Gain; 5.9 Tuning; 5.10 Summary; 6. Integral Mode; 6.1 Control Equation; 6.2 Open-Loop Behavior; 6.3 Effect of Reset Time; 6.4 PI Control of Simple Models; 6.5 Tuning; 6.6 Speed of Response; 6.7 Avoiding Sloppy Tuning
6.8 Suppressing the Proportional Kick6.9 Windup Protection; 6.10 Summary; Literature Cited; 7. Derivative Mode; 7.1 Control Equation; 7.2 Incorporating Derivative into the Control Equation; 7.3 PID Control Equations; 7.4 Effect of Derivative Time; 7.5 Getting the Most from Derivative; 7.6 PID Control of Simple Models; 7.7 Tuning; 7.8 Summary; 8. Tuning Methods; 8.1 What Is a Tuning Method; 8.2 Process Characterizations; 8.3 Ziegler-Nichols Closed Loop Method; 8.4 The Relay Method; 8.5 Open-Loop Methods; 8.6 Graphical Constructions and Nonlinear Regression; 8.7 Ziegler-Nichols Open-Loop Method
8.8 The Lambda Method8.9 IMC Method; 8.10 Integral Criteria Method; 8.11 Summary; Literature Cited; 9. Measurement Devices; 9.1 Steady-State Behavior; 9.2 Very Small Process Gain; 9.3 Temperature Measurements; 9.4 Filtering and Smoothing; 9.5 Summary; 10. Final Control Elements; 10.1 Valves and Flow Systems; 10.2 Valve Sizing; 10.3 Inherent Valve Characteristics; 10.4 Flow System Dominated by Control Valve; 10.5 Flow System Dominated by Process; 10.6 Valve Nonidealities; 10.7 Valve Positioner; 10.8 On-Off Control; 10.9 Time Proportioning Control; 10.10 Variable Speed Pumping; 10.11 Summary
Literature Cited
Record Nr. UNINA-9910146111603321
Smith Cecil L  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical process control [[electronic resource] ] : tuning and troubleshooting / / Cecil L. Smith
Practical process control [[electronic resource] ] : tuning and troubleshooting / / Cecil L. Smith
Autore Smith Cecil L
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (445 p.)
Disciplina 670.42
670.42/75
670.4275
Soggetto topico Process control
ISBN 1-282-02212-1
9786612022128
0-470-43148-2
0-470-43149-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PRACTICAL PROCESS CONTROL; CONTENTS; Preface; 1. Introduction; 1.1 The Process Industries and Regulatory Control; 1.2 P&I Diagrams; 1.3 Regulatory Control Example; 1.4 Control Loop; 1.5 Example Process; 1.6 Cascade Control; 1.7 Summary; Literature Cited; 2. Gain or Sensitivity; 2.1 Process Design Versus Process Control; 2.2 What Do We Mean by "Process Gain"; 2.3 Linear Versus Nonlinear Processes; 2.4 Operating Lines and Gains from Process Tests; 2.5 Action; 2.6 Impact of Process Nonlinearities on Tuning; 2.7 Scheduled Tuning; 2.8 Heat Transfer Processes; 2.9 Vacuum Processes; 2.10 Summary
Literature Cited3. Process Dynamics; 3.1 First-Order Lag and Time Constant; 3.2 Integrating Process; 3.3 Self-Regulated Versus Non-Self-Regulated Processes; 3.4 Dead Time; 3.5 Measurement Issues; 3.6 Effect of Dead Time on Loop Performance; 3.7 Mixing; 3.8 Process Models; 3.9 Approximating Time Constants; 3.10 Ultimate Gain and Ultimate Period; 3.11 Damping; 3.12 Simple Performance Measures; 3.13 The Integral Criteria; 3.14 Summary; 4. Controller Modes and Mode Selection; 4.1 Mode Characteristics; 4.2 Options for Tuning Coefficients; 4.3 Computing the PID Control Equation
4.4 Mode Combinations4.5 Flow Control; 4.6 Level Control; 4.7 Nonlinear Algorithms; 4.8 Level-to-Flow Cascade; 4.9 Summary; 5. Proportional Mode; 5.1 Control Equation; 5.2 Regulators; 5.3 The Proportional Band; 5.4 Bumpless Transfer; 5.5 Set-Point Changes; 5.6 Disturbance or Load Changes; 5.7 Proportional Control of Simple Models; 5.8 Adjusting the Controller Gain; 5.9 Tuning; 5.10 Summary; 6. Integral Mode; 6.1 Control Equation; 6.2 Open-Loop Behavior; 6.3 Effect of Reset Time; 6.4 PI Control of Simple Models; 6.5 Tuning; 6.6 Speed of Response; 6.7 Avoiding Sloppy Tuning
6.8 Suppressing the Proportional Kick6.9 Windup Protection; 6.10 Summary; Literature Cited; 7. Derivative Mode; 7.1 Control Equation; 7.2 Incorporating Derivative into the Control Equation; 7.3 PID Control Equations; 7.4 Effect of Derivative Time; 7.5 Getting the Most from Derivative; 7.6 PID Control of Simple Models; 7.7 Tuning; 7.8 Summary; 8. Tuning Methods; 8.1 What Is a Tuning Method; 8.2 Process Characterizations; 8.3 Ziegler-Nichols Closed Loop Method; 8.4 The Relay Method; 8.5 Open-Loop Methods; 8.6 Graphical Constructions and Nonlinear Regression; 8.7 Ziegler-Nichols Open-Loop Method
8.8 The Lambda Method8.9 IMC Method; 8.10 Integral Criteria Method; 8.11 Summary; Literature Cited; 9. Measurement Devices; 9.1 Steady-State Behavior; 9.2 Very Small Process Gain; 9.3 Temperature Measurements; 9.4 Filtering and Smoothing; 9.5 Summary; 10. Final Control Elements; 10.1 Valves and Flow Systems; 10.2 Valve Sizing; 10.3 Inherent Valve Characteristics; 10.4 Flow System Dominated by Control Valve; 10.5 Flow System Dominated by Process; 10.6 Valve Nonidealities; 10.7 Valve Positioner; 10.8 On-Off Control; 10.9 Time Proportioning Control; 10.10 Variable Speed Pumping; 10.11 Summary
Literature Cited
Record Nr. UNINA-9910830884803321
Smith Cecil L  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical process control : tuning and troubleshooting / / Cecil L. Smith
Practical process control : tuning and troubleshooting / / Cecil L. Smith
Autore Smith Cecil L
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (445 p.)
Disciplina 670.42/75
Soggetto topico Process control
ISBN 1-282-02212-1
9786612022128
0-470-43148-2
0-470-43149-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PRACTICAL PROCESS CONTROL; CONTENTS; Preface; 1. Introduction; 1.1 The Process Industries and Regulatory Control; 1.2 P&I Diagrams; 1.3 Regulatory Control Example; 1.4 Control Loop; 1.5 Example Process; 1.6 Cascade Control; 1.7 Summary; Literature Cited; 2. Gain or Sensitivity; 2.1 Process Design Versus Process Control; 2.2 What Do We Mean by "Process Gain"; 2.3 Linear Versus Nonlinear Processes; 2.4 Operating Lines and Gains from Process Tests; 2.5 Action; 2.6 Impact of Process Nonlinearities on Tuning; 2.7 Scheduled Tuning; 2.8 Heat Transfer Processes; 2.9 Vacuum Processes; 2.10 Summary
Literature Cited3. Process Dynamics; 3.1 First-Order Lag and Time Constant; 3.2 Integrating Process; 3.3 Self-Regulated Versus Non-Self-Regulated Processes; 3.4 Dead Time; 3.5 Measurement Issues; 3.6 Effect of Dead Time on Loop Performance; 3.7 Mixing; 3.8 Process Models; 3.9 Approximating Time Constants; 3.10 Ultimate Gain and Ultimate Period; 3.11 Damping; 3.12 Simple Performance Measures; 3.13 The Integral Criteria; 3.14 Summary; 4. Controller Modes and Mode Selection; 4.1 Mode Characteristics; 4.2 Options for Tuning Coefficients; 4.3 Computing the PID Control Equation
4.4 Mode Combinations4.5 Flow Control; 4.6 Level Control; 4.7 Nonlinear Algorithms; 4.8 Level-to-Flow Cascade; 4.9 Summary; 5. Proportional Mode; 5.1 Control Equation; 5.2 Regulators; 5.3 The Proportional Band; 5.4 Bumpless Transfer; 5.5 Set-Point Changes; 5.6 Disturbance or Load Changes; 5.7 Proportional Control of Simple Models; 5.8 Adjusting the Controller Gain; 5.9 Tuning; 5.10 Summary; 6. Integral Mode; 6.1 Control Equation; 6.2 Open-Loop Behavior; 6.3 Effect of Reset Time; 6.4 PI Control of Simple Models; 6.5 Tuning; 6.6 Speed of Response; 6.7 Avoiding Sloppy Tuning
6.8 Suppressing the Proportional Kick6.9 Windup Protection; 6.10 Summary; Literature Cited; 7. Derivative Mode; 7.1 Control Equation; 7.2 Incorporating Derivative into the Control Equation; 7.3 PID Control Equations; 7.4 Effect of Derivative Time; 7.5 Getting the Most from Derivative; 7.6 PID Control of Simple Models; 7.7 Tuning; 7.8 Summary; 8. Tuning Methods; 8.1 What Is a Tuning Method; 8.2 Process Characterizations; 8.3 Ziegler-Nichols Closed Loop Method; 8.4 The Relay Method; 8.5 Open-Loop Methods; 8.6 Graphical Constructions and Nonlinear Regression; 8.7 Ziegler-Nichols Open-Loop Method
8.8 The Lambda Method8.9 IMC Method; 8.10 Integral Criteria Method; 8.11 Summary; Literature Cited; 9. Measurement Devices; 9.1 Steady-State Behavior; 9.2 Very Small Process Gain; 9.3 Temperature Measurements; 9.4 Filtering and Smoothing; 9.5 Summary; 10. Final Control Elements; 10.1 Valves and Flow Systems; 10.2 Valve Sizing; 10.3 Inherent Valve Characteristics; 10.4 Flow System Dominated by Control Valve; 10.5 Flow System Dominated by Process; 10.6 Valve Nonidealities; 10.7 Valve Positioner; 10.8 On-Off Control; 10.9 Time Proportioning Control; 10.10 Variable Speed Pumping; 10.11 Summary
Literature Cited
Record Nr. UNINA-9910877611403321
Smith Cecil L  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui