top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Activiation of carbon dioxide [[electronic resource] /] / edited by Steven L. Suib
Activiation of carbon dioxide [[electronic resource] /] / edited by Steven L. Suib
Pubbl/distr/stampa Amsterdam, : Elsevier, 2013
Descrizione fisica 1 online resource (659 p.)
Disciplina 665.89
Altri autori (Persone) SuibSteven L
Collana New and future developments in catalysis
Soggetto topico Carbon dioxide
Catalysis
Soggetto genere / forma Electronic books.
ISBN 0-444-53883-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Half Title; Title Page; Copyright; Contents; Introduction; Contributors; 1 Catalytic Processes for Activation of CO2; 1.1 Introduction; 1.2 Reactions of CO2 with hydrogen; 1.2.1 Hydrogenation of CO2 to Methanol; 1.2.2 Dimethyl Ether Synthesis; 1.2.3 Formic Acid Synthesis; 1.2.4 CO2 Hydrogenation to CH4; 1.2.5 CO Production via the Reverse Water-Gas Shift Reaction (RWGS); 1.2.6 Higher Hydrocarbon Synthesis; 1.2.7 CO2 Hydrogenation to Higher Alcohols; 1.3 CO2-assisted reactions; 1.3.1 CO2 Reforming of Methane; 1.3.2 CO2 Reforming of Ethanol and Higher Alcohols
1.3.3 Oxidative Dehydrogenation in the Presence of CO21.4 CO2 insertion reactions; 1.4.1 Organic Carbonates; 1.4.2 Carboxylic Acids; 1.5 Concluding remarks and outlook; References; 2 Surface Science Studies of Carbon Dioxide Chemistry; 2.1 Introduction-why study CO2 adsorption on surfaces?; 2.2 Metal surfaces; 2.2.1 Copper; 2.2.2 Antimony; 2.2.3 Chromium; 2.3 Metal oxides; 2.3.1 TiO2; 2.3.2 ZnO; 2.3.3 CaO; 2.3.3.1 Why Are Alkaline Earth Oxides Particularly Interesting?; 2.3.3.2 Co2 Adsorption And Carbonate Formation On CaO Single Crystals; 2.2.4 CrxOy; 2.4 Non-metals; 2.5 Bimetallic systems
2.6 Cluster systems 2.6.1 Copper Clusters on Zinc Oxide; 2.6.2 Iron Oxide Clusters on Graphite; 2.7 Nanostructured catalysts; 2.8 Theoretical studies; 2.9 Appendix; 2.9.1 Standard Adsorption Dynamics Models; 2.9.2 A Few Surface Science Measuring Techniques; Acknowledgments; References; 3 Mechanistic Understanding of Catalytic CO2 Activation from First Principles Theory; 3.1 Background; 3.2 CO2 activation and hydrogenation on transition metal surface; 3.2.1 Methanol from CO2 Hydrogenation on Cu Surfaces; 3.2.2 Methanol from CO2 Hydrogenation on Modified Cu Surfaces
3.2.3 CO2 Hydrogenation on Ni(1 1 0) and Ni(1 1 1)3.3 CO2 activation and hydrogenation on oxide supports; 3.4 CO2 activation and hydrogenation on oxide supported metal catalysts; 3.5 Concluding Remarks; Acknowledgment; References; 4 Catalytic Activation and Conversion of Carbon Dioxide into Fuels/Value-Added Chemicals Through C-C Bond Formation; 4.1 Introduction; 4.2 Chemical activation of carbon dioxide; 4.2.1 Coordination Chemistry of CO2 and Metals; 4.2.1.1 Molecular Geometry and Spectroscopic Properties of CO2; 4.2.1.2 Interaction of CO2 with Metals
4.2.2 Synthesis and Characterization of Stable Complexes of CO2 with Metals 4.2.2.1 General Characterization Methods; 4.2.2.2 Synthesis of Stable CO2-Metal Complexes; 4.2.2.3 Stable Complexes of CO2 Coordinated to Metals; 4.2.2.3.1 Coordination via a CE0B8;O double bond; 4.2.2.3.2 Coordination via carbon only; 4.2.2.3.3 Coordination via oxygen only; 4.2.2.3.4 CO2 as Bridging Ligand; 4.2.3 Reactivity of Complexes of CO2 with Metals; 4.2.3.1 C-O Bond Cleavage and Oxygen Transfer; 4.2.3.2 Reactions with Electrophiles; 4.2.3.3 Reactions with Nucleophiles
4.2.4 Activation of CO2 Using N-Heterocyclic Carbenes and FLPs
Record Nr. UNINA-9910452269903321
Amsterdam, : Elsevier, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon dioxide sensing : fundamentals, principles, and applications / / edited by Gerald Gerlach, Ulrich Guth, Wolfram Oelssner
Carbon dioxide sensing : fundamentals, principles, and applications / / edited by Gerald Gerlach, Ulrich Guth, Wolfram Oelssner
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (445 pages)
Disciplina 665.89
Soggetto topico Carbon dioxide - Measurement
Soggetto genere / forma Electronic books.
ISBN 3-527-68827-7
1-5231-2795-3
3-527-68829-3
3-527-68830-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555180603321
Weinheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon dioxide sensing : fundamentals, principles, and applications / / edited by Gerald Gerlach, Ulrich Guth, Wolfram Oelssner
Carbon dioxide sensing : fundamentals, principles, and applications / / edited by Gerald Gerlach, Ulrich Guth, Wolfram Oelssner
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (445 pages)
Disciplina 665.89
Soggetto topico Carbon dioxide - Measurement
ISBN 3-527-68827-7
1-5231-2795-3
3-527-68829-3
3-527-68830-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto General. Introduction / Wolfram Oelssner -- Carbon Dioxide in General / Detlev Möller, Manfred Decker, Jens Zosel, Wolfram Oelssner -- Principles of Carbon Dioxide Sensors and measuring Methods. Analytical Methods for the Detection of Gaseous CO2 / Gerald Gerlach, Armin Lambrecht, Wolfram Oelssner -- Electrochemical CO2 Sensors with Liquid or Pasty Electrolyte / Manfred Decker, Wolfram Oelssner, Jens Zosel -- Potentiometric CO2 Sensors with Solid Electrolyte / Hans Ulrich Guth -- Opto-Chemical CO2 Sensors / Gerald Gerlach, Wolfram Oelssner -- Non-dispersive Infrared Sensors / Gerald Gerlach -- Photoacoustic Detection of CO2 / Frank Kühnemann -- Acoustic CO2 Sensors / Gerald Gerlach -- Miscellaneous Approaches / Wolfram Oelssner, Manfred Decker, Gerald Gerlach -- Survey and Comparison of Methods / Hans Ulrich Guth, Gerald Gerlach, Wolfram Oelssner -- Applications. Environmental CO2 Monitoring / Detlev Möller, Wolfram Oelssner -- CO2 Safety Control / Wolfram Oelssner -- CO2 Measurement in Biotechnology and Industrial Processes / Wolfram Oelssner, Jens Zosel -- CO2 Measurements in Biology / Wolfram Oelssner -- CO2 Sensing in Medicine / Gerald Urban, Josef Guttmann, Jochen Kieninger, Andreas Weltin, Jürgen Wöllenstein, Jens Zosel.
Record Nr. UNINA-9910830042803321
Weinheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon dioxide sequestration and related technologies [[electronic resource] /] / edited by Ying (Alice) Wu, John J. Carroll and Zhimin Du
Carbon dioxide sequestration and related technologies [[electronic resource] /] / edited by Ying (Alice) Wu, John J. Carroll and Zhimin Du
Pubbl/distr/stampa Hoboken, N.J., : Scrivener Wiley, 2011
Descrizione fisica 1 online resource (510 p.)
Disciplina 665.89
Altri autori (Persone) CarrollJohn J
WuYing (Alice)
DuZhimin
Collana Advances in natural gas engineering
Soggetto topico Carbon dioxide mitigation
Carbon sequestration
Gas wells
Soggetto genere / forma Electronic books.
ISBN 1-283-29499-0
9786613294999
1-118-17553-0
1-61344-888-0
1-118-17555-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto section 1. Data and correlation -- section 2. Process engineering -- section 3. Reservoir engineering -- section 4. Enhanced Oil Recovery (EOR) -- section 5. Geology and geochemistry -- section 6. Well technology -- section 7. Corrosion.
Record Nr. UNINA-9910139572903321
Hoboken, N.J., : Scrivener Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 : rifiuto o risorsa? : recupero, confinamento ed utilizzazione di CO2 / Michele Aresta
CO2 : rifiuto o risorsa? : recupero, confinamento ed utilizzazione di CO2 / Michele Aresta
Autore Aresta, Michele
Pubbl/distr/stampa Roma : De Vittoria, 2011
Descrizione fisica 110 p. : ill. ; 24 cm
Disciplina 665.89
Collana Quaderno dell'energia ; 1
Soggetto topico Carbon dioxide - Environmental aspects
Atmospheric carbon dioxide
Climatic changes - Risk management
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991002383519707536
Aresta, Michele  
Roma : De Vittoria, 2011
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
CO2 : a valuable source of carbon / / Marcello De Falco, Gaetano Iaquaniello, Gabriele Centi, editors
CO2 : a valuable source of carbon / / Marcello De Falco, Gaetano Iaquaniello, Gabriele Centi, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa London : , : Springer, , 2013
Descrizione fisica 1 online resource (xvi, 194 pages) : illustrations (some color)
Disciplina 665.89
Collana Green Energy and Technology
Soggetto topico Carbon sequestration
Renewable energy sources
ISBN 1-4471-5119-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword; Preface; Acknowledgments; Contents; Contributors; 1 Strategy and Drivers for CO2 (Re)use; Abstract; 1...Introduction; 2...Sources of CO2Sources of CO2; 3...Accounting the use of CO2; 4...Paths for the use of CO2; 4.1 Evaluating the Alternative Routes and Their Possible Impact; 4.2 Steps Toward a CO2 Economy; 5...CO2 as a Valuable Carbon Source; 5.1 CO2-Based Polymers; 5.1.1 PolycarbonatePolycarbonate via Monomeric Cyclic Carbonate; 5.1.2 Alternating Polyolefinpolyolefin Carbonate Polymers; 5.1.3 Polyether CarbonatePolyether carbonate Polyols; 5.2 Synthesis of Light Olefins from CO2
6...A Path to the Future: Multifunctional Single Devices for Converting CO27...Conclusions; Acknowledgments; References; 2 Realizing Resource and Energy Efficiency in Chemical Industry by Using CO2; Abstract; 1...Introduction; 1.1 The Use of Renewable Energyrenewable energy in Chemical Processeschemical processes; 2...CO2 (Re)useCO2 (re)use and Energy Vectors: Toward Solar Fuelssolar fuels; 3...Power-to-Gas; 4...Routes for Converting CO2; 5...Producing Renewable H2; 5.1 Current Status; 5.2 Ongoing Activities to Establish New Sustainable Routes; 6...Conclusions; Acknowledgments; References
3 Renewable Syngas Production via Dry Reforming of MethaneAbstract; 1...Introduction; 2...The Reaction of Dry ReformingDry Reforming of MethaneMethane; 2.1 Thermodynamic Considerations; 2.2 Current Challenges with DRM Reaction; 2.3 Reaction MechanismReaction mechanism; 2.3.1 CH4 Adsorption and Activation; 2.3.2 CO2 AdsorptionCO2 adsorption and Activation; 2.3.3 Surface Reactions; 3...CatalystCatalyst Developments; 3.1 Noble Metal Catalystscatalysts; 3.2 Nickel Catalystscatalysts; 3.3 Bimetallic Catalystcatalysts; 3.4 Perovskite- and Pyrochlore-Based Catalystscatalysts
4...Exploitation of Biogasbiogas for DRM Reaction4.1 BiogasBiogas Purification Methods; 5...Conclusions; Acknowledgments; References; 4 Reuse of CO2 to Make Methanol Using Renewable Hydrogen; Abstract; 1...Introduction; 2...Description of New Process; 3...Economics Evaluations of the Proposed Scheme; 3.1 Capital InvestmentCapital investment Estimation; 3.2 Variable Operating Costs; 3.3 Production CostProduction cost of Methanol; 4...Sensitivity AnalysisSensitivity analysis on the Methanol Production CostProduction cost; 4.1 WACCWACC Impact; 4.2 Cost of CO2 Impact
4.3 Capital InvestmentCapital investment Impact4.4 Electricity Consumption of H2 Production; 5...Conclusion; References; 5 Ionic Liquids Applied to CO2 Fixation and Conversion; Abstract; 1...Introduction; 2...Functionalized ILsFunctionalized ILs for CO2 Capture; 2.1 Functionalized Cations; 2.2 Functionalized ILsFunctionalized ILs anions; 3...Mixtures of ILs and Amines for CO2 Capture; 4...Gas SeparationGas Separation: Ionic LiquidsIonic Liquids and Supported Liquid Membranessupported liquid membranes; 5...CO2 Capture and Utilization: AlgaeAlgae Fixation; 6...MicroalgaeMicroalgae to Biofuels: New Approaches
7...Conclusions
Record Nr. UNINA-9910741140503321
London : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 and CO as Feedstock [[electronic resource] ] : Sustainable Carbon Sources for the Circular Economy / / edited by Manfred Kircher, Thomas Schwarz
CO2 and CO as Feedstock [[electronic resource] ] : Sustainable Carbon Sources for the Circular Economy / / edited by Manfred Kircher, Thomas Schwarz
Autore Kircher Manfred
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (412 pages)
Disciplina 665.89
Altri autori (Persone) SchwarzThomas
Collana Circular Economy and Sustainability
Soggetto topico Earth sciences
Geography
Chemistry
Biotechnology
Economic geography
Engineering geology
Earth and Environmental Sciences
Economic Geography
Geoengineering
ISBN 3-031-27811-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CO2 and CO: sustainable carbon sources for circular value creation -- CO2: Sources and volumes -- Conventional processes for hydrogen production -- Alternative biological and biotechnological processes for hydrogen production -- Production of synthesis gas -- Chemical-catalytic conversion of CO2 and CO -- Microbial processes: Biocatalytic conversion -- Microbial processes for the conversion of CO2 und CO -- Microbial processes: Current developments in gas fermentation -- Microbial processes: Production of polyhydroxyalkanoates from CO2 -- Microbial processes: Photosynthetic microalgae -- Challenges in down streaming from chemical and biotechnological processes -- Utilization of C1 gas streams from steelworks -- Utilization of C1 gas streams from cement plants -- Utilization of C1 gas streams form power plants -- Utilization of C1 gas streams from chemical processes -- Utilization of C1 gas streams from bioprocesses including biogas plants -- Utilization of residuals and C1 gas streams: Organic waste, sludge and agricultural residuals -- Utilization of residuals and C1 gas streams: Pyrolysis process of Concord Blue -- Utilization of residuals and C1 gas streams: CO2 sources in agriculture -- Recycling CO2 from waste incineration closes carbon cycles -- Utilization of C1 gases: Impact on sustainability -- Regional Development -- Utilization of C1 gases: The regulatory framework -- R&D&I and industry examples: Challenges and opportunities in scaling up -- R&D&I and industry examples: Covestro’s Dream Production -- R&D&I and industry examples: LanzaTech’s gas fermentation -- R&D&I and industry examples: The CCU project Carbon2Chem -- R&D&I and industry examples: The CO2 electrorefinery - a new concept for carbon dioxide (CO2) capture and utilization (CCU).-R&D&I and industry examples: The vision of b.fab GmbH -- R&D&I and industry examples: Industrial gases as a carbon source for terpene production -- ZeroCarbFP: A two-step microbial conversion of CO2-rich off-gas into valuable products -- Introduction -- R&D&I and industry examples: Ineratec’s ICO2CHEM project to utilize CO2 -- Piloting, scale-up, and demonstration -- Final evaluation and summary.
Record Nr. UNINA-9910805577203321
Kircher Manfred  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (314 pages) : illustrations
Disciplina 665.89
Soggetto topico Carbon dioxide
Hydrogenation
Soggetto genere / forma Electronic books.
ISBN 3-527-82409-X
3-527-82411-1
3-527-82410-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century.
4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts.
7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity.
9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910555167603321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (314 pages) : illustrations
Disciplina 665.89
Soggetto topico Carbon dioxide
Hydrogenation
ISBN 3-527-82409-X
3-527-82411-1
3-527-82410-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century.
4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts.
7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity.
9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830849103321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
New and future developments in catalysis Activation of carbon dioxide / / edited by Steven L. Suib, Department of Chemistry and Chemical Engineering and Institute of Materials Science, The University of Connecticut, Storrs, CT 06269-3060
New and future developments in catalysis Activation of carbon dioxide / / edited by Steven L. Suib, Department of Chemistry and Chemical Engineering and Institute of Materials Science, The University of Connecticut, Storrs, CT 06269-3060
Pubbl/distr/stampa Amsterdam, : Elsevier, 2013
Descrizione fisica 1 online resource (xiii, 644 pages) : illustrations (some color)
Disciplina 665.89
Collana Gale eBooks
New and future developments in catalysis
Soggetto topico Carbon dioxide
Catalysis
ISBN 0-444-53883-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Half Title; Title Page; Copyright; Contents; Introduction; Contributors; 1 Catalytic Processes for Activation of CO2; 1.1 Introduction; 1.2 Reactions of CO2 with hydrogen; 1.2.1 Hydrogenation of CO2 to Methanol; 1.2.2 Dimethyl Ether Synthesis; 1.2.3 Formic Acid Synthesis; 1.2.4 CO2 Hydrogenation to CH4; 1.2.5 CO Production via the Reverse Water-Gas Shift Reaction (RWGS); 1.2.6 Higher Hydrocarbon Synthesis; 1.2.7 CO2 Hydrogenation to Higher Alcohols; 1.3 CO2-assisted reactions; 1.3.1 CO2 Reforming of Methane; 1.3.2 CO2 Reforming of Ethanol and Higher Alcohols
1.3.3 Oxidative Dehydrogenation in the Presence of CO21.4 CO2 insertion reactions; 1.4.1 Organic Carbonates; 1.4.2 Carboxylic Acids; 1.5 Concluding remarks and outlook; References; 2 Surface Science Studies of Carbon Dioxide Chemistry; 2.1 Introduction-why study CO2 adsorption on surfaces?; 2.2 Metal surfaces; 2.2.1 Copper; 2.2.2 Antimony; 2.2.3 Chromium; 2.3 Metal oxides; 2.3.1 TiO2; 2.3.2 ZnO; 2.3.3 CaO; 2.3.3.1 Why Are Alkaline Earth Oxides Particularly Interesting?; 2.3.3.2 Co2 Adsorption And Carbonate Formation On CaO Single Crystals; 2.2.4 CrxOy; 2.4 Non-metals; 2.5 Bimetallic systems
2.6 Cluster systems 2.6.1 Copper Clusters on Zinc Oxide; 2.6.2 Iron Oxide Clusters on Graphite; 2.7 Nanostructured catalysts; 2.8 Theoretical studies; 2.9 Appendix; 2.9.1 Standard Adsorption Dynamics Models; 2.9.2 A Few Surface Science Measuring Techniques; Acknowledgments; References; 3 Mechanistic Understanding of Catalytic CO2 Activation from First Principles Theory; 3.1 Background; 3.2 CO2 activation and hydrogenation on transition metal surface; 3.2.1 Methanol from CO2 Hydrogenation on Cu Surfaces; 3.2.2 Methanol from CO2 Hydrogenation on Modified Cu Surfaces
3.2.3 CO2 Hydrogenation on Ni(1 1 0) and Ni(1 1 1)3.3 CO2 activation and hydrogenation on oxide supports; 3.4 CO2 activation and hydrogenation on oxide supported metal catalysts; 3.5 Concluding Remarks; Acknowledgment; References; 4 Catalytic Activation and Conversion of Carbon Dioxide into Fuels/Value-Added Chemicals Through C-C Bond Formation; 4.1 Introduction; 4.2 Chemical activation of carbon dioxide; 4.2.1 Coordination Chemistry of CO2 and Metals; 4.2.1.1 Molecular Geometry and Spectroscopic Properties of CO2; 4.2.1.2 Interaction of CO2 with Metals
4.2.2 Synthesis and Characterization of Stable Complexes of CO2 with Metals 4.2.2.1 General Characterization Methods; 4.2.2.2 Synthesis of Stable CO2-Metal Complexes; 4.2.2.3 Stable Complexes of CO2 Coordinated to Metals; 4.2.2.3.1 Coordination via a CE0B8;O double bond; 4.2.2.3.2 Coordination via carbon only; 4.2.2.3.3 Coordination via oxygen only; 4.2.2.3.4 CO2 as Bridging Ligand; 4.2.3 Reactivity of Complexes of CO2 with Metals; 4.2.3.1 C-O Bond Cleavage and Oxygen Transfer; 4.2.3.2 Reactions with Electrophiles; 4.2.3.3 Reactions with Nucleophiles
4.2.4 Activation of CO2 Using N-Heterocyclic Carbenes and FLPs
Record Nr. UNINA-9910779870803321
Amsterdam, : Elsevier, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui