top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing, , 2016
Descrizione fisica 1 online resource (399 p.)
Disciplina 665.73
Collana Advances in Natural Gas Engineering
Soggetto topico Gas extraction
Natural gas - Environmental aspects
ISBN 1-118-93862-3
1-5231-0998-X
1-118-93865-8
1-118-93863-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910137484303321
Hoboken, New Jersey : , : Scrivener Publishing, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing, , 2016
Descrizione fisica 1 online resource (399 p.)
Disciplina 665.73
Collana Advances in Natural Gas Engineering
Soggetto topico Gas extraction
Natural gas - Environmental aspects
ISBN 1-118-93862-3
1-5231-0998-X
1-118-93865-8
1-118-93863-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910807946003321
Hoboken, New Jersey : , : Scrivener Publishing, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (320 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Chemical engineering
ISBN 9780443192241
0443192243
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Front Matter -- Natural Gas Impurities and Condensate Removal -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Particulates and condensates removalfrom natural gas -- 1 - Introduction to nonacidic impurities of natural gas: Particulates, condensates, mercury, nitrogen, helium -- 1. Introduction -- 1.1 Natural gas categories based on chemical composition -- 1.1.1 Hydrocarbon percentage -- 1.1.2 Quantity of sulfur -- 1.2 Natural gas processing -- 2. The constituents of natural gas -- 2.1 Hydrocarbon constituents -- 2.2 Nonhydrocarbon constituents -- 2.2.1 The diluents -- 2.2.2 Pollutants -- 2.2.3 Solid matter -- 3. Mercury cycle -- 3.1 Physical properties of mercury -- 3.2 Chemical substance characteristics -- 4. Helium -- 4.1 Characteristics of helium -- 5. Nitrogen -- 6. Nonacidic component removal from natural gas -- 6.1 Hydrocarbon removal from liquid -- 6.2 Removing mercury -- 6.2.1 Nonregenerative processes -- 6.2.2 Regenerative process -- 6.3 Elimination of miniscule substances -- 7. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 2 - Arsenic removal from natural gas condensate -- 1. Introduction -- 2. Arsenic removal -- 2.1 Pyrolysis -- 2.2 Adsorption processes -- 2.3 Absorption process -- 3. Case study -- 4. The effects of arsenic exposure on human health -- 4.1 The adverse effects of arsenic exposure on human health -- 4.1.1 Impacts on lungs -- 4.1.2 Impacts on hemoglobin -- 4.1.3 Carcinogenicity -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Condensate stabilization process -- 1. Introduction -- 2. Condensate stabilization -- 2.1 Cascade flash separation for condensate stabilization -- 2.2 Stabilization by distillation -- 2.2.1 Condensate production -- 2.3 Cold-feed distillation tower.
3. Design considerations of stabilization column -- 4. Trays and packing -- 4.1 Trays -- 4.2 Packing -- 4.3 Trays or packaging -- 4.3.1 Distillation service -- 4.3.2 Stripping service -- 5. Storage of condensate -- 5.1 Factors to consider in tank design -- 5.2 Management of tank emissions -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Refrigeration process for condensate recovery from natural gas -- 1. Introduction -- 1.1 Refrigeration processes -- 2. Liquefied natural gas and process of liquefaction -- 3. Refrigerant process mixed with propane precooler -- 4. Self-refrigeration -- 5. Dual mixed refrigerant process -- 6. Multistage mixed refrigerant process -- 7. Cryogenic refrigeration -- 8. Classification of existing refrigeration processes in the LNG production industry -- 8.1 Cascade refrigeration -- 8.2 One-step mixed refrigerant process without phase separator -- 8.3 Precooling process without phase separator -- 8.4 The mixed refrigerant process with phase separator -- 8.5 Mixed refrigerant process with precooling and phase separator -- 8.6 Mixed refrigerant process with propane precooling (C3MR) -- 8.7 The mixed refrigerant process with one-stage precooling and phase separator (DMR) -- 8.8 Expansion liquefaction process -- 9. Single nitrogen expansion liquefaction process -- 10. Dual nitrogen expansion liquefaction process -- 11. Solid bed adsorption -- 12. Membrane separation process -- 13. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Membrane technologies for condensate recovery from natural gas -- 1. Introduction -- 1.1 Natural gas liquids -- 1.2 Technologies for the removal of natural gas liquids -- 2. Membrane separation mechanisms -- 3. Current applications and cases of membranes for condensate recovery -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes.
3.3 Mixed matrix membranes -- 4. Conclusions and future outlooks -- Abbreviations and symbols -- References -- 6 - Supersonic technology for condensate removal from natural gas -- 1. Introduction -- 2. Natural gas purification technologies -- 3. Natural gas condensates removal -- 4. Supersonic technology for condensates removal in natural gas -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- Greek symbols -- References -- 7 - Mercury removal from natural gas by absorption and adsorption processes -- 1. Introduction -- 2. Systems for the removal of mercury -- 2.1 Mercury adsorption on activated carbon -- 2.2 Mercury adsorption on activated carbon with sulfur -- 2.3 Mercury adsorption on metal sulfide-containing alumina -- 2.4 Mercury adsorption on molecular sieves -- 2.5 Mercury absorption using ionic liquids -- 3. Resistance of H2S and H2O -- 4. Functional groups and active sites -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane technologies for mercury removal from natural gas -- 1. Introduction -- 2. Mercury in natural gas -- 2.1 Mercury species classification -- 3. Mercury removal methods -- 3.1 Mercury removal using activated carbon -- 3.1.1 Carbon activated with sulfur -- 3.2 Mercury removal using membrane -- 3.2.1 Mercury removal using metal-organic framework membranes -- 3.2.2 MOF nanofiber membrane -- 3.2.3 Mercury removal using polymer-supported MOF membranes -- 4. MOF material stability -- 4.1 Altered ligands -- 4.2 Metal protection -- 4.3 Refinement after synthesis -- 4.4 Other materials -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 9 - Nitrogen separation from natural gas using absorption and cryogenic processes -- 1. Introduction -- 2. Methods for nitrogen separation from natural gas -- 2.1 Membranes -- 2.2 Adsorption.
2.3 Cryogenic distillation -- 2.4 Absorption processes for nitrogen separation -- 2.4.1 Lean oil absorption -- 2.4.2 Liquid ammonia N2-selective absorption process -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 10 - Nitrogen rejection from natural gas by adsorption processes and swing technologies -- 1. Introduction -- 1.1 N2 in natural gas -- 2. Convectional technologies for N2 rejection from natural gas -- 3. Adsorption, merits, and shortcomings -- 3.1 Adsorbent, types, and features -- 4. N2 rejection from natural gas by adsorption processes -- 4.1 Pure and binary adsorption of CH4 and N2 -- 4.2 Kinetics of adsorption -- 4.3 Adsorption selectivity of CH4/N2 mixture -- 5. N2 rejection from natural gas by swing adsorption -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- 11 - Membrane technology for nitrogen separation from natural gas -- 1. Introduction -- 2. Nitrogen separation from methane technologies -- 2.1 Cryogenic distillation -- 2.2 Pressure swing absorption -- 2.3 Membrane technology -- 3. Membrane module configuration -- 3.1 Hollow fibers -- 3.2 Spiral-wound modules -- 3.3 Plate-and-frame modules -- 4. Flow pattern -- 5. Process design -- 6. Application and cases -- 6.1 One-stage membrane design -- 6.2 Two-stage membrane design -- 7. Polymers -- 7.1 Polysulfones -- 7.2 Cellulose acetates -- 7.3 Polyimides -- 8. Effect of different parameters on membrane performance -- 8.1 Effect of temperature -- 8.2 Effect of polymer structure -- 8.3 Effect of pressure -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 12 - Adsorption processes and swing technologies for helium removal from natural gas -- 1. Introduction -- 2. Principles of helium removal using swing technologies -- 3. Helium recovery from natural gas.
4. Current application and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 13 - Helium removal from natural gas by membrane technologies -- 1. Introduction -- 2. Helium separation by membrane technology -- 2.1 Principles -- 2.2 Mechanisms of gas transport -- 2.2.1 Solution-diffusion model -- 2.2.2 Pore-flow model -- 3. Membranes used for helium separation -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes -- 3.3 Mixed-matrix membranes -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Index -- Back Cover.
Altri titoli varianti Natural Gas Impurities and Condensate Removal
Record Nr. UNINA-9911007167703321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas
Advances in Natural Gas
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (394 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas - Storage
Natural gas - Transportation
ISBN 9780443192265
044319226X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES INNATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS: Natural Gas Transportation and Storage -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Natural gas transportation technologies -- 1 - Introduction to natural gas storage and transportation technologies -- 1. Introduction -- 2. Storage technologies -- 2.1 Depleted reservoirs -- 2.2 Aquifers -- 2.3 Salt and rock caverns -- 3. Comparison of storage technologies -- 4. Transportation -- 4.1 Pipelines -- 4.2 Gas to liquid -- 4.3 GTL technology -- 4.4 Liquefied natural gas -- 4.4.1 Single mixed refrigerant process -- 4.4.2 Dual mixed refrigerant process -- 4.4.3 Propane precooled mixed refrigerant process (C3MR) -- 5. Compressed natural gas -- 6. Natural gas hydrate -- 7. Comparison of transport technologies -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Sales gas transmission from refinery to users -- 1. Introduction -- 2. Transmission options for NG -- 2.1 Pipeline -- 2.1.1 Overview of NG transmission by pipeline network -- 2.1.2 Pipeline size and material -- 2.1.3 Increasing pressure of the NG inside the pipeline in compression stations -- 2.1.4 Pressure reduction stations -- 2.1.5 Metering -- 2.1.6 Heaters -- 2.1.7 Filters -- 2.1.8 Safety equipment -- 2.1.9 Odorization of NG -- 2.2 LNG -- 2.3 CNG -- 2.4 GTL -- 3. Developments and improvements -- 4. Challenges and problems -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Liquefied natural gas storage and transmission -- 1. Introduction -- 2. Principles and procedures -- 3. Processes -- 3.1 Storage vessels (tanks) -- 3.2 Separation distances -- 3.3 Secondary containment -- 3.4 Foundations -- 3.5 Insulation.
3.6 Ancillary facilities -- 3.7 Instrumentation -- 3.8 Pressure relief -- 3.9 Fire protection -- 3.10 Annular space -- 3.11 Inspection -- 3.12 Rollover -- 3.13 Storage vessels -- 3.14 Underground and mounded storage -- 4. Applications, case histories, and hazard assessment -- 4.1 LNG storage tank examples -- 4.2 LNG storage tank incidents -- 4.3 LNG storage tank hazard assessment -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- 4 - Compressed natural gas storage and transmission -- 1. Introduction -- 2. Fundamental aspects of CNG -- 2.1 Compression of natural gas -- 2.2 Fundamental behavior of compressed natural gas -- 2.3 CNG transmission infrastructure -- 2.3.1 Compressed natural gas marine transmission -- 2.4 Storage for CNG -- 3. CNG processes -- 3.1 Phase 1: Production -- 3.2 Phase 2: Transportation -- 3.2.1 CNG transportation by sea (offshore) -- 3.2.2 Transportation of CNG onshore -- 3.3 Phase 3: Receiving -- 3.4 Phase 4: Storage -- 4. Current applications and cases -- 4.1 CNG enriched with hydrogen gas -- 4.2 Dynamic CNG blending dual-fuel technology for caterpillar -- 4.3 CNG energy project -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- 5 - Adsorbed natural gas storage and transmission technology -- 1. Introduction -- 2. Storage technology by ANG -- 3. Technical terms used by the ANG -- 3.1 Adsorbent characteristics -- 3.1.1 Adsorbents -- 3.1.2 Density of bulk adsorbents -- 3.1.3 Adsorbent microporous space -- 3.1.4 Adsorbent effectiveness relative to the surface area -- 3.2 Adsorption heat and its thermal consequences -- 3.3 Action of desorption -- 3.4 Ability to provide ANG systems -- 4. The state of ANG systems now and in the future -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References.
6 - Underground natural gas storage -- 1. Introduction -- 2. Underground gas storage -- 2.1 UGS parameters -- 2.1.1 Total gas storage capacity -- 2.1.2 Total gas in storage -- 2.1.3 Cushion gas or base gas -- 2.1.3.1 Recoverable cushion gas -- 2.1.3.2 Nonrecoverable cushion gas -- 2.1.4 Working gas capacity -- 2.1.5 Working gas -- 2.1.6 Cycling rate -- 2.1.7 Injection volume -- 2.1.8 Deliverability or withdrawal rate or deliverability rate -- 2.1.9 Injection rate (or capacity) -- 2.1.10 Duration of storage -- 2.2 How does UGS work? -- 3. Natural gas storage reservoirs -- 3.1 Depleted gas and oil reservoirs -- 3.2 Aquifers -- 3.3 Salt caverns -- 3.4 Abandoned mines -- 3.5 Advantages and disadvantages of underground natural gas storage -- 3.5.1 Advantages of underground natural gas storage -- 3.5.2 Disadvantages of underground natural gas storage -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Apparatus for natural gas transportation and storage -- 7 - Leak detection technologies in natural gas transportation and storage systems -- 1. Introduction -- 2. Natural gas leak-detecting technology -- 2.1 Nontechnical methods -- 2.2 Hardware-based methods -- 2.2.1 Acoustic emission method -- 2.2.2 Optical method -- 2.2.3 Cable sensor -- 2.2.4 Soil monitoring -- 2.2.5 Vapor sampling -- 2.2.6 Ultrasonic flow meters -- 2.3 Software-based methods -- 2.3.1 Mass/volume balance -- 2.3.2 Real-time transient modeling -- 2.3.3 Negative passive wave -- 2.3.4 Pressure point analysis -- 2.3.5 Statistical -- 2.3.6 Digital signal processing -- 3. Comparative performance evaluation -- 4. Criteria for pipeline leakage investigative techniques -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Compressor/pump stations in natural gas transmission pipelines.
1. Introduction -- 1.1 Control room -- 1.2 Battery room -- 1.3 High voltage switch room -- 1.4 Low-voltage switch room -- 1.5 Emergency power generator building -- 1.6 Gas conditioning unit -- 1.7 Pig launcher and receiver -- 1.8 Instrument air building -- 1.9 Inlet, outlet, and bypass valves -- 2. Principles and procedures of compressor stations -- 2.1 Compressor station constituents -- 2.1.1 Instrumentation of air compressor -- 2.1.2 Lightning protection system and earthing system -- 2.1.3 Urban electricity network and emergency power generator -- 2.1.4 Batteries room -- 2.1.5 Power management system -- 2.1.6 Cooling systems -- 2.1.7 Pipeline pigging -- 2.1.8 Scrubbers -- 2.1.9 Heating systems -- 2.1.10 Valves used in the compressor stations -- 2.2 The structure of compressor stations -- 2.2.1 Pipes -- 2.2.2 Scrubber -- 2.2.3 Header -- 2.2.4 Antisurge valve -- 2.2.5 Gas compressor -- 2.2.6 Air-fin fan gas cooler -- 2.2.7 Check valve -- 2.2.8 Turbine -- 2.2.9 Blow down valve -- 2.3 Commissioning and decommissioning processes -- 2.3.1 The procedure of starting a compressor station -- 2.3.2 The procedure for taking the compressor station out of service (emergency shutdown) -- 2.3.3 Checklist and operating steps for starting a compressor station -- 2.3.4 The procedure for taking the station out of service -- 2.3.5 The main parameters that must be checked after the turbo-compressor is started -- 2.3.6 Pulse-jet system (air intake) -- 2.3.7 Turbine shutdown system -- 2.4 Procedures for using the emergency power generator -- 2.5 Gas emergency evacuation system -- 2.6 Pigging and steps to launch and receive a pig -- 2.7 Pressurization of a compressor station by natural gas -- 2.8 Control room and instrumentation systems utilized in it -- 3. Gas compression and processing -- 3.1 Scrubber -- 3.2 Gas conditioning unit -- 3.3 Control of turbo-compressors.
3.4 Analysis of gas transmission pipelines and existing compressor stations on these pipelines -- 3.4.1 Speed increase -- 3.4.2 Speed reduction -- 3.5 Surge -- 3.6 Turbo-compressors -- 3.7 Compressor performance curve -- 3.7.1 Path one -- 3.7.2 Path two -- 3.8 Gas turbines -- 3.9 Locating a compressor station -- 3.10 Processes that gas goes through during compression -- 3.11 Calculation of compressor power -- 3.12 Compressors in series and parallel mode and different powers -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Cold energy recovery for LNG-receiving terminals -- 1. Introduction -- 1.1 LNG transportation by carriers -- 1.2 LNG-receiving terminal -- 1.3 LNG cold energy recovery -- 2. Current technologies in LNG cold energy utilization -- 2.1 Air separation -- 2.2 Power generation -- 2.3 Light hydrocarbon separation -- 2.4 Liquefied CO2 and dry ice -- 2.5 Cold storage warehouse -- 3. Process modeling of light hydrocarbon separation unit -- 3.1 Process description -- 3.2 Assumptions and process parameters -- 4. Results -- 4.1 LNG export rate -- 4.2 LNG feed volume -- 4.2.1 Case 1: LNG feed volume at 500m3/h -- 4.2.2 Case 2: LNG feed volume at 1061m3/h -- 4.2.3 Case 3: LNG feed volume at 3000m3/h -- 5. Possibilities for further improvement -- 5.1 LNG cold energy utilized by cascade system -- 5.1.1 Option 1: Light hydrocarbon separation-Liquefied CO2 and dry ice production-Cold storage warehouse -- 5.1.2 Option 2: Air separation-Liquefied CO2 and dry ice production-Cold storage warehouse -- 5.1.3 Option 3: Cryogenic energy storage-Option 1 or Option 2 -- 5.2 LNG cold energy utilized by BOG management -- 6. Challenges of LNG cold energy utilization -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading.
10 - Inhibition of wax deposition in natural gas transmission pipelines.
Record Nr. UNINA-9911007169203321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas
Advances in Natural Gas
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (420 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Chemical engineering
ISBN 9780443192166
0443192162
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES IN NATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS: Natural Gas Formation and Extraction -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Natural gas formation and properties -- 1 - Introduction to natural gas importance and characteristics -- 1. Introduction -- 2. A historical overview of natural gas -- 3. Natural gas sources -- 4. Natural gas composition -- 5. Natural gas classification -- 5.1 Classification of natural gas according to chemical composition -- 5.2 Classification of natural gas according to origin source -- 6. The phase behavior of natural gas -- 7. Physical and chemical properties of natural gas -- 8. Importance of natural gas for energy generation and material production -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Natural gas resources, emission, and climate change -- 1. Introduction -- 2. Natural gas characteristics -- 3. Natural gas origin -- 3.1 Thermogenic process -- 3.2 Biogenic process
Record Nr. UNINA-9911007184803321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas
Advances in Natural Gas
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (350 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Gas engineering
ISBN 9780443192203
0443192200
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Fundamental aspects of natural gas hydrates -- 1 - Introduction to natural gas hydrate formation and applications -- 1. Introduction -- 2. Potential application of gas hydrates -- 2.1 Carbon dioxide final disposal -- 2.2 Storage of energy gases -- 2.3 Desalination, ions removal, and treatment of waste water and effluents -- 2.4 Concentration and preservation of food -- 2.5 Cold storage -- 3. Usage of chemical additive to alter the formation and/or dissociation of gas hydrates -- 3.1 Chemical inhibitors -- 3.1.1 Chemical inhibitors having a selective behavior -- 3.1.2 Contemporary application of several inhibitors -- 3.2 Chemical promoters -- 3.2.1 Motivations for using chemical promoters -- 3.2.2 Contemporary application of several promoters -- 3.3 Additives capable to act as inhibitor or promoter, depending on the process conditions -- 3.4 Reasons behind the contemporary usage of promoters and inhibitors -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Introduction to natural gas hydrates extraction methods -- 1. Introduction -- 2. Introducing NGH detection techniques -- 2.1 Seismic survey and analysis -- 2.2 Drilling to get cores -- 2.3 Logging methods -- 2.4 Geochemical exploration -- 3. Techniques to extract natural gas hydrate -- 3.1 Thermal stimulation -- 3.1.1 Thermal properties -- 3.2 Depressurization -- 3.3 Chemical inhibitor injection -- 3.4 Gas displacement method -- 4. Real field tests -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Thermophysical properties of natural gas hydrates -- 1. Introduction.
2. Phase equilibrium of hydrates -- 2.1 Methods for measuring phase equilibrium -- 2.2 Models of the hydrate phase equilibrium -- 3. Thermal conductivity of hydrates -- 3.1 Measurements of thermal conductivity -- 3.2 Models of thermal conductivity -- 4. Dissociation enthalpy -- 5. Specific heat capacity and thermal diffusivity and of gas hydrates -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Thermodynamic properties and phase equilibria characteristics of natural gas hydrates -- 1. Introduction -- 2. Thermodynamic aspects of gas hydrate formation -- 2.1 Thermodynamic requirements for gas hydrate formation -- 2.2 Thermodynamic equilibrium states of simple gas hydrates and their coexisting phases -- 3. Predicting thermodynamic properties and phase behavior -- 3.1 Thermodynamic models for predicting the phase behavior of gas hydrates -- 3.2 Guest molecular properties, salinity, and sediments on hydrate thermodynamics -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Chemical structure and crystal types of natural gas hydrates -- 1. Introduction -- 1.1 Clathrate hydrates -- 1.2 Semi-clathrate hydrates -- 1.3 Guest-void size ratio -- 2. Properties of the NGHs -- 2.1 Mechanical properties -- 2.2 Thermodynamic properties -- 2.2.1 Thermodynamics -- 2.2.2 Phase equilibria -- 2.3 Thermal properties -- 2.4 Electromagnetic properties -- 2.5 Interfacial properties -- 3. NGH formation and dissociation -- 3.1 Nucleation and crystal growth -- 3.2 Nucleation -- 3.3 Crystal growth -- 3.4 Dissociation -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 6 - Natural gas hydrate dissociation and dissolution -- 1. Introduction -- 2. Sources of methane origin in NGH -- 2.1 Biogenic methane source -- 2.2 Thermogenic methane source.
3. Gas hydrate stability zone -- 3.1 The requirements for NGH stability -- 4. Gas hydrates in natural porous media -- 5. Hydrate dissociation and production of CH4 from NGH -- 5.1 Pressure reduction -- 5.2 Thermoelectric stimulation (increment) -- 5.3 Change in chemical potential -- 5.3.1 Inhibitor injection -- 5.3.2 Increased-sized injection of guest gas -- 5.3.3 Reduced-size guest gas injection in NGH reservoirs -- 6. The uncontrolled dissociation of NGH in the climate (environment) -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 7 - Natural gas hydrates as a carbon neutral energy source: How the intrinsic properties can affect the CO2/CH4 exchange pr ... -- 1. Introduction -- 2. CO2/CH4 replacement mechanism into hydrates -- 3. Effect of intrinsic properties of hydrates formation on the replacement process -- 3.1 Memory effect -- 3.2 Saturation -- 3.3 Induction time -- 4. Re-definition of the thermodynamic region available for CO2-CH4 exchange -- 5. Replacement above and below the freezing point of water -- 6. Conclusion and future outlooks -- References -- 8 - The application of natural gas hydrates as an energy source -- 1. Introduction -- 2. Gas hydrate -- 2.1 Structure -- 2.2 Hydrates in natural environments -- 3. Latest developments in MH energy recovery -- 3.1 MH occurrence and resource evaluation -- 3.2 Programs for drilling, experimental fields, and production technologies -- 4. Recovery techniques -- 4.1 Thermal simulation -- 4.1.1 Thermal characteristics -- 4.1.2 Computational modeling -- 4.1.3 Experimental research -- 4.2 Depressurization -- 4.2.1 Numerical modeling -- 4.2.2 Experiments conducted in a lab -- 4.3 Injectable chemical inhibitors -- 4.4 The mix of methods -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References.
9 - Natural gas hydrate-related disasters and case studies -- 1. Introduction -- 1.1 Hydrate structure -- 2. Gas hydrate in pipelines -- 2.1 Disasters case studies -- 2.1.1 Case study 1 -- 2.1.2 Case study 2 -- 2.1.3 Case study 3 -- 2.1.4 Case study 4 -- 2.1.5 Case study 5 -- 2.1.6 Case study 6 -- 2.1.7 Case study 7 -- 3. Gas hydrates in seabed -- 4. Gas hydrate environmental aspects -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Pipeline natural gas hydrates -- 10 . Removal of natural gas hydrate plugs -- 1. Introduction -- 1.1 Gas hydrates -- 1.2 Existence of gas hydrate -- 1.3 Pipelines and gas hydrates -- 1.4 Gulf of Mexico pipeline: A case study -- 1.5 Remediation techniques for gas hydrate -- 2. Chemical inhibitors -- 2.1 Thermodynamic inhibitors -- 2.2 Low-dosage inhibitors -- 2.2.1 Kinetic hydrate inhibitors -- 2.2.2 Antiagglomerates (AA) inhibitors -- 3. Advancement in gas hydrate inhibitors -- 3.1 Contemporary inhibitors for gas hydrate mitigation -- 3.2 Ionic liquids -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Natural gas thermodynamic hydrate inhibitors -- 1. Introduction -- 2. Thermodynamic hydrate inhibitors -- 2.1 Conventional THIs -- 2.1.1 Alcohols -- 2.1.2 Diols -- 2.1.3 Salts -- 2.2 Novel THIs -- 2.2.1 Ionic liquids -- 2.2.2 Natural amino acids -- 2.2.3 Sugar-derived compounds -- 2.2.4 Amines and nitrogenates -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- III - Oceanic natural gas hydrates -- 12 - Distribution and discovery of oceanic natural gas hydrates -- 1. Introduction -- 1.1 Geographical distribution of gas hydrates -- 1.2 Global distribution -- 1.3 Production rate of different sources of gas hydrates -- 2. Geochemical signs -- 2.1 Geological indicators -- 3. Diapirism.
3.1 Signs of fluid movement -- 3.2 Submerged holes -- 4. Mud volcano -- 5. Faulting -- 6. Methods for identification and study of gaseous hydrates -- 6.1 Thermodynamic conditions -- 6.2 Ingredients containing hydrates -- 6.3 Reflector for bed simulator -- 7. Zone of stability for gaseous hydrates -- 8. Some projects carried out in the field of gas hydrate exploration -- 9. Conclusion and future outlook -- Abbreviations and symbols -- References -- 13 - Geophysical indicators and methods for producing oceanic gas hydrates -- 1. Introduction -- 2. Principles and procedures for gas hydrate exploration -- 2.1 Hydrates resource estimation -- 2.2 Gas hydrate indicators -- 2.2.1 Seismic indicators -- 2.2.2 Well log data -- 2.3 Pressure coring and analysis -- 3. Gas hydrate processes and characteristics -- 3.1 Hydrates thermodynamic conditions -- 3.2 The gas hydrate system -- 3.3 Hydrate morphology and gas availability -- 3.4 Methods of hydrates production -- 3.4.1 Thermal stimulation -- 3.4.2 Depressurization -- 3.4.3 Inhibitor injection -- 4. Current applications and cases -- 4.1 Case study 1 -- 4.2 Case study 2 -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- Index -- Back Cover.
Record Nr. UNINA-9911007172903321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
Autore Rahimpour Mohammad Reza
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (776 pages)
Disciplina 665.73
Altri autori (Persone) MakaremMohammad Amin
MeshksarMaryam
Soggetto topico Natural gas
Simulation methods
ISBN 9780443192302
0443192308
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Modeling and simulationof natural gassweetening processes and apparatus -- 1 - Process modeling and simulation of natural gas sweetening by absorption processes -- 1. Introduction -- 1.1 Natural gas sweetening process: Parameters for modeling -- 2. Absorption in a fluidic media -- 2.1 Types of alkanol amines -- 2.2 Hydrogen sulfide and alkanol amines -- 2.3 Carbon dioxide and alkanol amines -- 3. Process selection -- 4. Modeling -- 4.1 Generalization of distillation tower algorithm -- 4.2 Mathematical model of acidic gas absorption tower -- 4.3 Model assumptions -- 4.4 Model theory -- 5. Fundamental equations and principles for modeling natural gas sweetening -- 6. Benefits of using simulation models -- 7. Simulation models to reduce costs and improve efficiency -- 8. Simulation models to optimize -- 9. Limitations of using simulation models -- 10. Successful implementation of simulation models -- 11. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 2 - Modeling and simulation of natural gas sweetening by various adsorption technologies -- 1. Introduction -- 2. Sweetening adsorption processes -- 2.1 Pressure swing adsorption -- 2.1.1 Procedure -- 2.1.2 The effect of different parameters on the PSA process with related equations -- 2.1.2.1 Adsorbent -- 2.1.2.2 Bed porosity -- 2.1.2.3 Pressure -- 2.1.2.4 Residence time -- 2.1.2.5 Adsorption time -- 2.1.2.6 Purge/feed ratio -- 2.1.2.7 Depressurization and pressure equalization -- 2.1.2.8 Rinse time -- 2.1.3 Literature -- 2.2 Temperature swing adsorption -- 2.2.1 Procedure.
2.2.1.1 Heat and mass transfer model equations -- 2.2.1.2 Mass balance equations -- 2.2.1.3 Heat balance equations -- 2.2.2 Literature -- 2.3 Electric swing adsorption -- 2.3.1 Procedure -- 2.3.2 Literature -- 2.4 Vacuum swing adsorption -- 2.4.1 Procedure -- 2.4.2 Literature -- 2.5 Mixed swing adsorption processes -- 2.5.1 Temperature Electric Swing Adsorption -- 2.5.1.1 Model description -- 2.5.2 Pressure temperature swing adsorption -- 2.5.2.1 Procedure -- 2.5.3 Vacuum pressure swing adsorption -- 2.5.3.1 Procedure -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Modeling and simulation of natural gas sweetening using membranes -- 1. Introduction -- 1.1 Natural gas sweetening -- 1.2 Mathematical modeling -- 1.3 Membrane systems -- 1.3.1 Classification of membrane systems -- 2. Principles and procedures -- 2.1 Gas separation using HFM -- 2.1.1 Mathematical model of gas separation -- 2.2 Gas absorption using gas-liquid membrane contactor -- 2.2.1 Mathematical modeling -- 2.2.1.1 Membrane lumen side (liquid) -- 2.2.1.2 Membrane walls -- 2.2.1.3 Module shell (gas) -- 3. Current applications and cases -- 3.1 Membrane separation of CO2 at high pressure -- 3.2 Membrane separation at moderate pressure -- 3.3 Liquid-gas membrane contactor -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Modeling and simulation of CO2 removal from CO2-rich natural gas via supersonic separators -- 1. Introduction -- 1.1 State of the art in natural gas CO2 removal -- 2. Overview of CO2-Rich natural gas in raw form -- 3. The content of CO2-rich NG and its processing techniques -- 4. Technologies for CO2 capture from CO2-Rich natural gas -- 5. CO2-rich natural gas processing using supersonic separators -- 6. Comparison of process alternatives -- 6.1 Conventional process: TEG+JT/LTS.
6.2 Comparison between TEG+JT/LTS and supersonic separator -- 7. HYSYS modeling of supersonic separator units for CO2-Rich natural gas treatment -- 8. Modeling supersonic separation for natural gas dew-point adjustment -- 9. Supersonic separation for natural gas CO2 removal -- 9.1 Supersonic separator modeling and simulation: SS-UOE -- 10. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Case studies of modeling and simulation of natural gas sweetening processes -- 1. Introduction -- 2. Acid gas removal methodology -- 2.1 AGR from natural gas using cryogenic process -- 2.2 AGR from natural gas using absorption -- 2.3 AGR from natural gas using membrane-gas solvent contactors -- 2.4 AGR from natural gas using adsorption -- 3. Conclusions and future outlooks -- Abbreviations and symbols -- References -- II - Modeling and simulationof natural gas dehydrationprocesses and apparatus -- 6 - Process modeling and simulation of natural gas dehydration by absorption technology -- 1. Introduction -- 2. Gas hydrate -- 3. Gas dehydration process -- 3.1 Traditional methods of dehydration -- 3.2 Gas stripping dehydration method -- 4. Modeling thermodynamics -- 4.1 Modeling UMR-PRU -- 4.1.1 Summary of the model -- 4.1.2 Adoption in industrial simulation -- 4.2 An outline of TST/NRTL -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 7 - Modeling and simulating natural gas dehydration by adsorption technologies: Pressure swing adsorption, temperature swin ... -- 1. Introduction -- 2. Mathematical foundations for dehydration modeling -- 3. Adsorption-based dehydration technologies -- 3.1 Pressure swing adsorption -- 3.2 Vacuum swing adsorption -- 3.3 Temperature swing adsorption -- 4. Typical industrial application units -- 4.1 Typical operating modes -- 4.1.1 PSA for hydrogen purification.
4.1.2 TSA for natural gas dehydration -- 4.2 Other applications -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane-based modeling and simulation of natural gas dehydration -- 1. Introduction -- 2. Dehydration process -- 2.1 DEG regeneration -- 3. Function, configuration, and characteristics of membrane processes -- 3.1 Conventional cross-flow design -- 3.2 Cross-flow model with the influent under vacuum -- 3.3 Role of an expanded residue slipstream as the sweep in a countercurrent design -- 3.4 Design employing a countercurrent flow of sweep-dry nitrogen -- 3.5 Four membrane system concepts have been evaluated -- 3.6 Another application of SS for NG purification: Polymer membrane modeling -- 4. Modeling and simulation overview -- 4.1 Modeling -- 5. Simulation -- 5.1 Overview of process simulation instruments -- 5.2 Interface for connecting to simulators -- 6. System design of membrane processes -- 6.1 Different phases of system design -- 6.2 Different design techniques for membrane systems -- 6.2.1 Customization of already-existing membrane characteristics -- 6.2.2 Program development customization -- 7. Membranes challenges -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Modeling and simulation of natural gas dehydration via supersonic separators -- 1. Introduction -- 2. Natural gas dehydration methods -- 3. Condensation process -- 3.1 Laval nozzle history for condensation -- 3.2 Condensation mechanisms -- 3.2.1 Nucleation -- 3.2.2 Droplet formation and growth -- 3.3 Modeling and simulations -- 3.4 Condensation experimentation -- 3.5 Modeling of supersonic separation -- 4. Separation processes -- 4.1 Swirler design -- 4.2 Shock wave location -- 5. Pressure recovery -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References.
III - Modeling and simulation of other impuritiesremoval from natural gas -- 10 - Modeling and simulation of hydrocarbon dew point adjustment of natural gas via supersonic separators -- 1. Introduction -- 2. Hydrocarbon dew point -- 3. Supersonic technology -- 3.1 Design procedure -- 3.2 History -- 3.3 Translang technologies ltd -- 3.4 Effectiveness -- 3.5 Supersonic technology comparing to other technologies -- 4. Supersonic process design -- 4.1 Supersonic process design specification -- 4.2 Process simulation of the supersonic separation -- 4.3 Operating unit design and sizing -- 4.3.1 Vessels, containers, and separators -- 4.3.2 Compressors, turbines, and pumps -- 4.3.3 Heat exchangers, coolers, and heaters -- 4.3.4 Towers and columns -- 4.4 Technoeconomics -- 4.4.1 Capital expenditures estimation -- 4.4.2 Operating expenditure estimation -- 4.4.3 Revenue estimation -- 5. Supersonic separation modeling -- 5.1 Condensation -- 5.1.1 Condensation mechanisms -- 5.1.2 Condensation models -- 5.2 Separation processes -- 5.3 Shock wave location -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Thermodynamic models and process simulation of mercury removal from natural gas -- 1. Introduction -- 2. Principles and procedures of thermodynamic models for mercury removal from natural gas -- 2.1 UMR-PRU model -- 2.2 Soave-Redlich-Kwong EOS -- 2.3 SAFT models -- 2.3.1 PC-SAFT model -- 2.3.2 Critical point-based perturbed-chain statistical association fluid theory model -- 2.4 Peng and Robinson model -- 3. Simulation and modeling of mercury removal process from natural gas -- 4. Processes of mercury removal in natural gas industry -- 4.1 Fixed-bed reactors -- 4.2 Scrubbing solution -- 4.3 Simultaneous mercury and hydrogen sulfide removal process -- 4.4 Glycol and molecular sieve dehydration process.
4.5 Type of scenarios for installing mercury removal process from the natural gas.
Record Nr. UNINA-9911006673303321
Rahimpour Mohammad Reza  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compendium for the LNG and CNG Practitioner : Liquefied Natural Gas in Application / / by Werner Hermeling
Compendium for the LNG and CNG Practitioner : Liquefied Natural Gas in Application / / by Werner Hermeling
Autore Hermeling Werner
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (225 pages)
Disciplina 665.73
Soggetto topico Electric power distribution
Energy storage
Materials
Catalysis
Force and energy
Energy Grids and Networks
Mechanical and Thermal Energy Storage
Materials for Energy and Catalysis
ISBN 9783658382582
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LNG and its thermodynamics -- Importance of LNG -- The main thermodynamic processes involved in the production, transportation and storage of LNG -- LNG, from source to end customer -- LNG - Liquefaction at source and transportation to hub -- LNG - Transportation to and storage at end customer -- Closed and open hose system -- The continuous and discontinuous operation -- Refueling while maintaining process pressure -- LNG - Applications -- Supply systems -- Natural gas filling stations -- Filling of natural gas cylinders and natural gas bundles -- Functional principle of components -- Tank designs -- Piping and fittings -- Sensor technology -- Valves in the cryogenic range and in the gas phase -- Air vaporizers -- Gas preheaters -- Odorization -- Gas pressure regulators -- Safety devices -- Safety valves -- Safety shut-off valve -- Overfill protection -- Exhaust gas routing -- Hose coupling for tank filling -- Insulations -- Tank earthing -- Plant approval procedure -- Installation and securing (start-up protection) of the plant -- Protective measures -- Training recommendation -- Codes of practice and data sheets.
Record Nr. UNINA-9910855366903321
Hermeling Werner  
Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Exploration and Production of Oceanic Natural Gas Hydrate : Critical Factors for Commercialization / / by Michael D. Max, Arthur H. Johnson
Exploration and Production of Oceanic Natural Gas Hydrate : Critical Factors for Commercialization / / by Michael D. Max, Arthur H. Johnson
Autore Max Michael D
Edizione [2nd ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (501 pages)
Disciplina 665.7
665.73
Soggetto topico Energy
Climatic changes
Management
Industrial management
Robotics
Automation
Mines and mineral resources
Energy, general
Climate Change Management and Policy
Innovation/Technology Management
Robotics and Automation
Mineral Resources
ISBN 3-030-00401-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Energy Overview: Prospects for Natural Gas -- 2. Economic Characteristics of Deepwater Natural Gas Hydrate -- 3. Exploration for Deepwater Natural Gas Hydrate -- 4. Potential High-Quality Reservoir Sediments in the Gas Hydrate Stability Zone -- 5. Valuation of NGH Deposits -- 6. Deepwater Natural Gas Hydrate Innovation Opportunities -- 7. Leveraging Technology for NGH Development and Production -- 8. New Technology for NGH Development and Production -- 9. Offshore Operations and Logistics -- 10. Energy Resource Risk Factors -- 11. Elements of Commerciality.
Record Nr. UNINA-9910337585103321
Max Michael D  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
From landfill gas to energy : technologies and challenges / Vasudevan Rajaram, Faisal Zia Siddiqui, and M. Emran Khan
From landfill gas to energy : technologies and challenges / Vasudevan Rajaram, Faisal Zia Siddiqui, and M. Emran Khan
Autore Rajaram, Vasudevan
Pubbl/distr/stampa Leiden, The Netherlands ; New York : CRC/Balkema, c2012
Descrizione fisica xx, 394 p. : ill. ; 26 cm
Disciplina 665.73
Altri autori (Persone) Siddiqui, Faisal Ziaauthor
Emran Khan, M
Soggetto topico Gas as fuel
Landfill gases - Recycling
Gas extraction
Sanitary landfills - Byproducts
SCIENCE / Environmental Science
TECHNOLOGY & ENGINEERING / Civil / General
TECHNOLOGY & ENGINEERING / Environmental / General
ISBN 9780415664745 (hardback)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001775299707536
Rajaram, Vasudevan  
Leiden, The Netherlands ; New York : CRC/Balkema, c2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui