Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
| Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Scrivener Publishing, , 2016 |
| Descrizione fisica | 1 online resource (399 p.) |
| Disciplina | 665.73 |
| Collana | Advances in Natural Gas Engineering |
| Soggetto topico |
Gas extraction
Natural gas - Environmental aspects |
| ISBN |
1-118-93862-3
1-5231-0998-X 1-118-93865-8 1-118-93863-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910137484303321 |
| Hoboken, New Jersey : , : Scrivener Publishing, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu
| Acid gas extraction for disposal and related topics / / edited by Ying Wu, John J. Carroll and Weiyao Zhu |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Scrivener Publishing, , 2016 |
| Descrizione fisica | 1 online resource (399 p.) |
| Disciplina | 665.73 |
| Collana | Advances in Natural Gas Engineering |
| Soggetto topico |
Gas extraction
Natural gas - Environmental aspects |
| ISBN |
1-118-93862-3
1-5231-0998-X 1-118-93865-8 1-118-93863-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910807946003321 |
| Hoboken, New Jersey : , : Scrivener Publishing, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
| Advances in Natural Gas : formation, processing, and applications . Volume 5 Natural Gas Impurities and Condensate Removal / / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar |
| Autore | Rahimpour Mohammad Reza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (320 pages) |
| Disciplina | 665.73 |
| Altri autori (Persone) |
MakaremMohammad Amin
MeshksarMaryam |
| Soggetto topico |
Natural gas
Chemical engineering |
| ISBN |
9780443192241
0443192243 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Front Matter -- Natural Gas Impurities and Condensate Removal -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Particulates and condensates removalfrom natural gas -- 1 - Introduction to nonacidic impurities of natural gas: Particulates, condensates, mercury, nitrogen, helium -- 1. Introduction -- 1.1 Natural gas categories based on chemical composition -- 1.1.1 Hydrocarbon percentage -- 1.1.2 Quantity of sulfur -- 1.2 Natural gas processing -- 2. The constituents of natural gas -- 2.1 Hydrocarbon constituents -- 2.2 Nonhydrocarbon constituents -- 2.2.1 The diluents -- 2.2.2 Pollutants -- 2.2.3 Solid matter -- 3. Mercury cycle -- 3.1 Physical properties of mercury -- 3.2 Chemical substance characteristics -- 4. Helium -- 4.1 Characteristics of helium -- 5. Nitrogen -- 6. Nonacidic component removal from natural gas -- 6.1 Hydrocarbon removal from liquid -- 6.2 Removing mercury -- 6.2.1 Nonregenerative processes -- 6.2.2 Regenerative process -- 6.3 Elimination of miniscule substances -- 7. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 2 - Arsenic removal from natural gas condensate -- 1. Introduction -- 2. Arsenic removal -- 2.1 Pyrolysis -- 2.2 Adsorption processes -- 2.3 Absorption process -- 3. Case study -- 4. The effects of arsenic exposure on human health -- 4.1 The adverse effects of arsenic exposure on human health -- 4.1.1 Impacts on lungs -- 4.1.2 Impacts on hemoglobin -- 4.1.3 Carcinogenicity -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Condensate stabilization process -- 1. Introduction -- 2. Condensate stabilization -- 2.1 Cascade flash separation for condensate stabilization -- 2.2 Stabilization by distillation -- 2.2.1 Condensate production -- 2.3 Cold-feed distillation tower.
3. Design considerations of stabilization column -- 4. Trays and packing -- 4.1 Trays -- 4.2 Packing -- 4.3 Trays or packaging -- 4.3.1 Distillation service -- 4.3.2 Stripping service -- 5. Storage of condensate -- 5.1 Factors to consider in tank design -- 5.2 Management of tank emissions -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Refrigeration process for condensate recovery from natural gas -- 1. Introduction -- 1.1 Refrigeration processes -- 2. Liquefied natural gas and process of liquefaction -- 3. Refrigerant process mixed with propane precooler -- 4. Self-refrigeration -- 5. Dual mixed refrigerant process -- 6. Multistage mixed refrigerant process -- 7. Cryogenic refrigeration -- 8. Classification of existing refrigeration processes in the LNG production industry -- 8.1 Cascade refrigeration -- 8.2 One-step mixed refrigerant process without phase separator -- 8.3 Precooling process without phase separator -- 8.4 The mixed refrigerant process with phase separator -- 8.5 Mixed refrigerant process with precooling and phase separator -- 8.6 Mixed refrigerant process with propane precooling (C3MR) -- 8.7 The mixed refrigerant process with one-stage precooling and phase separator (DMR) -- 8.8 Expansion liquefaction process -- 9. Single nitrogen expansion liquefaction process -- 10. Dual nitrogen expansion liquefaction process -- 11. Solid bed adsorption -- 12. Membrane separation process -- 13. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Membrane technologies for condensate recovery from natural gas -- 1. Introduction -- 1.1 Natural gas liquids -- 1.2 Technologies for the removal of natural gas liquids -- 2. Membrane separation mechanisms -- 3. Current applications and cases of membranes for condensate recovery -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes. 3.3 Mixed matrix membranes -- 4. Conclusions and future outlooks -- Abbreviations and symbols -- References -- 6 - Supersonic technology for condensate removal from natural gas -- 1. Introduction -- 2. Natural gas purification technologies -- 3. Natural gas condensates removal -- 4. Supersonic technology for condensates removal in natural gas -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- Greek symbols -- References -- 7 - Mercury removal from natural gas by absorption and adsorption processes -- 1. Introduction -- 2. Systems for the removal of mercury -- 2.1 Mercury adsorption on activated carbon -- 2.2 Mercury adsorption on activated carbon with sulfur -- 2.3 Mercury adsorption on metal sulfide-containing alumina -- 2.4 Mercury adsorption on molecular sieves -- 2.5 Mercury absorption using ionic liquids -- 3. Resistance of H2S and H2O -- 4. Functional groups and active sites -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane technologies for mercury removal from natural gas -- 1. Introduction -- 2. Mercury in natural gas -- 2.1 Mercury species classification -- 3. Mercury removal methods -- 3.1 Mercury removal using activated carbon -- 3.1.1 Carbon activated with sulfur -- 3.2 Mercury removal using membrane -- 3.2.1 Mercury removal using metal-organic framework membranes -- 3.2.2 MOF nanofiber membrane -- 3.2.3 Mercury removal using polymer-supported MOF membranes -- 4. MOF material stability -- 4.1 Altered ligands -- 4.2 Metal protection -- 4.3 Refinement after synthesis -- 4.4 Other materials -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References -- 9 - Nitrogen separation from natural gas using absorption and cryogenic processes -- 1. Introduction -- 2. Methods for nitrogen separation from natural gas -- 2.1 Membranes -- 2.2 Adsorption. 2.3 Cryogenic distillation -- 2.4 Absorption processes for nitrogen separation -- 2.4.1 Lean oil absorption -- 2.4.2 Liquid ammonia N2-selective absorption process -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 10 - Nitrogen rejection from natural gas by adsorption processes and swing technologies -- 1. Introduction -- 1.1 N2 in natural gas -- 2. Convectional technologies for N2 rejection from natural gas -- 3. Adsorption, merits, and shortcomings -- 3.1 Adsorbent, types, and features -- 4. N2 rejection from natural gas by adsorption processes -- 4.1 Pure and binary adsorption of CH4 and N2 -- 4.2 Kinetics of adsorption -- 4.3 Adsorption selectivity of CH4/N2 mixture -- 5. N2 rejection from natural gas by swing adsorption -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- 11 - Membrane technology for nitrogen separation from natural gas -- 1. Introduction -- 2. Nitrogen separation from methane technologies -- 2.1 Cryogenic distillation -- 2.2 Pressure swing absorption -- 2.3 Membrane technology -- 3. Membrane module configuration -- 3.1 Hollow fibers -- 3.2 Spiral-wound modules -- 3.3 Plate-and-frame modules -- 4. Flow pattern -- 5. Process design -- 6. Application and cases -- 6.1 One-stage membrane design -- 6.2 Two-stage membrane design -- 7. Polymers -- 7.1 Polysulfones -- 7.2 Cellulose acetates -- 7.3 Polyimides -- 8. Effect of different parameters on membrane performance -- 8.1 Effect of temperature -- 8.2 Effect of polymer structure -- 8.3 Effect of pressure -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 12 - Adsorption processes and swing technologies for helium removal from natural gas -- 1. Introduction -- 2. Principles of helium removal using swing technologies -- 3. Helium recovery from natural gas. 4. Current application and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 13 - Helium removal from natural gas by membrane technologies -- 1. Introduction -- 2. Helium separation by membrane technology -- 2.1 Principles -- 2.2 Mechanisms of gas transport -- 2.2.1 Solution-diffusion model -- 2.2.2 Pore-flow model -- 3. Membranes used for helium separation -- 3.1 Polymeric membranes -- 3.2 Inorganic membranes -- 3.3 Mixed-matrix membranes -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Index -- Back Cover. |
| Altri titoli varianti | Natural Gas Impurities and Condensate Removal |
| Record Nr. | UNINA-9911007167703321 |
Rahimpour Mohammad Reza
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Natural Gas
| Advances in Natural Gas |
| Autore | Rahimpour Mohammad Reza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (394 pages) |
| Disciplina | 665.73 |
| Altri autori (Persone) |
MakaremMohammad Amin
MeshksarMaryam |
| Soggetto topico |
Natural gas - Storage
Natural gas - Transportation |
| ISBN |
9780443192265
044319226X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- ADVANCES INNATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS: Natural Gas Transportation and Storage -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Natural gas transportation technologies -- 1 - Introduction to natural gas storage and transportation technologies -- 1. Introduction -- 2. Storage technologies -- 2.1 Depleted reservoirs -- 2.2 Aquifers -- 2.3 Salt and rock caverns -- 3. Comparison of storage technologies -- 4. Transportation -- 4.1 Pipelines -- 4.2 Gas to liquid -- 4.3 GTL technology -- 4.4 Liquefied natural gas -- 4.4.1 Single mixed refrigerant process -- 4.4.2 Dual mixed refrigerant process -- 4.4.3 Propane precooled mixed refrigerant process (C3MR) -- 5. Compressed natural gas -- 6. Natural gas hydrate -- 7. Comparison of transport technologies -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Sales gas transmission from refinery to users -- 1. Introduction -- 2. Transmission options for NG -- 2.1 Pipeline -- 2.1.1 Overview of NG transmission by pipeline network -- 2.1.2 Pipeline size and material -- 2.1.3 Increasing pressure of the NG inside the pipeline in compression stations -- 2.1.4 Pressure reduction stations -- 2.1.5 Metering -- 2.1.6 Heaters -- 2.1.7 Filters -- 2.1.8 Safety equipment -- 2.1.9 Odorization of NG -- 2.2 LNG -- 2.3 CNG -- 2.4 GTL -- 3. Developments and improvements -- 4. Challenges and problems -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Liquefied natural gas storage and transmission -- 1. Introduction -- 2. Principles and procedures -- 3. Processes -- 3.1 Storage vessels (tanks) -- 3.2 Separation distances -- 3.3 Secondary containment -- 3.4 Foundations -- 3.5 Insulation.
3.6 Ancillary facilities -- 3.7 Instrumentation -- 3.8 Pressure relief -- 3.9 Fire protection -- 3.10 Annular space -- 3.11 Inspection -- 3.12 Rollover -- 3.13 Storage vessels -- 3.14 Underground and mounded storage -- 4. Applications, case histories, and hazard assessment -- 4.1 LNG storage tank examples -- 4.2 LNG storage tank incidents -- 4.3 LNG storage tank hazard assessment -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- 4 - Compressed natural gas storage and transmission -- 1. Introduction -- 2. Fundamental aspects of CNG -- 2.1 Compression of natural gas -- 2.2 Fundamental behavior of compressed natural gas -- 2.3 CNG transmission infrastructure -- 2.3.1 Compressed natural gas marine transmission -- 2.4 Storage for CNG -- 3. CNG processes -- 3.1 Phase 1: Production -- 3.2 Phase 2: Transportation -- 3.2.1 CNG transportation by sea (offshore) -- 3.2.2 Transportation of CNG onshore -- 3.3 Phase 3: Receiving -- 3.4 Phase 4: Storage -- 4. Current applications and cases -- 4.1 CNG enriched with hydrogen gas -- 4.2 Dynamic CNG blending dual-fuel technology for caterpillar -- 4.3 CNG energy project -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- 5 - Adsorbed natural gas storage and transmission technology -- 1. Introduction -- 2. Storage technology by ANG -- 3. Technical terms used by the ANG -- 3.1 Adsorbent characteristics -- 3.1.1 Adsorbents -- 3.1.2 Density of bulk adsorbents -- 3.1.3 Adsorbent microporous space -- 3.1.4 Adsorbent effectiveness relative to the surface area -- 3.2 Adsorption heat and its thermal consequences -- 3.3 Action of desorption -- 3.4 Ability to provide ANG systems -- 4. The state of ANG systems now and in the future -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References. 6 - Underground natural gas storage -- 1. Introduction -- 2. Underground gas storage -- 2.1 UGS parameters -- 2.1.1 Total gas storage capacity -- 2.1.2 Total gas in storage -- 2.1.3 Cushion gas or base gas -- 2.1.3.1 Recoverable cushion gas -- 2.1.3.2 Nonrecoverable cushion gas -- 2.1.4 Working gas capacity -- 2.1.5 Working gas -- 2.1.6 Cycling rate -- 2.1.7 Injection volume -- 2.1.8 Deliverability or withdrawal rate or deliverability rate -- 2.1.9 Injection rate (or capacity) -- 2.1.10 Duration of storage -- 2.2 How does UGS work? -- 3. Natural gas storage reservoirs -- 3.1 Depleted gas and oil reservoirs -- 3.2 Aquifers -- 3.3 Salt caverns -- 3.4 Abandoned mines -- 3.5 Advantages and disadvantages of underground natural gas storage -- 3.5.1 Advantages of underground natural gas storage -- 3.5.2 Disadvantages of underground natural gas storage -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Apparatus for natural gas transportation and storage -- 7 - Leak detection technologies in natural gas transportation and storage systems -- 1. Introduction -- 2. Natural gas leak-detecting technology -- 2.1 Nontechnical methods -- 2.2 Hardware-based methods -- 2.2.1 Acoustic emission method -- 2.2.2 Optical method -- 2.2.3 Cable sensor -- 2.2.4 Soil monitoring -- 2.2.5 Vapor sampling -- 2.2.6 Ultrasonic flow meters -- 2.3 Software-based methods -- 2.3.1 Mass/volume balance -- 2.3.2 Real-time transient modeling -- 2.3.3 Negative passive wave -- 2.3.4 Pressure point analysis -- 2.3.5 Statistical -- 2.3.6 Digital signal processing -- 3. Comparative performance evaluation -- 4. Criteria for pipeline leakage investigative techniques -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Compressor/pump stations in natural gas transmission pipelines. 1. Introduction -- 1.1 Control room -- 1.2 Battery room -- 1.3 High voltage switch room -- 1.4 Low-voltage switch room -- 1.5 Emergency power generator building -- 1.6 Gas conditioning unit -- 1.7 Pig launcher and receiver -- 1.8 Instrument air building -- 1.9 Inlet, outlet, and bypass valves -- 2. Principles and procedures of compressor stations -- 2.1 Compressor station constituents -- 2.1.1 Instrumentation of air compressor -- 2.1.2 Lightning protection system and earthing system -- 2.1.3 Urban electricity network and emergency power generator -- 2.1.4 Batteries room -- 2.1.5 Power management system -- 2.1.6 Cooling systems -- 2.1.7 Pipeline pigging -- 2.1.8 Scrubbers -- 2.1.9 Heating systems -- 2.1.10 Valves used in the compressor stations -- 2.2 The structure of compressor stations -- 2.2.1 Pipes -- 2.2.2 Scrubber -- 2.2.3 Header -- 2.2.4 Antisurge valve -- 2.2.5 Gas compressor -- 2.2.6 Air-fin fan gas cooler -- 2.2.7 Check valve -- 2.2.8 Turbine -- 2.2.9 Blow down valve -- 2.3 Commissioning and decommissioning processes -- 2.3.1 The procedure of starting a compressor station -- 2.3.2 The procedure for taking the compressor station out of service (emergency shutdown) -- 2.3.3 Checklist and operating steps for starting a compressor station -- 2.3.4 The procedure for taking the station out of service -- 2.3.5 The main parameters that must be checked after the turbo-compressor is started -- 2.3.6 Pulse-jet system (air intake) -- 2.3.7 Turbine shutdown system -- 2.4 Procedures for using the emergency power generator -- 2.5 Gas emergency evacuation system -- 2.6 Pigging and steps to launch and receive a pig -- 2.7 Pressurization of a compressor station by natural gas -- 2.8 Control room and instrumentation systems utilized in it -- 3. Gas compression and processing -- 3.1 Scrubber -- 3.2 Gas conditioning unit -- 3.3 Control of turbo-compressors. 3.4 Analysis of gas transmission pipelines and existing compressor stations on these pipelines -- 3.4.1 Speed increase -- 3.4.2 Speed reduction -- 3.5 Surge -- 3.6 Turbo-compressors -- 3.7 Compressor performance curve -- 3.7.1 Path one -- 3.7.2 Path two -- 3.8 Gas turbines -- 3.9 Locating a compressor station -- 3.10 Processes that gas goes through during compression -- 3.11 Calculation of compressor power -- 3.12 Compressors in series and parallel mode and different powers -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Cold energy recovery for LNG-receiving terminals -- 1. Introduction -- 1.1 LNG transportation by carriers -- 1.2 LNG-receiving terminal -- 1.3 LNG cold energy recovery -- 2. Current technologies in LNG cold energy utilization -- 2.1 Air separation -- 2.2 Power generation -- 2.3 Light hydrocarbon separation -- 2.4 Liquefied CO2 and dry ice -- 2.5 Cold storage warehouse -- 3. Process modeling of light hydrocarbon separation unit -- 3.1 Process description -- 3.2 Assumptions and process parameters -- 4. Results -- 4.1 LNG export rate -- 4.2 LNG feed volume -- 4.2.1 Case 1: LNG feed volume at 500m3/h -- 4.2.2 Case 2: LNG feed volume at 1061m3/h -- 4.2.3 Case 3: LNG feed volume at 3000m3/h -- 5. Possibilities for further improvement -- 5.1 LNG cold energy utilized by cascade system -- 5.1.1 Option 1: Light hydrocarbon separation-Liquefied CO2 and dry ice production-Cold storage warehouse -- 5.1.2 Option 2: Air separation-Liquefied CO2 and dry ice production-Cold storage warehouse -- 5.1.3 Option 3: Cryogenic energy storage-Option 1 or Option 2 -- 5.2 LNG cold energy utilized by BOG management -- 6. Challenges of LNG cold energy utilization -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading. 10 - Inhibition of wax deposition in natural gas transmission pipelines. |
| Record Nr. | UNINA-9911007169203321 |
Rahimpour Mohammad Reza
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Natural Gas
| Advances in Natural Gas |
| Autore | Rahimpour Mohammad Reza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (420 pages) |
| Disciplina | 665.73 |
| Altri autori (Persone) |
MakaremMohammad Amin
MeshksarMaryam |
| Soggetto topico |
Natural gas
Chemical engineering |
| ISBN |
9780443192166
0443192162 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Cover -- ADVANCES IN NATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS: Natural Gas Formation and Extraction -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Natural gas formation and properties -- 1 - Introduction to natural gas importance and characteristics -- 1. Introduction -- 2. A historical overview of natural gas -- 3. Natural gas sources -- 4. Natural gas composition -- 5. Natural gas classification -- 5.1 Classification of natural gas according to chemical composition -- 5.2 Classification of natural gas according to origin source -- 6. The phase behavior of natural gas -- 7. Physical and chemical properties of natural gas -- 8. Importance of natural gas for energy generation and material production -- 9. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Natural gas resources, emission, and climate change -- 1. Introduction -- 2. Natural gas characteristics -- 3. Natural gas origin -- 3.1 Thermogenic process -- 3.2 Biogenic process |
| Record Nr. | UNINA-9911007184803321 |
Rahimpour Mohammad Reza
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Natural Gas
| Advances in Natural Gas |
| Autore | Rahimpour Mohammad Reza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (350 pages) |
| Disciplina | 665.73 |
| Altri autori (Persone) |
MakaremMohammad Amin
MeshksarMaryam |
| Soggetto topico |
Natural gas
Gas engineering |
| ISBN |
9780443192203
0443192200 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Fundamental aspects of natural gas hydrates -- 1 - Introduction to natural gas hydrate formation and applications -- 1. Introduction -- 2. Potential application of gas hydrates -- 2.1 Carbon dioxide final disposal -- 2.2 Storage of energy gases -- 2.3 Desalination, ions removal, and treatment of waste water and effluents -- 2.4 Concentration and preservation of food -- 2.5 Cold storage -- 3. Usage of chemical additive to alter the formation and/or dissociation of gas hydrates -- 3.1 Chemical inhibitors -- 3.1.1 Chemical inhibitors having a selective behavior -- 3.1.2 Contemporary application of several inhibitors -- 3.2 Chemical promoters -- 3.2.1 Motivations for using chemical promoters -- 3.2.2 Contemporary application of several promoters -- 3.3 Additives capable to act as inhibitor or promoter, depending on the process conditions -- 3.4 Reasons behind the contemporary usage of promoters and inhibitors -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Introduction to natural gas hydrates extraction methods -- 1. Introduction -- 2. Introducing NGH detection techniques -- 2.1 Seismic survey and analysis -- 2.2 Drilling to get cores -- 2.3 Logging methods -- 2.4 Geochemical exploration -- 3. Techniques to extract natural gas hydrate -- 3.1 Thermal stimulation -- 3.1.1 Thermal properties -- 3.2 Depressurization -- 3.3 Chemical inhibitor injection -- 3.4 Gas displacement method -- 4. Real field tests -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Thermophysical properties of natural gas hydrates -- 1. Introduction.
2. Phase equilibrium of hydrates -- 2.1 Methods for measuring phase equilibrium -- 2.2 Models of the hydrate phase equilibrium -- 3. Thermal conductivity of hydrates -- 3.1 Measurements of thermal conductivity -- 3.2 Models of thermal conductivity -- 4. Dissociation enthalpy -- 5. Specific heat capacity and thermal diffusivity and of gas hydrates -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Thermodynamic properties and phase equilibria characteristics of natural gas hydrates -- 1. Introduction -- 2. Thermodynamic aspects of gas hydrate formation -- 2.1 Thermodynamic requirements for gas hydrate formation -- 2.2 Thermodynamic equilibrium states of simple gas hydrates and their coexisting phases -- 3. Predicting thermodynamic properties and phase behavior -- 3.1 Thermodynamic models for predicting the phase behavior of gas hydrates -- 3.2 Guest molecular properties, salinity, and sediments on hydrate thermodynamics -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Chemical structure and crystal types of natural gas hydrates -- 1. Introduction -- 1.1 Clathrate hydrates -- 1.2 Semi-clathrate hydrates -- 1.3 Guest-void size ratio -- 2. Properties of the NGHs -- 2.1 Mechanical properties -- 2.2 Thermodynamic properties -- 2.2.1 Thermodynamics -- 2.2.2 Phase equilibria -- 2.3 Thermal properties -- 2.4 Electromagnetic properties -- 2.5 Interfacial properties -- 3. NGH formation and dissociation -- 3.1 Nucleation and crystal growth -- 3.2 Nucleation -- 3.3 Crystal growth -- 3.4 Dissociation -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 6 - Natural gas hydrate dissociation and dissolution -- 1. Introduction -- 2. Sources of methane origin in NGH -- 2.1 Biogenic methane source -- 2.2 Thermogenic methane source. 3. Gas hydrate stability zone -- 3.1 The requirements for NGH stability -- 4. Gas hydrates in natural porous media -- 5. Hydrate dissociation and production of CH4 from NGH -- 5.1 Pressure reduction -- 5.2 Thermoelectric stimulation (increment) -- 5.3 Change in chemical potential -- 5.3.1 Inhibitor injection -- 5.3.2 Increased-sized injection of guest gas -- 5.3.3 Reduced-size guest gas injection in NGH reservoirs -- 6. The uncontrolled dissociation of NGH in the climate (environment) -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 7 - Natural gas hydrates as a carbon neutral energy source: How the intrinsic properties can affect the CO2/CH4 exchange pr ... -- 1. Introduction -- 2. CO2/CH4 replacement mechanism into hydrates -- 3. Effect of intrinsic properties of hydrates formation on the replacement process -- 3.1 Memory effect -- 3.2 Saturation -- 3.3 Induction time -- 4. Re-definition of the thermodynamic region available for CO2-CH4 exchange -- 5. Replacement above and below the freezing point of water -- 6. Conclusion and future outlooks -- References -- 8 - The application of natural gas hydrates as an energy source -- 1. Introduction -- 2. Gas hydrate -- 2.1 Structure -- 2.2 Hydrates in natural environments -- 3. Latest developments in MH energy recovery -- 3.1 MH occurrence and resource evaluation -- 3.2 Programs for drilling, experimental fields, and production technologies -- 4. Recovery techniques -- 4.1 Thermal simulation -- 4.1.1 Thermal characteristics -- 4.1.2 Computational modeling -- 4.1.3 Experimental research -- 4.2 Depressurization -- 4.2.1 Numerical modeling -- 4.2.2 Experiments conducted in a lab -- 4.3 Injectable chemical inhibitors -- 4.4 The mix of methods -- 5. Conclusion and future outlooks -- Abbreviation and symbols -- References. 9 - Natural gas hydrate-related disasters and case studies -- 1. Introduction -- 1.1 Hydrate structure -- 2. Gas hydrate in pipelines -- 2.1 Disasters case studies -- 2.1.1 Case study 1 -- 2.1.2 Case study 2 -- 2.1.3 Case study 3 -- 2.1.4 Case study 4 -- 2.1.5 Case study 5 -- 2.1.6 Case study 6 -- 2.1.7 Case study 7 -- 3. Gas hydrates in seabed -- 4. Gas hydrate environmental aspects -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Pipeline natural gas hydrates -- 10 . Removal of natural gas hydrate plugs -- 1. Introduction -- 1.1 Gas hydrates -- 1.2 Existence of gas hydrate -- 1.3 Pipelines and gas hydrates -- 1.4 Gulf of Mexico pipeline: A case study -- 1.5 Remediation techniques for gas hydrate -- 2. Chemical inhibitors -- 2.1 Thermodynamic inhibitors -- 2.2 Low-dosage inhibitors -- 2.2.1 Kinetic hydrate inhibitors -- 2.2.2 Antiagglomerates (AA) inhibitors -- 3. Advancement in gas hydrate inhibitors -- 3.1 Contemporary inhibitors for gas hydrate mitigation -- 3.2 Ionic liquids -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Natural gas thermodynamic hydrate inhibitors -- 1. Introduction -- 2. Thermodynamic hydrate inhibitors -- 2.1 Conventional THIs -- 2.1.1 Alcohols -- 2.1.2 Diols -- 2.1.3 Salts -- 2.2 Novel THIs -- 2.2.1 Ionic liquids -- 2.2.2 Natural amino acids -- 2.2.3 Sugar-derived compounds -- 2.2.4 Amines and nitrogenates -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgments -- References -- III - Oceanic natural gas hydrates -- 12 - Distribution and discovery of oceanic natural gas hydrates -- 1. Introduction -- 1.1 Geographical distribution of gas hydrates -- 1.2 Global distribution -- 1.3 Production rate of different sources of gas hydrates -- 2. Geochemical signs -- 2.1 Geological indicators -- 3. Diapirism. 3.1 Signs of fluid movement -- 3.2 Submerged holes -- 4. Mud volcano -- 5. Faulting -- 6. Methods for identification and study of gaseous hydrates -- 6.1 Thermodynamic conditions -- 6.2 Ingredients containing hydrates -- 6.3 Reflector for bed simulator -- 7. Zone of stability for gaseous hydrates -- 8. Some projects carried out in the field of gas hydrate exploration -- 9. Conclusion and future outlook -- Abbreviations and symbols -- References -- 13 - Geophysical indicators and methods for producing oceanic gas hydrates -- 1. Introduction -- 2. Principles and procedures for gas hydrate exploration -- 2.1 Hydrates resource estimation -- 2.2 Gas hydrate indicators -- 2.2.1 Seismic indicators -- 2.2.2 Well log data -- 2.3 Pressure coring and analysis -- 3. Gas hydrate processes and characteristics -- 3.1 Hydrates thermodynamic conditions -- 3.2 The gas hydrate system -- 3.3 Hydrate morphology and gas availability -- 3.4 Methods of hydrates production -- 3.4.1 Thermal stimulation -- 3.4.2 Depressurization -- 3.4.3 Inhibitor injection -- 4. Current applications and cases -- 4.1 Case study 1 -- 4.2 Case study 2 -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Further reading -- Index -- Back Cover. |
| Record Nr. | UNINA-9911007172903321 |
Rahimpour Mohammad Reza
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar
| Advances in Natural Gas : Formation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar |
| Autore | Rahimpour Mohammad Reza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (776 pages) |
| Disciplina | 665.73 |
| Altri autori (Persone) |
MakaremMohammad Amin
MeshksarMaryam |
| Soggetto topico |
Natural gas
Simulation methods |
| ISBN |
9780443192302
0443192308 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Modeling and simulationof natural gassweetening processes and apparatus -- 1 - Process modeling and simulation of natural gas sweetening by absorption processes -- 1. Introduction -- 1.1 Natural gas sweetening process: Parameters for modeling -- 2. Absorption in a fluidic media -- 2.1 Types of alkanol amines -- 2.2 Hydrogen sulfide and alkanol amines -- 2.3 Carbon dioxide and alkanol amines -- 3. Process selection -- 4. Modeling -- 4.1 Generalization of distillation tower algorithm -- 4.2 Mathematical model of acidic gas absorption tower -- 4.3 Model assumptions -- 4.4 Model theory -- 5. Fundamental equations and principles for modeling natural gas sweetening -- 6. Benefits of using simulation models -- 7. Simulation models to reduce costs and improve efficiency -- 8. Simulation models to optimize -- 9. Limitations of using simulation models -- 10. Successful implementation of simulation models -- 11. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 2 - Modeling and simulation of natural gas sweetening by various adsorption technologies -- 1. Introduction -- 2. Sweetening adsorption processes -- 2.1 Pressure swing adsorption -- 2.1.1 Procedure -- 2.1.2 The effect of different parameters on the PSA process with related equations -- 2.1.2.1 Adsorbent -- 2.1.2.2 Bed porosity -- 2.1.2.3 Pressure -- 2.1.2.4 Residence time -- 2.1.2.5 Adsorption time -- 2.1.2.6 Purge/feed ratio -- 2.1.2.7 Depressurization and pressure equalization -- 2.1.2.8 Rinse time -- 2.1.3 Literature -- 2.2 Temperature swing adsorption -- 2.2.1 Procedure.
2.2.1.1 Heat and mass transfer model equations -- 2.2.1.2 Mass balance equations -- 2.2.1.3 Heat balance equations -- 2.2.2 Literature -- 2.3 Electric swing adsorption -- 2.3.1 Procedure -- 2.3.2 Literature -- 2.4 Vacuum swing adsorption -- 2.4.1 Procedure -- 2.4.2 Literature -- 2.5 Mixed swing adsorption processes -- 2.5.1 Temperature Electric Swing Adsorption -- 2.5.1.1 Model description -- 2.5.2 Pressure temperature swing adsorption -- 2.5.2.1 Procedure -- 2.5.3 Vacuum pressure swing adsorption -- 2.5.3.1 Procedure -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Modeling and simulation of natural gas sweetening using membranes -- 1. Introduction -- 1.1 Natural gas sweetening -- 1.2 Mathematical modeling -- 1.3 Membrane systems -- 1.3.1 Classification of membrane systems -- 2. Principles and procedures -- 2.1 Gas separation using HFM -- 2.1.1 Mathematical model of gas separation -- 2.2 Gas absorption using gas-liquid membrane contactor -- 2.2.1 Mathematical modeling -- 2.2.1.1 Membrane lumen side (liquid) -- 2.2.1.2 Membrane walls -- 2.2.1.3 Module shell (gas) -- 3. Current applications and cases -- 3.1 Membrane separation of CO2 at high pressure -- 3.2 Membrane separation at moderate pressure -- 3.3 Liquid-gas membrane contactor -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Modeling and simulation of CO2 removal from CO2-rich natural gas via supersonic separators -- 1. Introduction -- 1.1 State of the art in natural gas CO2 removal -- 2. Overview of CO2-Rich natural gas in raw form -- 3. The content of CO2-rich NG and its processing techniques -- 4. Technologies for CO2 capture from CO2-Rich natural gas -- 5. CO2-rich natural gas processing using supersonic separators -- 6. Comparison of process alternatives -- 6.1 Conventional process: TEG+JT/LTS. 6.2 Comparison between TEG+JT/LTS and supersonic separator -- 7. HYSYS modeling of supersonic separator units for CO2-Rich natural gas treatment -- 8. Modeling supersonic separation for natural gas dew-point adjustment -- 9. Supersonic separation for natural gas CO2 removal -- 9.1 Supersonic separator modeling and simulation: SS-UOE -- 10. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Case studies of modeling and simulation of natural gas sweetening processes -- 1. Introduction -- 2. Acid gas removal methodology -- 2.1 AGR from natural gas using cryogenic process -- 2.2 AGR from natural gas using absorption -- 2.3 AGR from natural gas using membrane-gas solvent contactors -- 2.4 AGR from natural gas using adsorption -- 3. Conclusions and future outlooks -- Abbreviations and symbols -- References -- II - Modeling and simulationof natural gas dehydrationprocesses and apparatus -- 6 - Process modeling and simulation of natural gas dehydration by absorption technology -- 1. Introduction -- 2. Gas hydrate -- 3. Gas dehydration process -- 3.1 Traditional methods of dehydration -- 3.2 Gas stripping dehydration method -- 4. Modeling thermodynamics -- 4.1 Modeling UMR-PRU -- 4.1.1 Summary of the model -- 4.1.2 Adoption in industrial simulation -- 4.2 An outline of TST/NRTL -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 7 - Modeling and simulating natural gas dehydration by adsorption technologies: Pressure swing adsorption, temperature swin ... -- 1. Introduction -- 2. Mathematical foundations for dehydration modeling -- 3. Adsorption-based dehydration technologies -- 3.1 Pressure swing adsorption -- 3.2 Vacuum swing adsorption -- 3.3 Temperature swing adsorption -- 4. Typical industrial application units -- 4.1 Typical operating modes -- 4.1.1 PSA for hydrogen purification. 4.1.2 TSA for natural gas dehydration -- 4.2 Other applications -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane-based modeling and simulation of natural gas dehydration -- 1. Introduction -- 2. Dehydration process -- 2.1 DEG regeneration -- 3. Function, configuration, and characteristics of membrane processes -- 3.1 Conventional cross-flow design -- 3.2 Cross-flow model with the influent under vacuum -- 3.3 Role of an expanded residue slipstream as the sweep in a countercurrent design -- 3.4 Design employing a countercurrent flow of sweep-dry nitrogen -- 3.5 Four membrane system concepts have been evaluated -- 3.6 Another application of SS for NG purification: Polymer membrane modeling -- 4. Modeling and simulation overview -- 4.1 Modeling -- 5. Simulation -- 5.1 Overview of process simulation instruments -- 5.2 Interface for connecting to simulators -- 6. System design of membrane processes -- 6.1 Different phases of system design -- 6.2 Different design techniques for membrane systems -- 6.2.1 Customization of already-existing membrane characteristics -- 6.2.2 Program development customization -- 7. Membranes challenges -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Modeling and simulation of natural gas dehydration via supersonic separators -- 1. Introduction -- 2. Natural gas dehydration methods -- 3. Condensation process -- 3.1 Laval nozzle history for condensation -- 3.2 Condensation mechanisms -- 3.2.1 Nucleation -- 3.2.2 Droplet formation and growth -- 3.3 Modeling and simulations -- 3.4 Condensation experimentation -- 3.5 Modeling of supersonic separation -- 4. Separation processes -- 4.1 Swirler design -- 4.2 Shock wave location -- 5. Pressure recovery -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References. III - Modeling and simulation of other impuritiesremoval from natural gas -- 10 - Modeling and simulation of hydrocarbon dew point adjustment of natural gas via supersonic separators -- 1. Introduction -- 2. Hydrocarbon dew point -- 3. Supersonic technology -- 3.1 Design procedure -- 3.2 History -- 3.3 Translang technologies ltd -- 3.4 Effectiveness -- 3.5 Supersonic technology comparing to other technologies -- 4. Supersonic process design -- 4.1 Supersonic process design specification -- 4.2 Process simulation of the supersonic separation -- 4.3 Operating unit design and sizing -- 4.3.1 Vessels, containers, and separators -- 4.3.2 Compressors, turbines, and pumps -- 4.3.3 Heat exchangers, coolers, and heaters -- 4.3.4 Towers and columns -- 4.4 Technoeconomics -- 4.4.1 Capital expenditures estimation -- 4.4.2 Operating expenditure estimation -- 4.4.3 Revenue estimation -- 5. Supersonic separation modeling -- 5.1 Condensation -- 5.1.1 Condensation mechanisms -- 5.1.2 Condensation models -- 5.2 Separation processes -- 5.3 Shock wave location -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Thermodynamic models and process simulation of mercury removal from natural gas -- 1. Introduction -- 2. Principles and procedures of thermodynamic models for mercury removal from natural gas -- 2.1 UMR-PRU model -- 2.2 Soave-Redlich-Kwong EOS -- 2.3 SAFT models -- 2.3.1 PC-SAFT model -- 2.3.2 Critical point-based perturbed-chain statistical association fluid theory model -- 2.4 Peng and Robinson model -- 3. Simulation and modeling of mercury removal process from natural gas -- 4. Processes of mercury removal in natural gas industry -- 4.1 Fixed-bed reactors -- 4.2 Scrubbing solution -- 4.3 Simultaneous mercury and hydrogen sulfide removal process -- 4.4 Glycol and molecular sieve dehydration process. 4.5 Type of scenarios for installing mercury removal process from the natural gas. |
| Record Nr. | UNINA-9911006673303321 |
Rahimpour Mohammad Reza
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Compendium for the LNG and CNG Practitioner : Liquefied Natural Gas in Application / / by Werner Hermeling
| Compendium for the LNG and CNG Practitioner : Liquefied Natural Gas in Application / / by Werner Hermeling |
| Autore | Hermeling Werner |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (225 pages) |
| Disciplina | 665.73 |
| Soggetto topico |
Electric power distribution
Energy storage Materials Catalysis Force and energy Energy Grids and Networks Mechanical and Thermal Energy Storage Materials for Energy and Catalysis |
| ISBN | 9783658382582 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | LNG and its thermodynamics -- Importance of LNG -- The main thermodynamic processes involved in the production, transportation and storage of LNG -- LNG, from source to end customer -- LNG - Liquefaction at source and transportation to hub -- LNG - Transportation to and storage at end customer -- Closed and open hose system -- The continuous and discontinuous operation -- Refueling while maintaining process pressure -- LNG - Applications -- Supply systems -- Natural gas filling stations -- Filling of natural gas cylinders and natural gas bundles -- Functional principle of components -- Tank designs -- Piping and fittings -- Sensor technology -- Valves in the cryogenic range and in the gas phase -- Air vaporizers -- Gas preheaters -- Odorization -- Gas pressure regulators -- Safety devices -- Safety valves -- Safety shut-off valve -- Overfill protection -- Exhaust gas routing -- Hose coupling for tank filling -- Insulations -- Tank earthing -- Plant approval procedure -- Installation and securing (start-up protection) of the plant -- Protective measures -- Training recommendation -- Codes of practice and data sheets. |
| Record Nr. | UNINA-9910855366903321 |
Hermeling Werner
|
||
| Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Exploration and Production of Oceanic Natural Gas Hydrate : Critical Factors for Commercialization / / by Michael D. Max, Arthur H. Johnson
| Exploration and Production of Oceanic Natural Gas Hydrate : Critical Factors for Commercialization / / by Michael D. Max, Arthur H. Johnson |
| Autore | Max Michael D |
| Edizione | [2nd ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (501 pages) |
| Disciplina |
665.7
665.73 |
| Soggetto topico |
Energy
Climatic changes Management Industrial management Robotics Automation Mines and mineral resources Energy, general Climate Change Management and Policy Innovation/Technology Management Robotics and Automation Mineral Resources |
| ISBN | 3-030-00401-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Energy Overview: Prospects for Natural Gas -- 2. Economic Characteristics of Deepwater Natural Gas Hydrate -- 3. Exploration for Deepwater Natural Gas Hydrate -- 4. Potential High-Quality Reservoir Sediments in the Gas Hydrate Stability Zone -- 5. Valuation of NGH Deposits -- 6. Deepwater Natural Gas Hydrate Innovation Opportunities -- 7. Leveraging Technology for NGH Development and Production -- 8. New Technology for NGH Development and Production -- 9. Offshore Operations and Logistics -- 10. Energy Resource Risk Factors -- 11. Elements of Commerciality. |
| Record Nr. | UNINA-9910337585103321 |
Max Michael D
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
From landfill gas to energy : technologies and challenges / Vasudevan Rajaram, Faisal Zia Siddiqui, and M. Emran Khan
| From landfill gas to energy : technologies and challenges / Vasudevan Rajaram, Faisal Zia Siddiqui, and M. Emran Khan |
| Autore | Rajaram, Vasudevan |
| Pubbl/distr/stampa | Leiden, The Netherlands ; New York : CRC/Balkema, c2012 |
| Descrizione fisica | xx, 394 p. : ill. ; 26 cm |
| Disciplina | 665.73 |
| Altri autori (Persone) |
Siddiqui, Faisal Ziaauthor
Emran Khan, M |
| Soggetto topico |
Gas as fuel
Landfill gases - Recycling Gas extraction Sanitary landfills - Byproducts SCIENCE / Environmental Science TECHNOLOGY & ENGINEERING / Civil / General TECHNOLOGY & ENGINEERING / Environmental / General |
| ISBN | 9780415664745 (hardback) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001775299707536 |
Rajaram, Vasudevan
|
||
| Leiden, The Netherlands ; New York : CRC/Balkema, c2012 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||