Flow and heat or mass transfer in the chemical process industry / / edited by Dimitrios V. Papavassiliou, Quoc T. Nguyen |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2018] |
Descrizione fisica | 1 online resource (214 pages) : illustrations |
Disciplina | 660.28423 |
Soggetto topico | Mass transfer |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910674010903321 |
Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Flow and heat or mass transfer in the chemical process industry / / edited by Dimitrios V. Papavassiliou, Quoc T. Nguyen |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , [2018] |
Descrizione fisica | 1 online resource (214 pages) : illustrations |
Disciplina | 660.28423 |
Soggetto topico | Mass transfer |
ISBN | 3-03897-239-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Special Issue Editors . vii -- Dimitrios V. Papavassiliou and Quoc Nguyen Flow and Heat or Mass Transfer in the Chemical Process Industry Reprinted from: Fluids 2018, 3, 61, doi: 10.3390/fluids3030061 1 -- Athanasios G. Kanaris and Aikaterini A. Mouza Design of a Novel μ-Mixer Reprinted from: Fluids 2018, 3, 10, doi: 10.3390/fluids3010010 4 -- Cortes Williams III, Olufemi E. Kadri, Roman S. Voronov and Vassilios I. Sikavitsas Time-Dependent Shear Stress Distributions during Extended Flow Perfusion Culture of Bone Tissue Engineered Constructs Reprinted from: Fluids 2018, 3, 25, doi: 10.3390/fluids3020025 15 -- Agathoklis D. Passos, Dimitris Tziafas, Aikaterini A. Mouza and Spiros V. Paras Computational Modelling for Efficient Transdentinal Drug Delivery Reprinted from: Fluids 2018, 3, 4, doi: 10.3390/fluids3010004 . 29 -- Sarvenaz Sobhansarbandi, Lizon Maharjan, Babak Fahimi and Fatemeh Hassanipour Thermal Fluid Analysis of Cold Plasma Methane Reformer Reprinted from: Fluids 2018, 3, 31, doi: 10.3390/fluids3020031 46 -- Hai M. Duong, Ziyang Colin Xie, Koh Hong Wei, Ng Gek Nian, Kenneth Tan, Hong Jie Lim, An Hua Li, Ka-Shing Chung and Wen Zhen Lim Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles Reprinted from: Fluids 2017, 2, 64, doi: 10.3390/fluids2040064 64 -- Chrysafenia P. Koutsou, Anastasios J. Karabelas and Margaritis Kostoglou Fluid Dynamics and Mass Transfer in Spacer-Filled Membrane Channels: Effect of Uniform Channel-Gap Reduction Due to Fouling Reprinted from: Fluids 2018, 3, 12, doi: 10.3390/fluids3010012 72 -- Anthony G. Dixon and Nicholas J. Medeiros Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects Reprinted from: Fluids 2017, 2, 56, doi: 10.3390/fluids2040056 92 -- Shahrouz Mohagheghian and Brian R. Elbing Characterization of Bubble Size Distributions within a Bubble Column Reprinted from: Fluids 2018, 3, 13, doi: 10.3390/fluids3010013 115 -- Sophie R ¨uttinger, Marko Hoffmann and Michael Schl ¨uter Experimental Analysis of a Bubble Wake Influenced by a Vortex Street Reprinted from: Fluids 2018, 3, 8, doi: 10.3390/fluids3010008 . 132 -- German E. Cortes Garcia, Kevin M. P. van Eeten, Michiel M. de Beer, Jaap C. Schouten and John van der Schaaf On the Bias in the Danckwerts' Plot Method for the Determination of the Gas-Liquid Mass-Transfer Coefficient and Interfacial Area Reprinted from: Fluids 2018, 3, 18, doi: 10.3390/fluids3010018 148 -- Yixiang Liao and Dirk Lucas Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD Reprinted from: Fluids 2018, 3, 38, doi: 10.3390/fluids3020038 158 -- Quoc Nguyen and Dimitrios V. Papavassiliou Quality Measures of Mixing in Turbulent Flow and Effects of Molecular Diffusivity Reprinted from: Fluids 2018, 3, 53, doi: 10.3390/fluids3030053 178 -- Suranga Dharmarathne, Venkatesh Pulletikurthi and Luciano Castillo Coherent Vortical Structures and Their Relation to Hot/Cold Spots in a Thermal Turbulent Channel Flow Reprinted from: Fluids 2018, 3, 14, doi: 10.3390/fluids3010014 194. |
Record Nr. | UNINA-9910765706703321 |
Basel, Switzerland : , : MDPI, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Gas network optimization by MINLP / / Jesco Humpola |
Autore | Humpola Jesco |
Pubbl/distr/stampa | Berlin : , : Logos Verlag, , [2014] |
Descrizione fisica | 1 online resource (260 pages) |
Disciplina | 660.28423 |
Soggetto topico | Gases - Absorption and adsorption |
ISBN | 3-8325-9278-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910795589503321 |
Humpola Jesco | ||
Berlin : , : Logos Verlag, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Gas network optimization by MINLP / / Jesco Humpola |
Autore | Humpola Jesco |
Pubbl/distr/stampa | Berlin : , : Logos Verlag, , [2014] |
Descrizione fisica | 1 online resource (260 pages) |
Disciplina | 660.28423 |
Soggetto topico | Gases - Absorption and adsorption |
ISBN | 3-8325-9278-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910821466903321 |
Humpola Jesco | ||
Berlin : , : Logos Verlag, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to Computational Mass Transfer : With Applications to Chemical Engineering / / by Kuo-Tsung Yu, Xigang Yuan |
Autore | Yu Kuo-Tsung |
Edizione | [2nd ed. 2017.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XII, 417 p. 283 illus., 83 illus. in color.) |
Disciplina | 660.28423 |
Collana | Heat and Mass Transfer |
Soggetto topico |
Chemical engineering
Thermodynamics Heat engineering Heat transfer Mass transfer Computer simulation Chemistry, Physical and theoretical Industrial Chemistry/Chemical Engineering Engineering Thermodynamics, Heat and Mass Transfer Simulation and Modeling Theoretical and Computational Chemistry |
ISBN | 981-10-2498-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Basic Models of Computational Mass Transfer -- Application of Computational Mass Transfer (I): Distillation Process -- Application of Computational Mass Transfer (II): Chemical Absorption Process -- Application of Computational Mass Transfer (III): Chemical Adsorption Process -- Application of Computational Mass Transfer (IV): Fixed Bed Catalytic Reaction -- Application of Computational Mass Transfer (V): Fluidized Chemical Process -- Mass Transfer in Multi-component Systems -- Micro Behaviors Around Rising Bubbles -- Simulation of Interfacial Effect on Mass Transfer -- Simulation of Interfacial Behaviors by the Lattice-Boltzmann Method. |
Record Nr. | UNINA-9910254339303321 |
Yu Kuo-Tsung | ||
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to transport phenomena in materials engineering / / David R. Gaskell |
Autore | Gaskell David R. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | New Jersey : , : Momentum Press, LLC, , 2012 |
Descrizione fisica | 1 online resource (686 p.) |
Disciplina | 660.28423 |
Soggetto topico |
Mass transfer
Materials - Fluid dynamics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-89611-7
1-60650-357-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems -- 2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems -- 3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems -- 4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems -- 5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems -- 6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems -- 7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems -- 8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems -- 9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems -- 10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems -- 11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems -- 12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems -- Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index. |
Record Nr. | UNINA-9910462542503321 |
Gaskell David R. | ||
New Jersey : , : Momentum Press, LLC, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to transport phenomena in materials engineering / / David R. Gaskell |
Autore | Gaskell David R. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | New Jersey : , : Momentum Press, LLC, , 2012 |
Descrizione fisica | 1 online resource (686 p.) |
Disciplina | 660.28423 |
Soggetto topico |
Mass transfer
Materials - Fluid dynamics |
ISBN |
1-283-89611-7
1-60650-357-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems -- 2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems -- 3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems -- 4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems -- 5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems -- 6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems -- 7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems -- 8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems -- 9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems -- 10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems -- 11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems -- 12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems -- Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index. |
Record Nr. | UNINA-9910785988303321 |
Gaskell David R. | ||
New Jersey : , : Momentum Press, LLC, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to transport phenomena in materials engineering / / David R. Gaskell |
Autore | Gaskell David R. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | New Jersey : , : Momentum Press, LLC, , 2012 |
Descrizione fisica | 1 online resource (686 p.) |
Disciplina | 660.28423 |
Soggetto topico |
Mass transfer
Materials - Fluid dynamics |
ISBN |
1-283-89611-7
1-60650-357-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
List of symbols --
1. Engineering units and pressure in static fluids -- 1.1 Origins of engineering units -- 1.2 Concept of pressure -- 1.3 Measurement of pressure -- 1.4 Pressure in incompressible fluids -- 1.5 Buoyancy -- 1.6 Summary -- Problems -- 2. Momentum transport and laminar flow of Newtonian fluids -- 2.1 Introduction -- 2.2 Newton's lax of viscosity -- 2.3 Conservation of momentum in steady-state flow -- 2.4 Fluid flow between two flat parallel plates -- 2.5 Fluid flow down in inclined plane -- 2.6 Fluid flow in a vertical cylindrical tube -- 2.7 Capillary flowmeter -- 2.8 Fluid flow in an annulus -- 2.9 Mean residence time -- 2.10 Calculation of viscosity from the kinetic theory of gases -- 2.11 Viscosities of liquid metals -- 2.12 Summary -- Problems -- 3. Equations of continuity and conservation of momentum and fluid flow past submerged objects -- 3.1 Introduction -- 3.2 Equation of continuity -- 3.3 Conservation of momentum -- 3.4 Navier-Stokes equation for fluids of constant density and viscosity -- 3.5 Fluid flow over a horizontal flat plane -- 3.6 Approximate integral method in obtaining boundary layer thickness -- 3.7 Creeping flow past a sphere -- 3.8 Summary -- Problems -- 4. Turbulent flow -- 4.1 Introduction -- 4.2 Graphical representation of fluid flow -- 4.3 Friction factor and turbulent flow in cylindrical pipes -- 4.4 Flow over a flat plate -- 4.5 Flow past a submerged sphere -- 4.6 Flow past a submerged cylinder -- 4.7 Flow through packed beds -- 4.8 Fluidized beds -- 4.9 Summary -- Problems -- 5. Mechanical energy balance and its application to fluid flow -- 5.1 Introduction -- 5.2 Bernoulli's equation -- 5.3 Friction loss, Ef -- 5.4 Influence of bends, fittings, and changes in the pipe radius -- 5.5 Concept of head -- 5.6 Fluid flow in an open channel -- 5.7 Drainage from a vessel -- 5.8 Emptying a vessel by discharge through an orifice -- 5.9 Drainage of a vessel using a drainage tube -- 5.10 Emptying a vessel by drainage through a drainage tube -- 5.11 Bernoulli equation for flow of compressible fluids -- 5.12 Pilot tube -- 5.13 Orifice plate -- 5.14 Summary -- Problems -- 6. Transport of heat by conduction -- 6.1 Introduction -- 6.2 Fourier's law and Newton's law -- 6.3 Conduction -- 6.4 Conduction in heat sources -- 6.5 Thermal conductivity and the kinetic theory of gases -- 6.6 General heat conduction equation -- 6.7 Conduction of heat at steady state in two dimensions -- 6.8 Summary -- Problems -- 7. Transport of heat by convection -- 7.1 Introduction -- 7.2 Heat transfer by forced convection from a horizontal flat plate at a uniform constant temperature -- 7.3 Heat transfer from a horizontal flat plate with uniform heat flux along the plate -- 7.4 Heat transfer during fluid flow in cylindrical pipes -- 7.5 Energy balance in heat transfer by convection between a cylindrical pipe and a flowing fluid -- 7.6 Heat transfer by forced convection from horizontal cylinders -- 7.7 Heat transfer by forced convection from a sphere -- 7.8 General energy equation -- 7.9 Heat transfer from a vertical plate by natural convection -- 7.10 Heat transfer from cylinders by natural convection -- 7.11 Summary -- Problems -- 8. Transient heat flow -- 8.1 Introduction -- 8.2 Lumped capacitance method; Newtonian cooling -- 8.3 Non-Newtonian cooling in semi-infinite systems -- 8.4 Non-Newtonian cooling in a one-dimensional finite systems -- 8.5 Non-Newtonian cooling in a two-dimensional finite systems -- 8.6 Solidification of metal castings -- 8.7 Summary -- Problems -- 9. Heat transport by thermal radiation -- 9.1 Introduction -- 9.2 Intensity and emissive power -- 9.3 Blackbody radiation -- 9.4 Emissivity -- 9.5 Absorptivity, reflectivity, and transmissivity -- 9.6 Kirchhoff's law and the Hohlraum -- 9.7 Radiation exchange between surfaces -- 9.8 Radiation exchange between blackbodies -- 9.9 Radiation exchange between diffuse-gray surfaces -- 9.10 Electric analogy -- 9.11 Radiation shields -- 9.12 Reradiating surface -- 9.13 Heat transfer from a surface by convection and radiation -- 9.14 Summary -- Problems -- 10. Mass transport by diffusion in the solid state -- 10.1 Introduction -- 10.2 Atomic diffusion as a random-walk process -- 10.3 Fick 's first law of diffusion -- 10.4 One-dimensional non-steady-state diffusion in a solid; Fick's second law of diffusion -- 10.5 Infinite diffusion couple -- 10.6 One-dimensional diffusion in a semi-infinite system involving a change of phase -- 10.7 Steady-state diffusion through a composite wall -- 10.8 Diffusion in substitutional solid solutions -- 10.9 Darken's analysis -- 10.10 Self-diffusion coefficient -- 10.11 Measurement of the interdifussion coefficient: Boltzmann-Matano analysis -- 10.12 Influence of temperature on the diffusion coefficient -- 10.13 Summary -- Problems -- 11. Mass transport in fluids -- 11.1 Introduction -- 11.2 Mass and molar fluxes in a fluid -- 11.3 Equations of diffusion with convection in a binary mixture A-B -- 11.4 One-dimensional transport in a binary mixture of ideal gases -- 11.5 Equimolar counterdiffusion -- 11.6 One-dimensional steady-state diffusion of gas A through stationary gas B -- 11.7 Sublimation of a sphere into a stationary gas -- 11.8 Film model -- 11.9 Catalytic surface reactions -- 11.10 Diffusion and chemical reaction in stagnant film -- 11.11 Mass transfer at large fluxes and large concentrations -- 11.12 Influence of mass transport on heat transfer in stagnant film -- 11.13 Diffusion into a falling film of liquid -- 11.14 Diffusion and the kinetic theory of gases -- 11.15 Mass transfer coefficient and concentration boundary layer on a flat plate -- 11.16 Approximate integral method -- 11.17 Mass transfer by free convection -- 11.18 Simultaneous heat and mass transfer: evaporate cooling -- 11.19 Chemical reaction and mass transfer: mixed control -- 11.20 Dissolution of pure metal A in liquid B: mixed control -- 11.21 Summary -- Problems -- 12. Condensation and boiling -- 12.1 Introduction -- 12.2 Dimensionless parameters in boiling and condensation -- 12.3 Modes of boiling -- 12.4 Pool boiling correlations -- 12.5 Summary -- Problems -- Appendix A. Elementary and derived SI units and symbols -- Appendix B. Prefixes and symbols for multiples and submultiples of SI units -- Appendix C. Conversion from British and U.S. units to SI units -- Appendix D. Properties of solid metals -- Appendix E. Properties of nonmetallic solids -- Appendix F. Properties of gases at 1 Atm pressure -- Appendix G. Properties of saturated liquids -- Appendix H. Properties of liquid metals -- Recommended readings -- Answers to problems -- Index. |
Record Nr. | UNINA-9910820990903321 |
Gaskell David R. | ||
New Jersey : , : Momentum Press, LLC, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mass and momentum transfer upon flow through solid sponges / / Gerardo Incera Garrido |
Autore | Incera Garrido Gerardo |
Pubbl/distr/stampa | Karlsruhe, Germany : , : KIT Scientific Publishing, , 2009 |
Descrizione fisica | 1 electronic resource (IV, 148 p. p.) |
Disciplina | 660.28423 |
Soggetto topico |
Mass transfer
Chemical engineering Sponges |
ISBN | 1000010100 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction -- 2. Preparation of sponge-supported Pt/SnO2 catalysts and their performance in the oxidation of CO -- 3. Morphological characterization of ceramic sponges -- 4. Mass and momentum transfer phenomena upon flow through open-cell sponges -- 5. Summary and general conclusions -- 6. Zusammenfassung und Fazit -- 7. Appendix. |
Record Nr. | UNINA-9910346927303321 |
Incera Garrido Gerardo | ||
Karlsruhe, Germany : , : KIT Scientific Publishing, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mass Transfer : Advancement in Process Modelling / / edited by Marek Solecki |
Pubbl/distr/stampa | Croatia : , : IntechOpen, , 2015 |
Descrizione fisica | 1 online resource (290 pages) : illustrations |
Disciplina | 660.28423 |
Soggetto topico | Mass transfer |
ISBN |
953-51-6394-9
953-51-2192-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Mass transfer
Mass Transfer - Advancement in Process Modelling |
Record Nr. | UNINA-9910131391903321 |
Croatia : , : IntechOpen, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|