Batch distillation : simulation, optimal design, and control / / by Urmila Diwekar |
Autore | Diwekar Urmila M. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 |
Descrizione fisica | 1 online resource (390 p.) |
Disciplina | 660/.28425 |
Soggetto topico | Distillation |
Soggetto genere / forma | Electronic books. |
ISBN |
0-429-10578-9
1-4398-6123-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface to Second Edition; Preface to First Edition; Notations; 1. Introduction; 2. Basic Modes of Operation; 3. Column Dynamics; 4. Simplified Models; 5. Optimization; 6. Complex Columns; 7. Complex Systems; 8. Batch Distillation Control; 9. Consideration Of Uncertainty; 10. Batch Distillation Software Programs |
Record Nr. | UNINA-9910460574203321 |
Diwekar Urmila M.
![]() |
||
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Batch distillation : simulation, optimal design, and control / / by Urmila Diwekar |
Autore | Diwekar Urmila M. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 |
Descrizione fisica | 1 online resource (390 p.) |
Disciplina | 660/.28425 |
Soggetto topico | Distillation |
ISBN |
1-4665-1542-2
0-429-10578-9 1-4398-6123-4 |
Classificazione | SCI013060 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface to Second Edition; Preface to First Edition; Notations; 1. Introduction; 2. Basic Modes of Operation; 3. Column Dynamics; 4. Simplified Models; 5. Optimization; 6. Complex Columns; 7. Complex Systems; 8. Batch Distillation Control; 9. Consideration Of Uncertainty; 10. Batch Distillation Software Programs |
Record Nr. | UNINA-9910797030503321 |
Diwekar Urmila M.
![]() |
||
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Batch distillation : simulation, optimal design, and control / / by Urmila Diwekar |
Autore | Diwekar Urmila M. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 |
Descrizione fisica | 1 online resource (390 p.) |
Disciplina | 660/.28425 |
Soggetto topico | Distillation |
ISBN |
1-4665-1542-2
0-429-10578-9 1-4398-6123-4 |
Classificazione | SCI013060 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface to Second Edition; Preface to First Edition; Notations; 1. Introduction; 2. Basic Modes of Operation; 3. Column Dynamics; 4. Simplified Models; 5. Optimization; 6. Complex Columns; 7. Complex Systems; 8. Batch Distillation Control; 9. Consideration Of Uncertainty; 10. Batch Distillation Software Programs |
Record Nr. | UNINA-9910800165003321 |
Diwekar Urmila M.
![]() |
||
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation : Principles and Practice |
Autore | Stichlmair Johann G |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Newark : , : American Institute of Chemical Engineers, , 2021 |
Descrizione fisica | 1 online resource (685 pages) |
Disciplina | 660/.28425 |
Altri autori (Persone) |
KleinHarald
RehfeldtSebastian |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-4336-3
1-119-41468-7 1-119-41469-5 1-119-41467-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Nomenclature -- 1 Introduction -- 1.1 Principle of Distillation Separation -- 1.2 Historical -- 2 Vapor-Liquid Equilibrium -- 2.1 Basic Thermodynamic Correlations -- 2.1.1 Measures of Concentration -- 2.1.2 Equations of State (EOS) -- 2.1.3 Molar Mixing and Partial Molar State Variables -- 2.1.4 Saturation Vapor Pressure and Boiling Temperature of Pure Components -- 2.1.5 Fundamental Equation and the Chemical Potential -- 2.1.6 Gibbs-Duhem Equation and Gibbs-Helmholtz Equation -- 2.2 Calculation of Vapor-Liquid Equilibrium in Mixtures -- 2.2.1 Basic Equilibrium Conditions -- 2.2.2 Gibbs Phase Rule -- 2.2.3 Correlations for the Chemical Potential -- 2.2.4 Calculating Activity Coefficients with the Molar Excess Free Energy -- 2.2.5 Thermodynamic Consistency Check of Molar Excess Free Energy and Activity Coefficients -- 2.2.6 Iso-fugacity Condition -- 2.2.7 Fugacity of the Liquid Phase -- 2.2.8 Fugacity of the Vapor Phase -- 2.2.9 Vapor-Liquid Equilibrium Using an Equation of St -- 2.2.10 Fugacity of Pure Liquid as Standard Fugacity: Raoult's Law -- 2.2.11 Fugacity of Infinitely Diluted Component as Standard Fugacity: Henry's Law -- 2.2.12 Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.13 Using Experimental Data of Binary Mixtures for Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.14 Vapor-Liquid Equilibrium Ratio of Mixtures -- 2.2.15 Relative Volatility of Mixtures -- 2.2.16 Boiling Condition of Liquid Mixtures -- 2.2.17 Condensation (Dew Point) Condition of Vapor Mixtures -- 2.3 Binary Mixtures and Phase Diagrams -- 2.3.1 Boiling Curve Correlation -- 2.3.2 Condensation (Dew Point) Curve Correlation -- 2.3.3 (p, x, y)-Diagram -- 2.3.4 (T, x, y)-Diagram -- 2.3.5 McCabe-Thiele Diagram.
2.3.6 Boiling and Condensation Behavior of Binary Mixtures -- 2.3.7 General Aspects of Azeotropic Mixtures -- 2.3.8 Limiting Cases of Binary Mi -- 2.4 Ternary Mixtures -- 2.4.1 Boiling and Condensation Conditions of Ternary Mixtures -- 2.4.2 Triangular Diagrams -- 2.4.3 Boiling Surfaces -- 2.4.4 Condensation Surfaces -- 2.4.5 Derivation of Distillation Lines -- 2.4.6 Examples for Distillation Lines -- 3 Single-Stage Distillation and Condensation -- 3.1 Continuous Closed Distillation and Condensation -- 3.1.1 Closed Distillation of Binary Mixtures -- 3.1.2 Closed Distillation of Multicomponent Mixtures -- 3.2 Batchwise Open Distillation and Open Condensation -- 3.2.1 Binary Mixtures -- 3.2.2 Ternary Mixtures -- 3.2.3 Multicomponent Mixtures -- 3.3 Semi-continuous Single-Stage Distillation -- 3.3.1 Semi-continuous Single-Stage Distillation of Binary Mixtures -- 4 Multistage Continuous Distillation (Rectification) -- 4.1 Principles -- 4.1.1 Equilibrium-Stage Concept -- 4.1.2 Transfer-Unit Concept -- 4.1.3 Comparison of Equilibrium-Stage and Transfer-Unit Concepts -- 4.2 Multistage Distillation of Binary Mixtures -- 4.2.1 Calculations Based on Material Bal -- 4.2.2 Calculation Based on Material and Enthalpy Balances -- 4.2.3 Distillation of Binary Mixtures at Total Reflux and Reboil -- 4.2.4 Distillation of Binary Mixtures at Minimum Reflux and Reboil -- 4.2.5 Energy Requirement for Distillation of Binary Mixtures -- 4.3 Multistage Distillation of Ternary Mixtures -- 4.3.1 Calculations Based on Material Balances -- 4.3.2 Distillation of Ternary Mixtures at Total Reflux and Reboil -- 4.3.3 Distillation of Ternary Mixtures at Minimum Reflux and Reboil -- 4.3.4 Energy Requirement of Ternary Distillation -- 4.4 Multistage Distillation of Multicomponent Mixtures -- 4.4.1 Rigorous Column Simulation -- 5 Reactive Distillation, Catalytic Distillation. 5.1 Fundamentals -- 5.1.1 Chemical Equilibrium -- 5.1.2 Stoichiometric Lines -- 5.1.3 Non-reactive and Reactive Distillation Lines -- 5.1.4 Reactive Azeotropes -- 5.2 Topology of Reactive Distillation Lines -- 5.2.1 Reactions in Ternary Systems -- 5.2.2 Reactions in Ternary Systems with Inert Components -- 5.2.3 Reactions with Side Products -- 5.2.4 Reactions in Quaternary Systems -- 5.3 Topology of Reactive Distillation Processes -- 5.3.1 Single Product Reactions -- 5.3.2 Decomposition Reactions -- 5.3.3 Side Reactions -- 5.4 Arrangement of Catalysts in Columns -- 5.4.1 Homogeneous Catalyst -- 5.4.2 Heterogeneous Catalyst -- 6 Multistage Batch Distillation -- 6.1 Batch Distillation of Binary Mixtures -- 6.1.1 Operation with Constant Reflux -- 6.1.2 Operation with Constant Distillate Composition -- 6.1.3 Operation with Minimum Energy Input -- 6.1.4 Comparison of Energy Requirement for Different Modes of Distillation -- 6.2 Batch Distillation of Ternary Mixtures -- 6.2.1 Zeotropic Mixtures -- 6.2.2 Azeotropic Mixtures -- 6.3 Batch Distillation of Multicomponent Mixtures -- 6.4 Influence of Column Liquid Hold-up on Batch Distillation -- 6.5 Processes for Separating Zeotropic Mixtures by Batch Distillation -- 6.5.1 Total Slop Cut Recycling -- 6.5.2 Binary Distillation of the Accumulated Slop Cuts -- 6.5.3 Recycling of the Slop Cuts at the Appropriate Time -- 6.5.4 Cyclic Operation -- 6.6 Processes for Separating Azeotropic Mixtures by Batch Distillation -- 6.6.1 Processes in One Distillation Field -- 6.6.2 Processes in Two Distillation Fields -- 6.6.3 Process Simplifications -- 6.6.4 Hybrid Processes -- 7 Energy Economization in Distillation -- 7.1 Energy Requirement of Single Columns -- 7.1.1 Reduction of Energy Requirement -- 7.1.2 Reduction of Exergy Losses -- 7.2 Optimal Separation Sequences of Ternary Distillation. 7.2.1 Process and Energy Requirement of the a-Path -- 7.2.2 Process and Energy Requirement of the c-Path -- 7.2.3 Process and Energy Requirement of the Preferred a=c-Path -- 7.3 Modifications of the Basic Processes -- 7.3.1 Material (Direct) Coupling of Columns -- 7.3.2 Processes with Side Columns -- 7.3.3 Thermal (Indirect) Coupling of Columns -- 7.4 Design of Heat Exchanger Networks -- 7.4.1 Optimum Heat Exchanger Networks -- 7.4.2 Modifying the Optimum Heat Exchanger Network -- 7.4.3 Dual Flow Heat Exchanger Networks -- 7.4.4 Process Modifications -- 8 Industrial Distillation Processes -- 8.1 Constraints for Industrial Distillation Processes -- 8.1.1 Feasible Temperatures -- 8.1.2 Feasible Pressures -- 8.1.3 Feasible Dimensions of Columns -- 8.2 Fractionation of Binary Mixtures -- 8.2.1 Recycling of Diluted Sulfuric Acid -- 8.2.2 Ammonia Recovery from Wastewater -- 8.2.3 Hydrogen Chloride Recovery from Inert Gases -- 8.2.4 Linde Process for Air Separation -- 8.2.5 Process Water Purification -- 8.2.6 Steam Distillation -- 8.3 Fractionation of Multicomponent Zeotropic Mixtures -- 8.3.1 Separation Paths -- 8.3.2 Processes with Side Columns -- 8.4 Fractionation of Heterogeneous Azeotropic Mixtures -- 8.5 Fractionation of Azeotropic Mixtures by Pressure Swing Processes -- 8.6 Fractionation of Azeotropic Mixtures by Addition of an Entrainer -- 8.6.1 Processes for Systems Without Distillation Boundary -- 8.6.2 Processes for Systems with Distillation Boundary -- 8.6.3 Hybrid Processes -- 8.7 Industrial Processes of Reactive Distillation -- 8.7.1 Synthesis of MTBE -- 8.7.2 Synthesis of Mono-ethylene Glycol -- 8.7.3 Synthesis of TAME -- 8.7.4 Synthesis of Methyl Acetate -- 9 Design of Mass Transfer Equipment -- 9.1 Types of Design -- 9.1.1 Tray Columns -- 9.1.2 Packed Columns -- 9.1.3 Criteria for Use of Tray or Packed Columns -- 9.2 Design of Tray Columns. 9.2.1 Design Parameters of Tray Columns -- 9.2.2 Operating Region of Tray Columns -- 9.2.3 Two-Phase Flow on Trays -- 9.2.4 Mass Transfer in the Two-Phase Layer on Column Trays -- 9.3 Design of Packed Columns -- 9.3.1 Design Parameters of Packed Columns -- 9.3.2 Operating Region of Packed Columns -- 9.3.3 Two-Phase Flow in Packed Columns -- 9.3.4 Mass Transfer in Packed Columns -- 9.A Appendix: Pressure Drop in Packed Beds -- 10 Control of Distillation Processes -- 10.1 Control Loops -- 10.1.1 Single Control Loop -- 10.1.2 Ratio Control Loop -- 10.1.3 Disturbance Feedforward Control Loop -- 10.1.4 Cascade Control Loop -- 10.2 Single Control Tasks for Distillation Columns -- 10.2.1 Liquid Level Control -- 10.2.2 Split Stream Control -- 10.2.3 Pressure Control -- 10.2.4 Product Concentration Control -- 10.3 Basic Control Configurations of Distillation Columns -- 10.3.1 Basic Control Systems Without Composition Control -- 10.3.2 One-Point Composition Control Configurations -- 10.3.3 Two-Point Composition Control Configurations -- 10.4 Application Ranges of the Basic Control Configurations -- 10.4.1 Impact of Split Parameters According to Split Rule 2 -- 10.4.2 Sharp Separations of Ideal Mixtures with Constant Relative Volatility at Minimum Reflux and Boilup Ratio -- 10.4.3 Extended Application Ranges of the Basic Control Configurations -- 10.5 Examples for Control Configurations of Distillation Processes -- 10.5.1 Azeotropic Distillation Process by Pressure Change -- 10.5.2 Distillation Process for Air Separation -- 10.5.3 Distillation Process with a Main and a Side Colum -- 10.5.4 Azeotropic Distillation Process by Using an Entrainer -- 10.6 Control Configurations for Batch Distillation Processes -- Index -- EULA. |
Altri titoli varianti | Distillation |
Record Nr. | UNINA-9910555001503321 |
Stichlmair Johann G
![]() |
||
Newark : , : American Institute of Chemical Engineers, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation : Principles and Practice |
Autore | Stichlmair Johann G |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Newark : , : American Institute of Chemical Engineers, , 2021 |
Descrizione fisica | 1 online resource (685 pages) |
Disciplina | 660/.28425 |
Altri autori (Persone) |
KleinHarald
RehfeldtSebastian |
Soggetto topico | Molecular stills |
Soggetto non controllato |
Chemistry, Technical
Science |
ISBN |
1-5231-4336-3
1-119-41468-7 1-119-41469-5 1-119-41467-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Nomenclature -- 1 Introduction -- 1.1 Principle of Distillation Separation -- 1.2 Historical -- 2 Vapor-Liquid Equilibrium -- 2.1 Basic Thermodynamic Correlations -- 2.1.1 Measures of Concentration -- 2.1.2 Equations of State (EOS) -- 2.1.3 Molar Mixing and Partial Molar State Variables -- 2.1.4 Saturation Vapor Pressure and Boiling Temperature of Pure Components -- 2.1.5 Fundamental Equation and the Chemical Potential -- 2.1.6 Gibbs-Duhem Equation and Gibbs-Helmholtz Equation -- 2.2 Calculation of Vapor-Liquid Equilibrium in Mixtures -- 2.2.1 Basic Equilibrium Conditions -- 2.2.2 Gibbs Phase Rule -- 2.2.3 Correlations for the Chemical Potential -- 2.2.4 Calculating Activity Coefficients with the Molar Excess Free Energy -- 2.2.5 Thermodynamic Consistency Check of Molar Excess Free Energy and Activity Coefficients -- 2.2.6 Iso-fugacity Condition -- 2.2.7 Fugacity of the Liquid Phase -- 2.2.8 Fugacity of the Vapor Phase -- 2.2.9 Vapor-Liquid Equilibrium Using an Equation of St -- 2.2.10 Fugacity of Pure Liquid as Standard Fugacity: Raoult's Law -- 2.2.11 Fugacity of Infinitely Diluted Component as Standard Fugacity: Henry's Law -- 2.2.12 Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.13 Using Experimental Data of Binary Mixtures for Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.14 Vapor-Liquid Equilibrium Ratio of Mixtures -- 2.2.15 Relative Volatility of Mixtures -- 2.2.16 Boiling Condition of Liquid Mixtures -- 2.2.17 Condensation (Dew Point) Condition of Vapor Mixtures -- 2.3 Binary Mixtures and Phase Diagrams -- 2.3.1 Boiling Curve Correlation -- 2.3.2 Condensation (Dew Point) Curve Correlation -- 2.3.3 (p, x, y)-Diagram -- 2.3.4 (T, x, y)-Diagram -- 2.3.5 McCabe-Thiele Diagram.
2.3.6 Boiling and Condensation Behavior of Binary Mixtures -- 2.3.7 General Aspects of Azeotropic Mixtures -- 2.3.8 Limiting Cases of Binary Mi -- 2.4 Ternary Mixtures -- 2.4.1 Boiling and Condensation Conditions of Ternary Mixtures -- 2.4.2 Triangular Diagrams -- 2.4.3 Boiling Surfaces -- 2.4.4 Condensation Surfaces -- 2.4.5 Derivation of Distillation Lines -- 2.4.6 Examples for Distillation Lines -- 3 Single-Stage Distillation and Condensation -- 3.1 Continuous Closed Distillation and Condensation -- 3.1.1 Closed Distillation of Binary Mixtures -- 3.1.2 Closed Distillation of Multicomponent Mixtures -- 3.2 Batchwise Open Distillation and Open Condensation -- 3.2.1 Binary Mixtures -- 3.2.2 Ternary Mixtures -- 3.2.3 Multicomponent Mixtures -- 3.3 Semi-continuous Single-Stage Distillation -- 3.3.1 Semi-continuous Single-Stage Distillation of Binary Mixtures -- 4 Multistage Continuous Distillation (Rectification) -- 4.1 Principles -- 4.1.1 Equilibrium-Stage Concept -- 4.1.2 Transfer-Unit Concept -- 4.1.3 Comparison of Equilibrium-Stage and Transfer-Unit Concepts -- 4.2 Multistage Distillation of Binary Mixtures -- 4.2.1 Calculations Based on Material Bal -- 4.2.2 Calculation Based on Material and Enthalpy Balances -- 4.2.3 Distillation of Binary Mixtures at Total Reflux and Reboil -- 4.2.4 Distillation of Binary Mixtures at Minimum Reflux and Reboil -- 4.2.5 Energy Requirement for Distillation of Binary Mixtures -- 4.3 Multistage Distillation of Ternary Mixtures -- 4.3.1 Calculations Based on Material Balances -- 4.3.2 Distillation of Ternary Mixtures at Total Reflux and Reboil -- 4.3.3 Distillation of Ternary Mixtures at Minimum Reflux and Reboil -- 4.3.4 Energy Requirement of Ternary Distillation -- 4.4 Multistage Distillation of Multicomponent Mixtures -- 4.4.1 Rigorous Column Simulation -- 5 Reactive Distillation, Catalytic Distillation. 5.1 Fundamentals -- 5.1.1 Chemical Equilibrium -- 5.1.2 Stoichiometric Lines -- 5.1.3 Non-reactive and Reactive Distillation Lines -- 5.1.4 Reactive Azeotropes -- 5.2 Topology of Reactive Distillation Lines -- 5.2.1 Reactions in Ternary Systems -- 5.2.2 Reactions in Ternary Systems with Inert Components -- 5.2.3 Reactions with Side Products -- 5.2.4 Reactions in Quaternary Systems -- 5.3 Topology of Reactive Distillation Processes -- 5.3.1 Single Product Reactions -- 5.3.2 Decomposition Reactions -- 5.3.3 Side Reactions -- 5.4 Arrangement of Catalysts in Columns -- 5.4.1 Homogeneous Catalyst -- 5.4.2 Heterogeneous Catalyst -- 6 Multistage Batch Distillation -- 6.1 Batch Distillation of Binary Mixtures -- 6.1.1 Operation with Constant Reflux -- 6.1.2 Operation with Constant Distillate Composition -- 6.1.3 Operation with Minimum Energy Input -- 6.1.4 Comparison of Energy Requirement for Different Modes of Distillation -- 6.2 Batch Distillation of Ternary Mixtures -- 6.2.1 Zeotropic Mixtures -- 6.2.2 Azeotropic Mixtures -- 6.3 Batch Distillation of Multicomponent Mixtures -- 6.4 Influence of Column Liquid Hold-up on Batch Distillation -- 6.5 Processes for Separating Zeotropic Mixtures by Batch Distillation -- 6.5.1 Total Slop Cut Recycling -- 6.5.2 Binary Distillation of the Accumulated Slop Cuts -- 6.5.3 Recycling of the Slop Cuts at the Appropriate Time -- 6.5.4 Cyclic Operation -- 6.6 Processes for Separating Azeotropic Mixtures by Batch Distillation -- 6.6.1 Processes in One Distillation Field -- 6.6.2 Processes in Two Distillation Fields -- 6.6.3 Process Simplifications -- 6.6.4 Hybrid Processes -- 7 Energy Economization in Distillation -- 7.1 Energy Requirement of Single Columns -- 7.1.1 Reduction of Energy Requirement -- 7.1.2 Reduction of Exergy Losses -- 7.2 Optimal Separation Sequences of Ternary Distillation. 7.2.1 Process and Energy Requirement of the a-Path -- 7.2.2 Process and Energy Requirement of the c-Path -- 7.2.3 Process and Energy Requirement of the Preferred a=c-Path -- 7.3 Modifications of the Basic Processes -- 7.3.1 Material (Direct) Coupling of Columns -- 7.3.2 Processes with Side Columns -- 7.3.3 Thermal (Indirect) Coupling of Columns -- 7.4 Design of Heat Exchanger Networks -- 7.4.1 Optimum Heat Exchanger Networks -- 7.4.2 Modifying the Optimum Heat Exchanger Network -- 7.4.3 Dual Flow Heat Exchanger Networks -- 7.4.4 Process Modifications -- 8 Industrial Distillation Processes -- 8.1 Constraints for Industrial Distillation Processes -- 8.1.1 Feasible Temperatures -- 8.1.2 Feasible Pressures -- 8.1.3 Feasible Dimensions of Columns -- 8.2 Fractionation of Binary Mixtures -- 8.2.1 Recycling of Diluted Sulfuric Acid -- 8.2.2 Ammonia Recovery from Wastewater -- 8.2.3 Hydrogen Chloride Recovery from Inert Gases -- 8.2.4 Linde Process for Air Separation -- 8.2.5 Process Water Purification -- 8.2.6 Steam Distillation -- 8.3 Fractionation of Multicomponent Zeotropic Mixtures -- 8.3.1 Separation Paths -- 8.3.2 Processes with Side Columns -- 8.4 Fractionation of Heterogeneous Azeotropic Mixtures -- 8.5 Fractionation of Azeotropic Mixtures by Pressure Swing Processes -- 8.6 Fractionation of Azeotropic Mixtures by Addition of an Entrainer -- 8.6.1 Processes for Systems Without Distillation Boundary -- 8.6.2 Processes for Systems with Distillation Boundary -- 8.6.3 Hybrid Processes -- 8.7 Industrial Processes of Reactive Distillation -- 8.7.1 Synthesis of MTBE -- 8.7.2 Synthesis of Mono-ethylene Glycol -- 8.7.3 Synthesis of TAME -- 8.7.4 Synthesis of Methyl Acetate -- 9 Design of Mass Transfer Equipment -- 9.1 Types of Design -- 9.1.1 Tray Columns -- 9.1.2 Packed Columns -- 9.1.3 Criteria for Use of Tray or Packed Columns -- 9.2 Design of Tray Columns. 9.2.1 Design Parameters of Tray Columns -- 9.2.2 Operating Region of Tray Columns -- 9.2.3 Two-Phase Flow on Trays -- 9.2.4 Mass Transfer in the Two-Phase Layer on Column Trays -- 9.3 Design of Packed Columns -- 9.3.1 Design Parameters of Packed Columns -- 9.3.2 Operating Region of Packed Columns -- 9.3.3 Two-Phase Flow in Packed Columns -- 9.3.4 Mass Transfer in Packed Columns -- 9.A Appendix: Pressure Drop in Packed Beds -- 10 Control of Distillation Processes -- 10.1 Control Loops -- 10.1.1 Single Control Loop -- 10.1.2 Ratio Control Loop -- 10.1.3 Disturbance Feedforward Control Loop -- 10.1.4 Cascade Control Loop -- 10.2 Single Control Tasks for Distillation Columns -- 10.2.1 Liquid Level Control -- 10.2.2 Split Stream Control -- 10.2.3 Pressure Control -- 10.2.4 Product Concentration Control -- 10.3 Basic Control Configurations of Distillation Columns -- 10.3.1 Basic Control Systems Without Composition Control -- 10.3.2 One-Point Composition Control Configurations -- 10.3.3 Two-Point Composition Control Configurations -- 10.4 Application Ranges of the Basic Control Configurations -- 10.4.1 Impact of Split Parameters According to Split Rule 2 -- 10.4.2 Sharp Separations of Ideal Mixtures with Constant Relative Volatility at Minimum Reflux and Boilup Ratio -- 10.4.3 Extended Application Ranges of the Basic Control Configurations -- 10.5 Examples for Control Configurations of Distillation Processes -- 10.5.1 Azeotropic Distillation Process by Pressure Change -- 10.5.2 Distillation Process for Air Separation -- 10.5.3 Distillation Process with a Main and a Side Colum -- 10.5.4 Azeotropic Distillation Process by Using an Entrainer -- 10.6 Control Configurations for Batch Distillation Processes -- Index -- EULA. |
Altri titoli varianti | Distillation |
Record Nr. | UNINA-9910830617103321 |
Stichlmair Johann G
![]() |
||
Newark : , : American Institute of Chemical Engineers, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation : the theory / / by Alfons Vogelpohl |
Autore | Vogelpohl A (Alfons) |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 660/.28425 |
Collana | De Gruyter textbook |
Soggetto topico |
Distillation
Separation (Technology) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-0454-6
3-11-039013-2 3-11-033346-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Introduction -- 1. The principles and modes of distillation -- 2. Assumptions and problem reduction -- 3. The basic equations of distillation -- 4. Distillation of ideal mixtures -- 5. Distillation of real mixtures -- 6. Computer programs -- 7. Nomenclature -- 8. Glossary -- A. Appendices -- Index |
Record Nr. | UNINA-9910464164503321 |
Vogelpohl A (Alfons)
![]() |
||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation : the theory / / by Alfons Vogelpohl |
Autore | Vogelpohl A (Alfons) |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 660/.28425 |
Collana | De Gruyter textbook |
Soggetto topico |
Distillation
Separation (Technology) |
ISBN |
1-5231-0454-6
3-11-039013-2 3-11-033346-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Introduction -- 1. The principles and modes of distillation -- 2. Assumptions and problem reduction -- 3. The basic equations of distillation -- 4. Distillation of ideal mixtures -- 5. Distillation of real mixtures -- 6. Computer programs -- 7. Nomenclature -- 8. Glossary -- A. Appendices -- Index |
Record Nr. | UNINA-9910788817603321 |
Vogelpohl A (Alfons)
![]() |
||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation : the theory / / by Alfons Vogelpohl |
Autore | Vogelpohl A (Alfons) |
Pubbl/distr/stampa | Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 660/.28425 |
Collana | De Gruyter textbook |
Soggetto topico |
Distillation
Separation (Technology) |
ISBN |
1-5231-0454-6
3-11-039013-2 3-11-033346-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Introduction -- 1. The principles and modes of distillation -- 2. Assumptions and problem reduction -- 3. The basic equations of distillation -- 4. Distillation of ideal mixtures -- 5. Distillation of real mixtures -- 6. Computer programs -- 7. Nomenclature -- 8. Glossary -- A. Appendices -- Index |
Record Nr. | UNINA-9910822176703321 |
Vogelpohl A (Alfons)
![]() |
||
Berlin ; ; Boston : , : Walter de Gruyter GmbH & Co., KG, , [2015] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation control [[electronic resource] ] : an engineering perspective / / Cecil L. Smith |
Autore | Smith Cecil L |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2012 |
Descrizione fisica | 1 online resource (xi, 332 p. ) : ill |
Disciplina | 660/.28425 |
Soggetto topico | Distillation |
ISBN |
1-5231-0986-6
1-118-25969-6 1-118-26005-8 1-280-59077-7 9786613620606 1-118-25968-8 |
Classificazione | TEC009010 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Chapter 1. Principles 1.1 Separation Processes 1.2 Total Material Balance 1.3 Reflux and Boilup Ratios 1.4 Total Material Balance Around Condenser 1.5 Total Material Balance Around Reboiler 1.6 Component Material Balances 1.7 Energy and the Separation Factor 1.8 Multicomponent Distillation 1.9 Stage-by-Stage Separation Model 1.10 Formulation of the Control Problem 1.11 Tower Internals 1.12 Flooding 1.13 Tray Hydraulics 1.14 Inverse Response in Bottoms Level 1.15 Composition Dynamics Chapter 2. Composition Control 2.1 Product Specifications 2.2 Columns in Series 2.3 Composition Analyzers 2.4 Temperature 2.5 Distillate Composition Control, Constant Boilup 2.6 Distillate Composition Control, Constant Bottoms Flow 2.7 Operating Lines 2.8 Temperature Profiles 2.9 Feed Composition Disturbances 2.10 Bottoms Composition Control 2.11 Propagation of Variance in Level Control Configurations 2.12 Level Control in Direct Material Balance Configurations Chapter 3. Pressure Control and Condensers 3.1 Pressure Control 3.2 Once-Through Heat Transfer Processes 3.3 Water-Cooled Condensers 3.4 Flooded Condensers 3.5 Air-Cooled Condensers 3.6 Partial Condensers 3.7 Atmospheric Towers 3.8 Vacuum Towers 3.9 Floating Pressure / Pressure Minimization Chapter 4. Reboilers and Feed Preheaters 4.1 Types of Reboilers 4.2 Steam-Heated Reboilers 4.3 Hot Oil 4.4 Fired Heaters 4.5 Feed Preheater 4.6 Economizer Chapter 5. Applying Feedforward 5.1 Feed Flow and Composition 5.2 Internal Reflux Control 5.3 Extreme Feedforward 5.4 Feedforward for Bottoms Level 5.5 Feedforward for Column Pressure 5.6 Product Compositions Chapter 6. Unit Optimization 6.1 Energy and Separation 6.2 Optimization of a Column 6.3 Constraints in Distillation Columns 6.4 Control Configurations for Single Constraint 6.5 Control Configurations for Multiple Constraints Chapter 7. Double-End Composition Control 7.1 Defining the Problem. 7.2 Options for Composition Control 7.3 Relative Gain 7.4 Relative Gains from Open Loop Sensitivities 7.5 Relative Gains for Other Configurations 7.6 Ratios for Manipulated Variables 7.7 Effect of Operating Objectives 7.8 Model Predictive Control Chapter 8. Complex Towers 8.1 Heat Integration 8.2 Side Heater / Side Cooler 8.3 Sidestreams 8.4 Withdrawing a Liquid Sidestream 8.5 Withdrawing a vapor sidestream 8.6 Composition Control in Sidestream Towers. |
Record Nr. | UNINA-9910141281203321 |
Smith Cecil L
![]() |
||
Hoboken, N.J., : John Wiley & Sons, c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distillation control : an engineering perspective / / Cecil L. Smith |
Autore | Smith Cecil L |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2012 |
Descrizione fisica | 1 online resource (xi, 332 p. ) : ill |
Disciplina | 660/.28425 |
Soggetto topico | Distillation |
ISBN |
1-5231-0986-6
1-118-25969-6 1-118-26005-8 1-280-59077-7 9786613620606 1-118-25968-8 |
Classificazione | TEC009010 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Chapter 1. Principles 1.1 Separation Processes 1.2 Total Material Balance 1.3 Reflux and Boilup Ratios 1.4 Total Material Balance Around Condenser 1.5 Total Material Balance Around Reboiler 1.6 Component Material Balances 1.7 Energy and the Separation Factor 1.8 Multicomponent Distillation 1.9 Stage-by-Stage Separation Model 1.10 Formulation of the Control Problem 1.11 Tower Internals 1.12 Flooding 1.13 Tray Hydraulics 1.14 Inverse Response in Bottoms Level 1.15 Composition Dynamics Chapter 2. Composition Control 2.1 Product Specifications 2.2 Columns in Series 2.3 Composition Analyzers 2.4 Temperature 2.5 Distillate Composition Control, Constant Boilup 2.6 Distillate Composition Control, Constant Bottoms Flow 2.7 Operating Lines 2.8 Temperature Profiles 2.9 Feed Composition Disturbances 2.10 Bottoms Composition Control 2.11 Propagation of Variance in Level Control Configurations 2.12 Level Control in Direct Material Balance Configurations Chapter 3. Pressure Control and Condensers 3.1 Pressure Control 3.2 Once-Through Heat Transfer Processes 3.3 Water-Cooled Condensers 3.4 Flooded Condensers 3.5 Air-Cooled Condensers 3.6 Partial Condensers 3.7 Atmospheric Towers 3.8 Vacuum Towers 3.9 Floating Pressure / Pressure Minimization Chapter 4. Reboilers and Feed Preheaters 4.1 Types of Reboilers 4.2 Steam-Heated Reboilers 4.3 Hot Oil 4.4 Fired Heaters 4.5 Feed Preheater 4.6 Economizer Chapter 5. Applying Feedforward 5.1 Feed Flow and Composition 5.2 Internal Reflux Control 5.3 Extreme Feedforward 5.4 Feedforward for Bottoms Level 5.5 Feedforward for Column Pressure 5.6 Product Compositions Chapter 6. Unit Optimization 6.1 Energy and Separation 6.2 Optimization of a Column 6.3 Constraints in Distillation Columns 6.4 Control Configurations for Single Constraint 6.5 Control Configurations for Multiple Constraints Chapter 7. Double-End Composition Control 7.1 Defining the Problem. 7.2 Options for Composition Control 7.3 Relative Gain 7.4 Relative Gains from Open Loop Sensitivities 7.5 Relative Gains for Other Configurations 7.6 Ratios for Manipulated Variables 7.7 Effect of Operating Objectives 7.8 Model Predictive Control Chapter 8. Complex Towers 8.1 Heat Integration 8.2 Side Heater / Side Cooler 8.3 Sidestreams 8.4 Withdrawing a Liquid Sidestream 8.5 Withdrawing a vapor sidestream 8.6 Composition Control in Sidestream Towers. |
Record Nr. | UNINA-9910814983903321 |
Smith Cecil L
![]() |
||
Hoboken, N.J., : John Wiley & Sons, c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|