top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big data, data mining, and machine learning : value creation for business leaders and practitioners
Big data, data mining, and machine learning : value creation for business leaders and practitioners
Autore Dean Jared
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken : , : Wiley, , 2014
Descrizione fisica 1 online resource (289 pages)
Disciplina 658
658.05631
658/.05631
Collana Wiley and SAS business series
THEi Wiley ebooks
Soggetto topico Big data
COMPUTERS / Database Management / Data Mining
Data mining
Database management
Information technology -- Management
Management -- Data processing
Management
ISBN 1-118-69178-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Big Data, Data Mining, and Machine Learning; Contents; Forward; Preface; Acknowledgments; Introduction; Big Data Timeline; Why This Topic Is Relevant Now; Is Big Data a Fad?; Where Using Big Data Makes a Big Difference; Technical Issue; Work Flow Productivity; The Complexities When Data Gets Large; Part One The Computing Environment; Chapter 1 Hardware; Storage (Disk); Central Processing Unit; Graphical Processing Unit; Memory; Network; Chapter 2 Distributed Systems; Database Computing; File System Computing; Considerations; Chapter 3 Analytical Tools; Weka; Java and JVM Languages; R; Python
SASPart Two Turning Data into Business Value; Chapter 4 Predictive Modeling; A Methodology for Building Models; sEMMA; sEMMA for the Big Data Era; Binary Classification; Multilevel Classification; Interval Prediction; Assessment of Predictive Models; Classification; Receiver Operating Characteristic; Lift; Gain; Akaike's Information Criterion; Bayesian Information Criterion; Kolmogorov‐Smirnov; Chapter 5 Common Predictive Modeling Techniques; RFM; Regression; Basic Example of Ordinary Least Squares; Assumptions of Regression Models; Additional Regression Techniques
Applications in the Big Data EraGeneralized Linear Models; Example of a Probit GLM; Applications in the Big Data Era; Neural Networks; Basic Example of Neural Networks; Decision and Regression Trees; Support Vector Machines; Bayesian Methods Network Classification; Naive Bayes Network; Parameter Learning; Learning a Bayesian Network; Inference in Bayesian Networks; Scoring for Supervised Learning; Ensemble Methods; Chapter 6 Segmentation; Cluster Analysis; Distance Measures (Metrics); Evaluating Clustering; Number of Clusters; K-means Algorithm; Hierarchical Clustering; Profiling Clusters
Chapter 7 Incremental Response ModelingBuilding the Response Model; Measuring the Incremental Response; Chapter 8 Time Series Data Mining; Reducing Dimensionality; Detecting Patterns; Fraud Detection; New Product Forecasting; Time Series Data Mining in Action: Nike+ FuelBand; Seasonal Analysis; Trend Analysis; Similarity Analysis; Chapter 9 Recommendation Systems; What Are Recommendation Systems?; Where Are They Used?; How Do They Work?; Baseline Model; Low‐Rank Matrix Factorization; Stochastic Gradient Descent; Alternating Least Squares; Restricted Boltzmann Machines; Contrastive Divergence
Assessing Recommendation QualityRecommendations in Action: SAS Library; Chapter 10 Text Analytics; Information Retrieval; Content Categorization; Text Mining; Text Analytics in Action: Let's Play Jeopardy!; Information Retrieval Steps; Discovering Topics in Jeopardy! Clues; Topics from Clues Having Incorrect or Missing Answers; Discovering New Topics from Clues; Contestant Analysis: Fantasy Jeopardy!; Part Three Success Stories of Putting It All Together; Chapter 11 Case Study of a Large U.S.-Based Financial Services Company; Traditional Marketing Campaign Process
High-Performance Marketing Solution
Record Nr. UNINA-9910132334903321
Dean Jared  
Hoboken : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discovering data mining : from concept to implementation / Peter Cabena...[et al.]
Discovering data mining : from concept to implementation / Peter Cabena...[et al.]
Pubbl/distr/stampa Upper Saddle River : Prentice Hall, 1997
Descrizione fisica 195 p. ; 24 cm
Disciplina 658.05631
Soggetto non controllato Informatica applicata alla statistica
Intelligenza artificiale
ISBN 0-13-743980-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990003829120403321
Upper Saddle River : Prentice Hall, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discovering data mining : from concept to implementation / Cabena Peter… [et al.].
Discovering data mining : from concept to implementation / Cabena Peter… [et al.].
Pubbl/distr/stampa Upper Saddle River : Prentice Hall, 1997
Descrizione fisica XIX, 195 p. ; 24 cm
Disciplina 658.05631
Soggetto non controllato marketing Elaborazione dei dati
ISBN 0-13-743980-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISA-990000016120203316
Upper Saddle River : Prentice Hall, 1997
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui