Nota di contenuto |
Intro -- Preface -- Contents -- Contributors -- Abbreviations -- 1 Genomic Approaches to Improve Abiotic Stress Tolerance in Apple (Malus × domestica) -- 1.1 Introduction -- 1.2 Abiotic Stresses -- 1.2.1 Heat Stress -- 1.2.2 Drought Stress -- 1.2.3 Cold Stress -- 1.2.4 Salinity Stress -- 1.2.5 Nutrient Stress -- 1.2.6 Role of MdCAX Proteins in Abiotic Stress Tolerance -- 1.3 Traditional Breeding Methods -- 1.4 Molecular Breeding -- 1.4.1 Molecular Markers -- 1.4.2 Quantitative Trait Loci (QTLs) -- 1.5 Genome-Wide Association Studies (GWAS) -- 1.6 Modern Plant Breeding Techniques (NPBT) -- 1.6.1 Cisgenesis -- 1.6.2 Genome Editing -- 1.6.3 Trans-Grafting -- 1.6.4 Germplasm Conservation By In Vitro Methods -- 1.7 Conclusion and Future Prospects -- References -- 2 Genomic Designing of Abiotic Stress Tolerance in Banana -- 2.1 Introduction -- 2.2 Classification and Description of Banana -- 2.2.1 Banana Plant Description -- 2.3 Abiotic Stresses on Banana -- 2.3.1 Drought Stress Tolerance in Banana -- 2.3.2 Salt Stress Tolerance in Banana -- 2.3.3 Temperature Stress Tolerance in Bananas -- 2.3.4 Flooding and Inundation in Banana -- 2.4 Modern Biotechnological Tools in Banana Improvement -- 2.5 Future Perspectives and Challenges -- 2.6 Conclusion -- References -- 3 Genomic Design for Abiotic Stress Resistant Citrus -- 3.1 Main Abiotic Stresses Affecting Citriculture: Drought, Salinity and Extreme Temperatures -- 3.2 "Conventional" and "Unconventional" Citrus Breeding: Searching for Genes Involved in Desirable Traits -- 3.3 From Genotype to Phenotype: Marker Assisted Selection (MAS) and Genomic Selection (GS) -- 3.4 Polyploidization: An Useful Approach to Enhance Tolerance to Abiotic Stress -- 3.5 Concluding Remarks -- References -- 4 Development of Abiotic Stress Resistant Grapevine Varieties -- 4.1 Introduction -- 4.1.1 Economic Importance.
4.1.2 Reduction in Yield and Quality Due to Abiotic Stresses -- 4.1.3 Growing Importance in the Face of Climate Change and Increasing Population -- 4.1.4 Limitations of Traditional Breeding and Rationale of Genome Designing -- 4.2 Description of Different Abiotic Stresses -- 4.2.1 Root Characters -- 4.2.2 Heat Tolerance -- 4.2.3 Cold Tolerance -- 4.2.4 Drought Tolerance -- 4.2.5 Flooding and Submergence Tolerance -- 4.2.6 Nutrient-Use Efficiency -- 4.2.7 Water-Use Efficiency -- 4.2.8 Other Abiotic Stresses -- 4.2.9 Use of Morphological Markers -- 4.2.10 Limitations and Prospect of Genomic Designing -- 4.3 Genetic Resource of Resistant Genes -- 4.3.1 Primary Gene Pool -- 4.3.2 Secondary Gene Pool -- 4.3.3 Tertiary Gene Pool -- 4.3.4 Artificially Induced/Incorporated Traits/Genes -- 4.3.5 Vitis Germplasm for Abiotic Stress Tolerance -- 4.4 Glimpses on Classical Genetics and Traditional Breeding -- 4.4.1 Classical Breeding Efforts -- 4.4.2 Limitations of Classical Endeavors and Utility of Molecular Mapping and Breeding -- 4.4.3 Breeding Objectives -- 4.4.4 Classical Breeding Achievements -- 4.4.5 Limitations of Traditional Breeding and Rationale for Molecular Breeding -- 4.5 Diversity Analysis -- 4.5.1 Phenotype-Based Diversity Analysis -- 4.5.2 Genotype-Based Diversity Analysis -- 4.5.3 Relationship with Other Cultivated Species and Wild Relatives -- 4.5.4 Relationship with Geographical Distribution -- 4.5.5 Extent of Genetic Diversity -- 4.6 Association Mapping Studies -- 4.6.1 Extent of Linkage Disequilibrium -- 4.6.2 Target Gene-Based LD Studies -- 4.6.3 Genome-Wide LD Studies -- 4.6.4 Future Potential for the Application of Association Studies for Germplasm Enhancement -- 4.7 Brief Account of Molecular Mapping of Resistance Genes and QTLs -- 4.7.1 A Brief History of Mapping Efforts -- 4.7.2 Evolution of Marker Types.
4.7.3 Mapping Populations Used -- 4.7.4 Mapping Software Used -- 4.7.5 Maps of Different Generations -- 4.7.6 QTLs Related with Abiotic Stresses -- 4.8 Marker-Assisted Breeding for Resistance Traits -- 4.8.1 Germplasm Characterization and DUS -- 4.8.2 Marker-Assisted Gene Introgression -- 4.8.3 Gene Pyramiding -- 4.8.4 Limitations and Prospects of MAS and MABCB -- 4.9 Map-Based Cloning of Resistance Genes -- 4.9.1 Traits and Genes -- 4.9.2 Identifying Gene Linked Markers -- 4.9.3 Strategies: Chromosome Landing and Walking -- 4.9.4 Genomic Libraries: YACs, BACs and TACs -- 4.9.5 Test for Expression (Mutant Complementation) -- 4.10 Genomics-Aided Breeding for Resistance Traits -- 4.10.1 Grape Genome Sequencing and Assembly -- 4.10.2 Grapevine Reference Genome Annotation and Gene Discovery -- 4.11 Recent Concepts and Strategies Developed -- 4.11.1 Gene Editing -- 4.11.2 Nanotechnology -- 4.12 Brief on Genetic Engineering for Resistance Traits -- 4.12.1 Target Traits and Alien Genes -- 4.12.2 Genetic Engineering for Abiotic Stress Tolerance -- 4.12.3 Organelle Transformation -- 4.12.4 Biosynthesis and Biotransformation -- 4.12.5 Metabolic Engineering Pathways and Gene Discovery -- 4.12.6 Gene Stacking -- 4.12.7 Gene Silencing -- 4.12.8 Prospects of Cisgenics -- 4.13 Brief Account on Role of Bioinformatics as a Tool -- 4.13.1 Gene and Genome Databases -- 4.13.2 Gene Expression Databases -- 4.13.3 Protein Databases -- 4.14 Brief Account on Social, Political and Regulatory Issues -- 4.14.1 Concerns and Compliances -- 4.14.2 Patent and IPR Issues -- 4.14.3 Disclosure of Sources of GRs, Access and Benefit Sharing -- 4.14.4 Farmers' Rights -- 4.14.5 Traditional Knowledge -- 4.14.6 Treaties and Conventions -- 4.14.7 Participatory Breeding -- 4.15 Future Perspectives -- 4.15.1 Potential for Expansion of Productivity.
4.15.2 Potential for Expansion into Non-traditional Areas -- References -- 5 Genomic Designing for Drought Tolerant Almond Varieties -- 5.1 Introduction -- 5.2 Drought Resistance in Almond -- 5.3 Designing Drought Resistant Almond Varieties -- 5.3.1 Selection of Drought Resistant Almond Varieties and Evaluation in Natural Conditions -- 5.3.2 Drought Resistance Evaluation of Almond Varieties in Controlled Greenhouse Conditions -- 5.4 Marker-Assisted Breeding for Drought Resistant -- 5.4.1 Development and Application of DNA Markers -- 5.4.2 Development and Application of RNA Markers -- 5.4.3 Development and Application of Epigenetic Marks -- 5.5 Concluding Remark and Future Prospects -- References -- 6 Applications of Biotechnological Tools for Developing Abiotic Stress Tolerant Cherries -- 6.1 Introduction -- 6.2 Genetic Resources of Resistance Genes -- 6.2.1 Dark-Colored Varieties -- 6.2.2 Light-Colored -- 6.2.3 Tart Cherry -- 6.2.4 Self-Fertile -- 6.3 Genetic Diversity Analysis in Cherries -- 6.4 Molecular Mapping of Abiotic Stress Resistance Genes and QTLs in Cherries -- 6.5 Future Perspectives -- References -- 7 Genomic Design of Abiotic Stress-Resistant Berries -- 7.1 Introduction -- 7.2 Assumptions for Berry Crop Breading and Abiotic Stress Resistance -- 7.2.1 Strawberry and Raspberry Breeding Objectives -- 7.2.2 Breeding Programs -- 7.2.3 Fragaria Genome -- 7.2.4 Rubus Genome -- 7.2.5 Interspecific Hybridization -- 7.3 Tolerance to Abiotic Stress Factors -- 7.3.1 Low Temperatures -- 7.3.2 High Temperatures -- 7.3.3 Drought, Salinity Stress -- 7.3.4 Iron Deficiency Stress -- 7.3.5 Cadmium -- 7.4 Environmental and Growing Conditions and Plant Response to Abiotic Stress -- 7.4.1 Cultivation Systems -- 7.4.2 Endophytes -- 7.4.3 Continuous Cropping -- 7.5 Elements and Factors of Abiotic Stress Resistance -- 7.5.1 Dehydrins -- 7.5.2 Lipids.
7.6 Genetic Resources of Abiotic Stress-Resistance Genes -- 7.6.1 Genetic Resources of Berry Plants -- 7.6.2 Molecular Markers, QTL Mapping -- 7.6.3 Genotyping, Genetic Maps -- 7.6.4 Genetic Engineering -- 7.7 Genomic Approaches and Phenotype Prediction -- 7.7.1 Omic Approaches and Abiotic Stress Resistance -- 7.7.2 Transcription Regulators -- 7.8 Epigenetics and Abiotic Stress Resistance -- 7.8.1 DNA Methylation and Demethylation -- 7.8.2 Histone Post-translational Modifications -- 7.8.3 RNA Interference by sRNAs -- 7.8.4 RNA-Directed DNA Methylation -- 7.9 Concluding Remarks and Future Perspectives -- References.
|