top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2030.1.1-2021 - IEEE Standard for Technical Specifications of a DC Quick and Bidirectional Charger for Use with Electric Vehicles - Redline / / IEEE
2030.1.1-2021 - IEEE Standard for Technical Specifications of a DC Quick and Bidirectional Charger for Use with Electric Vehicles - Redline / / IEEE
Pubbl/distr/stampa New York : , : IEEE, , 2022
Descrizione fisica 1 online resource (263 pages)
Disciplina 629.286
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 1-5044-8645-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574942903316
New York : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (250 pages)
Disciplina 629.286
Collana Green energy and technology
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 3-031-05909-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Standardised Domestic EV Smart Charging for Interoperable Demand Side Response: PAS 1878 and 1879 -- 1.1 Introduction -- 1.1.1 Purpose of Demand-Side Response -- 1.1.2 Status Quo, Challenges and Outlook -- 1.1.3 Assumptions of the Standardised Framework -- 1.1.4 Overview of Operation -- 1.1.5 Underpinning Principles -- 1.1.6 Scope -- 1.2 System Architecture -- 1.2.1 Functional Architecture -- 1.2.1.1 Compatibility with International Standards -- 1.2.1.2 Key Requirements -- 1.2.2 Descriptions of Functional Devices and Entities -- 1.2.2.1 DSR Service Provider (DSRSP) -- 1.2.2.2 Customer Energy Manager (CEM) -- 1.2.2.3 Home Energy Management System (HEMS) -- 1.2.2.4 Chargepoint (The ESA Functionality) -- 1.2.2.5 Chargepoint Manufacturer -- 1.2.2.6 Electric Vehicle (EV) -- 1.2.2.7 System Operators and Market Participants (SOMPs) -- 1.2.2.8 Electricity Supplier -- 1.2.2.9 National Electricity Regulator -- 1.2.3 Descriptions of Interfaces -- 1.2.3.1 Interface A -- 1.2.3.2 Interface B -- 1.2.3.3 Manufacturer Interface -- 1.2.3.4 Interface C -- 1.2.3.5 Interface M -- 1.2.3.6 External System Interface -- 1.2.3.7 Chargepoint and EV Interface -- 1.3 Operation Framework -- 1.3.1 Operation Process and DSR Modes -- 1.3.1.1 (a) Consumer Registration with the DSRSP -- 1.3.1.2 (b) Discovery, Authentication and Device Registration -- 1.3.1.3 (c) Initialisation -- 1.3.1.4 (d) Normal Operation -- 1.3.1.5 (e) De-registration -- 1.3.2 Power Profiles for DSR -- 1.3.2.1 Flexibility Offers as Power Profiles -- 1.3.2.2 Frequency Response Indicator -- 1.3.2.3 Information Required for Power Profiles -- 1.3.2.4 Power Reporting -- 1.3.3 Cyber Security Approach -- 1.4 EV Smart Charging for DSR Services -- 1.4.1 Mapping to IEC/ISO Standards for EVs.
1.4.2 Example Use Case: EV Implementation for DSR Services -- 1.4.2.1 Registration -- 1.4.2.2 Normal Operation -- 1.4.2.3 De-registration -- Bibliography -- 2 The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications -- 2.1 Introduction -- 2.2 Battery Management System (BMS) -- 2.3 Battery Fault Detection -- 2.4 Battery State-of-Function Estimation -- 2.4.1 Battery SoH Estimation -- 2.4.2 Battery SoC Estimation -- 2.5 Conclusions -- References -- 3 Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques -- 3.1 Introduction -- 3.1.1 Electric Vehicles -- 3.1.1.1 Taxonomy of EVs -- 3.1.1.2 EV Integration's Benefits -- 3.1.1.3 Challenges and Problems of EVs High Penetration -- 3.1.2 Data Challenges of the High Penetration of the EVs -- 3.1.3 Energy Management of the EVs' Smart Charging -- 3.1.3.1 Concepts and Applications -- 3.1.3.2 Challenges and Opportunities -- 3.1.4 Literature Review on EV Integration -- 3.2 Identification of EV Charging Patterns -- 3.2.1 Clustering Concept and Principles -- 3.2.1.1 Concept of the Clustering -- 3.2.1.2 Principles of the Clustering -- 3.2.2 Clustering of the Charging Patterns -- 3.2.3 Utilization of ML Algorithms for Clustering the Charging Patterns -- 3.2.3.1 Unsupervised Learning -- 3.2.3.2 Supervised Learning -- 3.2.4 ML-Based Approach to Cluster the EV Charging Behaviors -- 3.2.4.1 Preprocessing -- 3.2.4.2 EV's Charging Behavior Clustering Using K-Means Algorithm -- 3.2.4.3 K-NN Classification for EV Charging Behavior -- 3.2.5 A Toy Example -- 3.2.6 Application of Charging Pattern Recognition in Smart Charging -- 3.3 Status Quo, Challenges, and Outlook -- 3.4 Concluding Remarks -- References -- 4 Cybersecurity and Data Privacy Issues of Electric Vehicles Smart Charging in Smart Microgrids -- 4.1 Introduction.
4.2 Cyberattacks and Security Issues of EVs -- 4.2.1 Various Attacks on EVs -- 4.2.1.1 Attacks on Control Systems -- 4.2.1.2 Attacks on Driving System Parts -- 4.2.1.3 Attacks on V2X Communication -- 4.2.2 The Vulnerability of EV Charging Stations to Cyberattacks -- 4.2.2.1 Web-Based Vulnerabilities -- 4.2.2.2 Human-Machine Interface Vulnerabilities and Physical Access Points -- 4.2.2.3 The Vulnerability of Servers -- 4.2.2.4 The Vulnerability of Smartphones -- 4.2.2.5 The Vulnerability of Building Energy Management System and Grid Interface -- 4.2.2.6 The Vulnerability of Original Equipment Manufacturers/Vendors -- 4.2.3 Cybersecurity Challenges in EV Communication -- 4.2.3.1 Limited Connectivity -- 4.2.3.2 Limited Computational Performance -- 4.2.3.3 The Scenarios and Threats of Unpredictable Attacks -- 4.2.3.4 Critical Hazard to the Life of Drivers and Passengers -- 4.2.4 Data Privacy Challenges in Smart EV Networks -- 4.2.5 Classifying the Cybersecurity Threats of On-Board Charging -- 4.2.5.1 Modification -- 4.2.5.2 Interference -- 4.2.5.3 Interruption -- 4.2.5.4 Interception -- 4.2.6 Risk Assessment -- 4.2.7 The Review of Attacker-Defender Models -- 4.2.8 Cybersecurity Requirements -- 4.2.8.1 The Security Goals for EV Ecosystem -- 4.2.8.2 Security Requirements Based on NISTIR 7628 -- 4.3 Status Quo, Challenges, and Outlook -- 4.4 Learned Lessons and Concluding Remarks -- References -- 5 Evaluation of Cyberattacks in Distribution Network with Electric Vehicle Charging Infrastructure -- 5.1 Introduction -- 5.2 Status Quo, Challenges, and Outlook -- 5.2.1 EV2EVSE -- 5.2.2 EVSE2EVSE -- 5.2.3 EV2EV -- 5.3 Related Work -- 5.4 Cyberattack Model -- 5.4.1 Response Model -- 5.5 Experimental Results -- 5.6 Conclusion -- References -- 6 Electric Vehicle Services to Support the Power Grid -- 6.1 Introduction.
6.2 Classification of EV Services Presentable to the Power Grid -- 6.2.1 EV's Active and Reactive Power Support Services -- 6.2.1.1 Frequency Control -- 6.2.1.2 Load Variance Minimization, Peak Shaving, and Valley Filling -- 6.2.1.3 Loads Restoration -- 6.2.1.4 Loss Minimization -- 6.2.1.5 Voltage Control -- 6.2.2 Support Services for Renewable Energy Sources Integration -- 6.3 Combination Capability of EVs' Different Services -- 6.4 Mathematical Modeling of EVs' Charging and Discharging Optimization Problem in the Power System -- 6.4.1 Constraints on EVs' Charging and Discharging Optimization Problem -- 6.4.1.1 EV Constraints -- 6.4.1.2 Network Constraints -- 6.4.2 Mathematical Models and Problem-Solving Methods for Optimizing Charge and Discharge of EVs -- 6.5 Current Status, Challenges, and Outlook -- 6.6 Conclusion -- References -- 7 Smart Charging of EVs to Harvest Flexibility for PVs -- 7.1 Status Quo, Challenges and Outlook -- 7.2 Introduction -- 7.2.1 Background and Literature Review -- 7.2.2 Contributions -- 7.2.3 Chapter Organization -- 7.3 Determination of Optimal EV Demand Profile -- 7.3.1 Assumptions -- 7.3.2 Mathematical Formulation -- 7.4 Numerical Studies -- 7.4.1 Data -- 7.4.2 Case-I: EVs Profile Optimization, Without Considering PVs -- 7.4.3 Case-II: EVs Profile Optimization, Considering PVs -- 7.4.4 Comparative Analysis of Cases -- 7.5 Conclusion -- Bibliography -- 8 A Robust Optimization-Based Model for Smart Charging of PEV Under Multiple Uncertainties -- 8.1 Introduction -- 8.2 Mathematical Representation of the Deterministic PEV Smart Charging -- 8.2.1 Constraints -- 8.3 The Proposed IGDT-Based Model for Robust Smart PEV Charging -- 8.3.1 The Information Gap Decision Theory (IGDT) -- 8.3.2 The Proposed IGDT-Based PEV Smart Charging -- 8.3.3 Multi-objective Particle Swarm Optimization (MOPSO).
8.3.3.1 Concise Review of PSO Algorithm -- 8.3.3.2 The Concept of Dominance in a Multi-objective Problem -- 8.3.3.3 The MOPSO Step-by-Step Implementation -- 8.3.4 Fuzzy Satisfaction Method -- 8.4 Numerical Results -- 8.4.1 Input Data -- 8.4.2 The SOC and Power Analysis -- 8.4.3 Robustness Assessment -- 8.5 Conclusion -- References -- 9 The Role of Smart Electric Vehicle Charging in Optimal Decision-making of the Active Distribution Network -- Nomenclature -- Sets and Indices -- Parameters -- Variables -- Binary Variables -- 9.1 Introduction -- 9.2 Status Quo, Challenges, and Outlook -- 9.3 Formulation -- 9.3.1 Hybrid Stochastic Programming/Robust Optimization Model -- 9.3.2 Electric Vehicles -- 9.3.3 Combined Heat and Power Unit -- 9.3.4 Solar Distributed Generations -- 9.3.5 Distribution System -- 9.3.6 The Objective Function -- 9.4 Results and Discussions -- 9.5 Conclusion -- References -- 10 Operational Challenges of Electric Vehicle Smart Charging -- 10.1 Status Quo, Challenges, and Outlook -- 10.2 Definition -- 10.3 Electric Vehicle Technology -- 10.4 Electric Vehicles Charging -- 10.4.1 Charging Standards for Electric Vehicles -- 10.4.2 Charging Speed and Duration -- 10.4.3 Electric Vehicle Smart Charging (EVSC) -- 10.5 Control of EVSC: Centralized and Decentralized Control Approaches -- 10.6 Benefits of EVSC -- 10.7 Main Challenges of Using EVSCs -- 10.7.1 Connectivity and Infrastructure in EVSC -- 10.7.2 The Minimum Requirements for EVSC -- 10.8 Conclusion -- References -- Index.
Record Nr. UNINA-9910592991503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Autore Gabbar Hossam A.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (295 pages)
Disciplina 629.286
Soggetto topico Transportation - Planning
Battery charging stations (Electric vehicles)
ISBN 9783031095009
9783031094996
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Chapter 1: Introduction -- 1.1 Mobility -- 1.2 Transitioning of Transportation Technologies -- 1.3 Transportation Electrification and Charging Technologies -- 1.4 Challenges of Fast-Charging Station Development -- 1.5 Summary -- References -- Chapter 2: Requirement Analysis of Fast-Charging Stations -- 2.1 Introduction -- 2.2 Requirement Analysis of Fast-Charging Station -- 2.3 FCS Design Requirements -- 2.3.1 [A1] Energy Management System Design -- 2.3.2 [A2] Protection System Design -- 2.3.3 [A3] Design FCS Simulation Models -- 2.3.4 [A4] Charging Unit Design -- 2.3.5 [A5] FCS Layout Design -- 2.3.6 [A6] Design Optimization -- 2.3.7 [A7] Design Grid Interface -- 2.3.8 [A8] Filter Design -- 2.3.9 [A9] AC-DC Converter Design -- 2.3.10 [A10] Transformer Design -- 2.3.11 [A11] DC-DC Converter Design -- 2.3.12 [A12] Control System Design -- 2.4 FCS Facility -- 2.4.1 [B1] Manage Incoming Vehicles -- 2.4.2 [B2] Manage Financial Model -- 2.4.3 [B3] Manage Standards -- 2.4.4 [B4] Manage FCS Risks -- 2.4.5 [B5] Manage FCS Facility Operation -- 2.4.6 [B6] Manage Charging Requests -- 2.5 Manage Energy System in FCS -- 2.5.1 [C1] Manage Power from Grid -- 2.5.2 [C2] Manage Energy Storage -- 2.5.3 [C3] Manage Energy Sources -- 2.5.4 [C4] Manage Energy to Grid -- 2.5.5 [C5] Manage Energy to Units -- 2.5.6 [C6] Manage MEG -- 2.6 Manage Charging in FCS -- 2.6.1 [D1] Manage Fast Charging -- 2.6.2 [D2] Manage Ultrafast Charging -- 2.6.3 [D3] Manage Wireless Charging -- 2.6.4 [D4] Manage Regular Charging -- 2.6.5 [D5] Manage Charge Batteries -- 2.6.6 [D6] Manage V2G -- 2.7 Analysis of Best Practice Charging Stations -- 2.7.1 European Distribution System Operators (DSO) -- 2.7.2 Next-Generation Vehicle Promotion Center: Japan -- 2.7.3 US Transport Electrification -- 2.7.4 Smart City Sweden -- 2.7.5 Electrification of Public Bus in Singapore.
2.8 Charging Technology Specifications -- 2.9 Analysis of Mobility Requirements -- 2.10 Automotive Cybersecurity -- 2.11 Summary -- References -- Chapter 3: Fast-Charging Station Design -- 3.1 Introduction -- 3.2 Conceptual Design of Fast-Charging Models -- 3.2.1 Functional Modeling of Fast-Charging Station -- 3.2.2 Fast Charging from the Grid -- 3.2.3 Fast Charging from Grid with Flywheel and Battery -- 3.2.4 Fast Charging with Micro Energy Grid -- 3.2.5 Fast Charging from Grid with Supercapacitor and Battery -- 3.2.6 Powering Charging Station -- 3.2.7 FCS Cyber Physical System Modeling -- 3.2.8 Physical System Modeling for Maritime and Charging Station -- 3.3 Detailed Design of Fast-Charging Station -- 3.3.1 Fast-Charging Station Design -- 3.3.2 Fast-Charging Station Detailed Design -- 3.3.3 Detailed Design of Multi-Input Converter for Fast-Charging Station -- 3.3.4 The Operation Modes of the Converter -- 3.3.4.1 Mode 1: Battery to DC Link -- 3.3.4.2 Mode 2: Supercapacitor to DC Link -- 3.3.4.3 Mode 3: Battery and Supercapacitor -- 3.3.4.4 Mode 4: Battery and Supercapacitor to DC Link -- 3.3.4.5 Mode 5: DC Link to Battery and Supercapacitor -- 3.4 Control System Design -- 3.4.1 Control Design for Charging Unit -- 3.4.1.1 Model Reference Adaptive Control -- 3.4.1.2 Maximum Power Point Tracking (MPPT) -- 3.4.2 Integrated Control Design for the Charging Station -- 3.4.3 Energy Management System (EMS) -- 3.5 Summary -- References -- Chapter 4: Analysis of Transportation Electrification and Fast Charging -- 4.1 Introduction -- 4.2 Analysis of Electric Buses -- 4.2.1 e-Bus Opportunities -- 4.2.2 e-Bus Challenges -- 4.2.3 Battery Technologies -- 4.2.3.1 Battery Size and Range -- 4.2.3.2 Battery Aging -- 4.2.4 Depot for Bus Charging -- 4.2.5 On-Route Charging -- 4.2.6 Conductive On-Route Charging -- 4.2.7 Inductive On-Route Charging.
4.2.8 Battery Swapping On-Route Charging -- 4.3 Analysis of Electric Trucks -- 4.3.1 Fast-Charging System of HDT -- 4.3.2 Depot Charging Electrical Distribution System -- 4.3.3 Charging Scheduling Algorithm -- 4.3.4 Electric Truck Opportunities and Challenges -- 4.3.5 HDT Fast Charging in the Market -- 4.4 EV Charging Technologies -- 4.4.1 AC Charging Station -- 4.4.1.1 Level 1 Charging -- 4.4.1.2 Level 2 Charging -- 4.4.2 DC Charging Station -- 4.4.3 EV Charging Standards -- 4.4.4 EV Fast-Charging Applications and Their Challenges -- 4.5 Summary -- References -- Chapter 5: Fast-Charging Infrastructure for Transit Buses -- 5.1 Introduction -- 5.2 Electric Bus Charging Models -- 5.3 Performance Measures -- 5.4 Case Study -- 5.5 Summary -- References -- Chapter 6: A Robust Decoupled Microgrid Charging Scheme Using a DC Green Plug-Switched Filter Compensator -- 6.1 Introduction -- 6.2 The Proposed Efficient PV-Powered Schemes -- 6.3 The Controller Design Steps and Structure -- 6.4 Digital Simulation Results -- 6.5 Conclusions -- Appendices -- Appendix A: Designed GPFC System Parameters -- Appendix B: Controller Gain Parameters -- References -- Chapter 7: Fast Charging for Railways -- 7.1 Introduction -- 7.1.1 Chapter Outlines -- 7.2 Railway Electrification Infrastructure -- 7.3 Voltage Standardization for Railway Electrification -- 7.4 Resilient Interconnected Microgrid (RIMG) -- 7.5 Requirements of the Utility -- 7.6 The Criteria of the Control System -- 7.7 Design Concepts of Multiple Interconnected Resilient Microgrids -- 7.8 Design of IMGs -- 7.9 Detailed Design of IMGs -- 7.10 Energy Storage Technologies for the Railway -- 7.10.1 Flywheel -- 7.10.2 ESS in Railway Systems -- References -- Chapter 8: Hybrid Charging Stations -- 8.1 Introduction -- 8.2 Hybrid Charging Station -- 8.3 Operation of Hybrid Charging Station.
8.4 Data Analysis of Hybrid Charging Station -- 8.4.1 EV Charging Station Data -- 8.4.2 Gas Refueling Station Data -- 8.4.3 FCV Refueling Station Data -- 8.5 Optimization of Hybrid Station Operation -- 8.5.1 Objective Functions -- 8.5.2 Constraints -- 8.5.3 Assumptions -- 8.6 Optimization Algorithm -- 8.7 Summary -- References -- Chapter 9: Fast Charging for Marine Transportation -- 9.1 Introduction -- 9.2 Functional Modeling of Hybrid Energy System for Maritime and Waterfront Applications -- 9.3 Energy System Design for Maritime and Waterfront -- 9.3.1 Energy System Design Scenarios -- 9.3.2 Performance Measures -- 9.3.3 Ship Route -- 9.3.4 System Design -- 9.3.5 Optimization -- 9.3.6 Cargo and Propulsion Modules for Nuclear-Powered Ships -- 9.4 Advances in Research and Innovation -- 9.4.1 Research on Energy Systems for Marine Transportation and Waterfront Infrastructures -- 9.4.2 Research Areas -- 9.4.3 Research and Test Facility -- 9.4.4 Research Impacts -- 9.4.5 Target Industries -- 9.5 Summary -- References -- Chapter 10: Resilient Charging Stations for Harsh Environment and Emergencies -- 10.1 Introduction -- 10.2 Charging Infrastructures -- 10.3 Charging in Harsh Environment -- 10.4 Resiliency Analysis of Charging Infrastructures -- 10.5 Emergency Analysis of Charging Stations -- 10.6 Priority Analysis of Charging Stations -- 10.7 Vehicle Energy Management in Emergencies -- 10.8 Summary -- References -- Chapter 11: Autonomous Transportation -- 11.1 Autonomous Transportation -- 11.2 Charging Requirements for Autonomous Transportation -- 11.3 Case Study -- 11.4 Base Scenario -- 11.5 The Scenario of Fixed Pick-Up and Drop-Off Points -- 11.6 Mapping CAV Routes to Charging Infrastructure -- 11.7 Summary -- References -- Chapter 12: Transportation with Electric Wheel -- 12.1 Introduction -- 12.2 Regenerative Braking System -- 12.3 Electric Wheel.
12.4 EV with Electric Wheel -- 12.5 Summary -- References -- Chapter 13: Fast-Charging Infrastructure Planning -- 13.1 Introduction -- 13.2 Charging Load Analysis -- 13.3 Load Profiles of EVs -- 13.4 Load Profiles of e-Buses -- 13.5 Load Profiles of e-Trucks -- 13.6 Load Profiles of Electric Marine -- 13.7 Load Profiles for Power Substations -- 13.8 Load Profiles for Industrial Facilities -- 13.9 Integrated Load Profiles -- 13.10 Development of Fast-Charging Station for Industrial Facilities and e-Trucks -- 13.10.1 Deployment Impacts -- 13.11 Summary -- References -- Chapter 14: Techno-economic Analysis of Fast-Charging Infrastructure -- 14.1 Introduction -- 14.2 Integrated Deployment Model of Fast-Charging Stations -- 14.3 Lifecycle Cost Analysis of Charging Station -- 14.3.1 Cost Calculation -- 14.4 Techno-economic Analysis -- 14.5 Summary -- References -- Chapter 15: Advances in Charging Infrastructures -- 15.1 Introduction -- 15.2 V2G Charging -- 15.2.1 V2G System Design -- 15.2.2 V2G Deployment -- 15.2.3 Benefits -- 15.3 Control Strategy -- 15.4 V2G Installation -- 15.5 Case Study V2G System Design -- 15.6 Flywheel-Based Fast Charging -- 15.7 Case Study V2G with Commercial Building -- 15.8 Wireless Charging -- 15.9 V2V Charging -- 15.10 Next-Generation Transportation Infrastructure -- 15.11 Summary -- References -- Chapter 16: Nuclear-Renewable Hybrid Energy Systems with Charging Stations for Transportation Electrification -- 16.1 Introduction -- 16.2 System Description -- 16.3 Case Study -- 16.4 Results -- 16.5 Nuclear-Renewable Hybrid Energy Systems with Fast-Charging Station -- 16.6 Fast-Charging Station Design -- 16.6.1 Charging Mode -- 16.6.2 Discharging Mode -- 16.7 Summary -- References -- Chapter 17: Transactive Energy for Charging Infrastructures -- 17.1 Introduction -- 17.2 Transactive Energy for Charging Station.
17.2.1 Condition to Start Searching for Charging Station.
Record Nr. UNINA-9910586583003321
Gabbar Hossam A.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Autore Palanisamy Sivaraman <1991->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (242 pages)
Disciplina 629.286
Soggetto topico Battery charging stations (Electric vehicles)
Electric vehicles - Power supply
Electric vehicles - Electric equipment
ISBN 1-119-98776-8
1-119-98777-6
1-119-98775-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction to Electric Vehicle Fast-Charging Infrastructure -- 1.1 Introduction -- 1.2 Fast-Charging Station -- 1.2.1 Power Grid or Grid Power Supply -- 1.2.2 Power Cables -- 1.2.3 Switchgears -- 1.2.4 Distribution Transformer -- 1.2.5 Energy Meters and Power Quality Meters -- 1.2.6 Fast Chargers -- 1.2.7 Plugs and Connectors -- 1.3 Fast-Charging Station Using Renewable Power Sources (RES) -- 1.4 Digital Communication for Fast-Charging Station -- 1.5 Requirements for Fast-Charging Station -- 1.6 Case Study: Public Fast-Charging Station in India -- 1.7 Conclusion -- References -- Annexure 1 Photos -- Chapter 2 Selection of Fast-Charging Station -- 2.1 Introduction -- 2.2 Business Model for Fast-Charging Stations -- 2.3 Location of Fast-Charging Station -- 2.4 Electric Supply for Fast Charging -- 2.5 Availability of Land -- 2.6 Conclusion -- References -- Chapter 3 Business Model and Tariff Structure for Fast-Charging Station -- 3.1 Introduction -- 3.2 Business Model -- 3.2.1 Integrated Model -- 3.2.2 Independent Model -- 3.2.3 Selection of Business Model for Fast-Charging Station -- 3.2.4 Fast-Charging Infrastructure and Operating Expenses -- 3.3 Battery Swapping -- 3.4 Tariff Structure -- 3.4.1 Tariff Between Electric Utilities (DISCOMs) and Fast-Charging Stations -- 3.4.2 Tariff Between Fast-Charging Stations and EV Users -- 3.5 Conclusion -- References -- Chapter 4 Batteries for Fast-Charging Infrastructure -- 4.1 Introduction -- 4.2 C-Rating of the Battery -- 4.3 Different Types of Chemistries -- 4.3.1 Li-Ion Family -- 4.3.2 Lead Acid -- 4.3.3 Nickel Family -- 4.3.4 Selection of Battery Chemistry -- 4.4 Batteries Used in EVs in the Market -- 4.5 Conclusion -- References -- Chapter 5 Distribution System Planning -- 5.1 Introduction.
5.2 Planning for Power and Energy Demand -- 5.3 Planning for Distribution System Feeders and Equipment -- 5.4 Conclusion -- References -- Chapter 6 Electric Distribution for Fast-Charging Infrastructure -- 6.1 Introduction -- 6.2 Major Components of Fast-Charging Station -- 6.3 Design of Fast-Charging Station -- 6.3.1 Single Point of Failure -- 6.3.2 Configuration of Electrical Distribution Considering the Redundancy -- 6.4 Conclusion -- References -- Chapter 7 Energy Storage System for Fast-Charging Stations -- 7.1 Introduction -- 7.2 Renewables + ESS -- 7.2.1 Solar PV System without Battery Energy Storage System - Scheme 1 AC Interconnection -- 7.2.2 Solar PV System with Battery Energy Storage System - Scheme 2 AC Interconnection -- 7.2.3 Solar PV System with Battery Energy Storage System - Scheme 3 DC Interconnection -- 7.3 Microgrid with Renewables + ESS -- 7.3.1 Grid-Connected Microgrid for Fast-Charging Stations -- 7.3.2 Standalone Microgrid for Fast-Charging Stations -- 7.4 ESS Modes of Operation -- 7.5 Conclusion -- References -- Chapter 8 Surge Protection Device for Electric Vehicle Fast-Charging Infrastructure -- 8.1 Introduction -- 8.2 Surge Protection for Fast-Charging Stations -- 8.2.1 Surge Protection for Open Locations -- 8.2.2 Surge Protection for Covered Locations -- 8.3 Surge Protection for Underground Locations -- 8.4 Conclusion -- References -- Chapter 9 Power Quality Problems Associated with Fast-Charging Stations -- 9.1 Introduction -- 9.2 Introduction to Power Quality -- 9.3 Power Quality Problems Due to Fast-Charging Stations -- 9.3.1 Impact of Poor Power Quality of Distribution Grid on Fast-Charging Station Loads -- 9.3.2 Impact of Poor Power Quality from the Fast-Charging Station Loads on the Distribution Grid -- 9.4 Analysis of Harmonic Injection into the Distribution System -- 9.4.1 Hand Calculation or Manual Calculation.
9.4.2 Conducting Field Measurements at the Site -- 9.4.3 Model Calibration -- 9.4.4 Computer Simulation -- 9.5 Analysis of System Resonance Condition -- 9.6 Analysis of Supra-Harmonics -- 9.7 Case Study: Harmonic Measurement of 30 kW DC Fast Charger -- 9.8 Conclusion -- References -- Chapter 10 Standards for Fast-Charging Infrastructure -- 10.1 Introduction -- 10.2 IEC Standards -- 10.2.1 IEC 61851 -- 10.2.2 IEC 61980 Electric Vehicle Wireless Power Transfer Systems -- 10.2.3 IEC 62196 Plugs, Socket-Outlets, Vehicle Connectors, and Vehicle Inlets - Conductive Charging of Electric Vehicles -- 10.2.4 IEC TR 62933-2-200 Electrical Energy Storage (EES) Systems - Part 2-200: Unit Parameters and Testing Methods - Case Study of EES Systems Located in EV Charging Station with PV -- 10.2.5 IEC 62893 Charging Cables for Electric Vehicles for Rated Voltages up to and Including 0.6/1 kV -- 10.2.6 IEC 60364-7-722 Low-Voltage Electrical Installations - Part 7-722: Requirements for Special Installations or Locations - Supplies for Electric Vehicles -- 10.3 IEEE Standards -- 10.3.1 IEEE Std 2030.1.1-2021 IEEE Standard for Technical Specifications for a DC Quick and Bidirectional Charger for Use with Electric Vehicles -- 10.3.2 IEEE Std 2836-2021 IEEE Recommended Practice for Performance Testing of Electrical Energy Storage (ESS) System in Electric Charging Stations in Combination with Photovoltaic (PV) -- 10.4 SAE Standards -- 10.4.1 SAE J1772 SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler -- 10.4.2 SAE J2894-1 2019 Power Quality Requirements for Plug-In Electric Vehicle Chargers -- 10.5 ISO 17409 Electrically Propelled Road Vehicles - Connection to an External Electric Power Supply - Safety Requirements -- 10.6 CEA Technical Standards in India.
10.6.1 Technical Standards for Connectivity of the Distributed Generation Resources - February 2019 -- 10.6.2 Technical Standards for Measures Relating to Safety and Electric Supply - June 2019 -- 10.7 BS 7671-2018 Requirements for Electrical Installations -- 10.8 Conclusion -- References -- Chapter 11 Fast-Charging Infrastructure for Electric Vehicles: Today's Situation and Future Needs -- 11.1 Batteries -- 11.1.1 Voltage -- 11.1.2 Improvements in Battery Chemistry -- 11.1.3 Standardization of Battery Ratings (Capacity, Voltage, and Dimensions) for Enabling Battery Swapping -- 11.2 Distributed Energy Storage System and Grid-Friendly Charging -- 11.3 Ultrafast Chargers -- 11.4 Interoperable Features -- 11.5 Charging the Vehicle While Driving (Wireless Charging) -- 11.6 Conclusion -- References -- Chapter 12 A Review of the Improved Structure of an Electric Vehicle Battery Fast Charger -- 12.1 Introduction -- 12.2 Types of Battery Charging -- 12.2.1 Li-Ion Battery Charger Algorithm -- 12.2.2 Constant Voltage-Current Charging Method -- 12.2.3 Constant Current Multilevel Charging Method -- 12.2.4 Method of Incremental Charging -- 12.2.5 Pulse Charging Method -- 12.2.6 Sinusoidal Pulse Charging Algorithm -- 12.2.7 Using a Different Frequency Pulse Charging Method (VFPCS) -- 12.2.8 Pulse Voltage Charging Method with Different Pulse Widths (DVVPCS) -- 12.2.9 An Overview of Lithium-Ion Batteries -- 12.2.10 Performance Comparison with Other Batteries -- 12.2.11 Lithium-Ion Battery Control System (BMS) -- 12.2.12 Cell Control -- 12.2.13 Checking Input and Output Current and Voltage -- 12.2.14 Battery Charge and Discharge Control -- 12.2.15 State Estimation -- 12.2.16 State of Charge -- 12.2.17 State of Health (SoH) -- 12.2.18 Mode of Operation (SoF) -- 12.2.19 Battery Protection -- 12.3 Temperature and Heat Control -- 12.3.1 Examining the Charger Structure.
12.4 Bidirectional AC-DC Converters -- 12.4.1 Unidirectional AC-DC Converters -- 12.4.2 Unidirectional Isolated DC-DC Converters -- 12.4.3 Bidirectional Isolated DC-DC Converters -- 12.5 High-Frequency Transformers -- 12.5.1 High-Frequency Transformer Design -- 12.5.2 Core Geometry Method -- 12.5.3 Core Losses -- 12.6 Examine Some of the Charger Examples Provided in the References -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830337403321
Palanisamy Sivaraman <1991->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimization of Electric-Vehicle Charging : Scheduling and Planning Problems / / by Giulio Ferro, Riccardo Minciardi, Luca Parodi, Michela Robba
Optimization of Electric-Vehicle Charging : Scheduling and Planning Problems / / by Giulio Ferro, Riccardo Minciardi, Luca Parodi, Michela Robba
Autore Ferro Giulio
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (185 pages)
Disciplina 629.286
Altri autori (Persone) MinciardiRiccardo
ParodiLuca
RobbaMichela
Collana Advances in Industrial Control
Soggetto topico Vehicles
Electric power distribution
Control engineering
Mathematical optimization
Operations research
Management science
Transportation engineering
Traffic engineering
Vehicle Engineering
Energy Grids and Networks
Control and Systems Theory
Discrete Optimization
Operations Research, Management Science
Transportation Technology and Traffic Engineering
ISBN 3-031-61917-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Modelling, Simulation, and Optimization for the Optimal Planning and Management of Electric Vehicles: State of the Art and Challenges -- 3. Optimal Charging in Smart Grids: Discrete Time Optimization Model for Aperiodic Scheduling -- 4. Optimal Charging in Smart Grids: A Discrete Event Approach for Scheduling in Single Socket Charging Stations -- 5. Optimal Charging in Smart Grids: A Discrete Event Approach for Scheduling in Multi Socket Charging Stations -- 6. Optimal Charging in Smart Grids: A Discrete Event Approach for Periodic Scheduling -- 7. Planning for Electric Vehicles: Deterministic and Stochastic User Equilibrium Approaches for Joint Traffic Assignment and Energy Demand Assignment -- 8. Planning for Electric Vehicles: A User Equilibrium Approaches for Joint Traffic Assignment, Energy Demand Assignment and Sizing of Charging Stations -- 9. Planning for Electric Vehicles: Optimal Placement of Charging Stations in an Electrical Distribution Grid -- 10. Conclusions.
Record Nr. UNINA-9910890179103321
Ferro Giulio  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui