top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fundamentals of crash sensing in automotive air bag systems / / Ching-Yao Chan
Fundamentals of crash sensing in automotive air bag systems / / Ching-Yao Chan
Autore Chan Ching-Yao
Edizione [1st ed.]
Pubbl/distr/stampa Warrendale, Pa. (400 Commonwealth Dr., Wallendale PA USA) : , : Society of Automotive Engineers, , c2000
Descrizione fisica 1 PDF (x, 197 pages) : illustrations, digital file
Disciplina 629.2/76
Collana Society of Automotive Engineers. Electronic publications.
Soggetto topico Air bag restraint systems
Crash sensors
Automotive sensors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto History and Background -- Accident Statistics: Are Air Bags Effective? -- How Do Air Bags Work? -- Design Issues and Considerations -- Recent Developments -- Crash Analysis -- Crash Data -- Crash Analysis: What Information Can Be Extracted from Crash Data? -- Crash Data Examples -- Observations and Discussions about Crash Data -- Crash Library for Sensor Design -- Crash Sensing Criteria -- Threshold of Collision Severity: When is an Air Bag Deployment Needed? -- Rule of 5 Inches Minus 30 Milliseconds and Sensor Triggering Time -- Occupant Performance Criterion -- Crash Sensing Characteristics -- Crash Sensing Concepts -- Signals for Crash Detection -- Speed-Dependent Crash Sensing -- Crush-Dependent Crash Sensing -- Electronic Sensors -- Other Sensor Concepts and Systems -- Mechanical Crash Sensors -- Exemplar Crash Sensors -- Mathematical Analysis of Mechanical Crash Sensors -- Sensor Sensitivity and Characteristics -- Sensor Testing -- Electronic Crash Sensors -- What Are Electronic Crash Sensors and Why Are They Used? -- Functions and Components of Electronic Crash Sensors -- Sensing Algorithms in Electronic Sensors -- Signals and Variables in Sensing Algorithms -- Crash Sensor Placement Strategies -- Distributed Sensing and Single-Point Sensing -- All-Mechanical Air Bag Systems -- Single-Point Sensing Concept and Electronic Sensors -- Side Impact Sensing and Air Bags -- Side Impact -- Kinematic Analysis of Side Impact -- Sensing Concepts and Examples.
Record Nr. UNINA-9910438319603321
Chan Ching-Yao  
Warrendale, Pa. (400 Commonwealth Dr., Wallendale PA USA) : , : Society of Automotive Engineers, , c2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mary Anderson and windshield wipers / / by Ellen Labrecque
Mary Anderson and windshield wipers / / by Ellen Labrecque
Autore Labrecque Ellen
Pubbl/distr/stampa Ann Arbor, Michigan : , : Cherry Lake Publishing, , [2017]
Descrizione fisica 1 online resource (24 pages) : illustrations
Disciplina 629.2/76
Collana 21st century junior library. Women innovators
Soggetto topico Windshield wipers
Inventors - United States
Women inventors - United States - Biography
ISBN 1-63472-244-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A woman -- An idea -- An invention.
Record Nr. UNINA-9910154838403321
Labrecque Ellen  
Ann Arbor, Michigan : , : Cherry Lake Publishing, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Passenger safety and convenience systems / / Ronald K Jurgen
Passenger safety and convenience systems / / Ronald K Jurgen
Pubbl/distr/stampa Boston [Massachusetts] : , : SAE International, , 2000
Descrizione fisica 1 PDF (504 pages) : illustrations
Disciplina 629.2/76
Collana PT
Soggetto topico Automobiles - Electronic equipment
Automobiles - Safety appliances
ISBN 0-7680-9589-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction. Electronics: the key enabler for safety and convience / Ronald K. Jurgen, editor -- Safety Systems. An integrated approach to automotive safety systems (2000-01-0346) / Stephen N. Rohr, Richard C. Lind, Robert J. Myers, William A. Bauson, Walter K. Kosiak, and Huan Yen ; Cadillac DeVille thermal imaging night vision system (2000-01-0323) / Nancy S. Martinelli and Scott A. Boulanger ; Adaptive frontlighting systems for optimum illumination of curved roads, highway lanes and other driving situations (2000-01-0431) / Henning Hogrefe ; Smart airbag systems (980558) / Helmut E. Mueller and Burghard Linn ; The development of an impact simulator and the study of a side airbag algorithm (1999-10-0043) / K.A. Sung ; Side impact airbag system technology (1994-20-0039) / David S. Breed ; The influence of occupant and vehicle characteristics on risk of pedriatic air bag injury (99SC27) / K.B. Arbogast, D.R. Durbin, B.F. Resh, and F.K. Winston ; The use of the signal processing techniques in an occupant detection system (940906) / Edward J. Gillis and Tony Gioutsos ; Airbag technology: what it is and how it came to be (980648) / Donald E. Struble ; Investigation of improving energy absorption performance and reducing weight of passenger air bag modules using computer aided analysis (950338) / Edward Wilson ; Side airbag sensor in silicon micromachining (1999-01-0757) / D. Ullmann, G. Bischopink, M. Schofthaler, R. Schellin, B. Maihofer, J. Seibold, and J. Marek ; Sensing side impacts (940561) / David S. Breed, W. Thomas Sanders, and Vittorio Castelli ; A driver-side airbag system using a mechanical firing microminiature sensor (950346) / Koji Ito, Masanobu Ishikawa, Kazunori Sakamoto, Ichizou Shiga, Katsunobu Sakane, Yutaka Kondoh, Masahiro Miyaji, and Yasunori Iwai ; Fast response micro-safing sensor for air bag systems (1999-01-0758) / Masatomo Mori ; New aspects on static passenger and child seat recognition and future dynamic out-of-position detection for airbag control systems (1999-01-0765) / Peter Steiner and Guido Wetzel ; The BMW seat occupancy monitoring system: a step towards "situation appropriate airbag deployment" (960226) / Klaus Kompass and Michel Witte ; Electronic system design for future passenger restraint systems (960500) / Richard Vogt ; Technological trends in occupant protection system --- recent research challenges from the German point of view (960663) / Hitmar Schubert and Karl-Friedrich Ziegahn ; Investigation of sensor requirements and expected benefits of predictive crash sensing (950348) / Alfons Hartl, Gerhard Mader, Lorenz Pfau, and Bert Wolfram ; Seat belt pretensioners (980557) / Helmut E. Muller and Burghard Linn ; A method to evaluate the energy capability of seat belt pretensioners (1999-01-0080) / Simon Xunnan He and Michael D. Wilkins ; The use of magnetostrictive sensors for vehicle safety applications (970774) / Tony Gioutsos and Hegeon Kwun ; Further results on the use of magnetostrictive sensors for vehicle crash detection (1999-01-1327) / Tony Giotsos and Michael Murray ; The X-by-wire concept: time-triggered information exchange and fail silence support by new system services (980555) / Elmar Dilger, Thomas Fuhrer, Bernd Muller, and Stefan Poledna ; Dynamic traffic light, vehicle signaling display (980560) / Hamid Kashefy ; Driving factors and future developments of airbag technology (980556) / Karl-Friedrich Ziegahn ; An innovative approach to adaptive airbag modules (980646) / Shawn Ryan ; Striking a double blow for safety (7-24-7-39) / Automotive engineer, July/August, 1999 accurate predictive algorithm for air bag expansion by fusing the conventional predictive algorithm and proximity sensor (980907) / Nao Kitada and Kajiro Watanabe ; Roof airbags (970167) / Helmut E. Mueller ; Side impact and sensing (1-103-5-62) / Kevin Jost ; Side impact airbag technology (934217) / R.F. Else ; Safing sensor requirements for use with electronic crash sensing for airbag deployments (93A012) / David F. Gallup and Robert J. Bolender ; A remotely mounted crash detection system (973240) / David B. Rich, Walter K. Kosiak, Gregory J. Manlove, and Dwight L. Schwarz ; Saab's security & safety priority (14-54-4-21) / SAE Australasia, August/September 1994 ; Future electrical steering systems: realizations with safety requirements (2000-01-0822) / Werner Harter, Wolfgang Pfeiffer, Peter Dominke, Gerhard Ruck, and Peter Blessing ; A safety analysis methodology and its automotive application (974113) / I.R. Kendall and K.M. Hobley ; Proposal for a guideline for safety related electronics in road transport systems (Drive project V1051) (916028) / Winfried Asmuth, G. Heuser, H. Trier, and J. Sonntag -- Convenience systems. Automotive application of biometric systems & fingerpoint (2000-01-0171) / Jan Lichtermann and Rod Pettit ; An integrated automobile keyless operation system (2000-01-0130) / Tricia Liu, William Liew, and Herbert Everss ; A new state-of-the-art keyless entry system (980381) / Stephan Schmitz and Christopher Roser ; Automotive entry and security systems (94CO59) / Keith W. Banks ; Opto-electronic ignition lock -- the ultimate antitheft device (932867) / Alexander Parker and Val Parker ; Safety and security considerations of new closure systems (2000-01-1304) / Stephan Schmitz, Jacek Kruppa, and Peter Crowhurst ; Development of automatic climate control with neural control (2000-01-0978) / Yuichi Kajino, Hikaru Sugi, Takayoshi Kawai, Yuji Ito, Masahiko Tateishi, and Katsuhiko Samukawa ; Vehicle cabin air quality monitor for fatigue and suicide prevention (2000-01-0084) / Kosmas Galatsis, Wojtek Wlodarski, Brian Wells, and Stewart McDonald ; A real-time computer system for the control of refrigerant flow (970108) / Andy Bartlett, David Standaert, and Eric Ratts ; Modeling of automotive passenger compartment and its air conditioning system (980288) / Y. Khamsi, C. Petitjean, and V. Pomme ; Computer simulation of refrigerant vapor condensor in transient operation (951014) / Edward C. Chiang and Simon Y.C. Ng ; Fuzzy controller for thermal comfort in a car cabin (970107) / Beatrice Gach, Michael Lang, and Jean-Christophe Riat ; A new transient passenger thermal comfort model (970528) / J. Steven Brown and Byron W. Jones ; A sensor for estimating the liquid mass fraction of the refrigerant exiting an evaporator (2000-01-00976) / James Solberg, Norman R. Miller, and Predrag Hrnjak ; Future development of central tire inflation systems and integration with vehicles (942251) / James A. Beverly ; State of knowledge and current challenges in defrosting automotive windshields (980293) / Karim J. Nasr, Bashar S. AbdulNour, and George C. Wiklund ; Application of the Eaton tire pressure control system to the commercial truck (942248) / Alan Freigang ; Automotive lighting and its effects on consumers (2000-01-0321) / Mario A. Campos ; Added feature automotive mirrors (980922) / Niall R. Lynam ; Human-machine-interfaces of car computing devices (2000-01-0818) / Peter Roessger ; A seat ride evaluation method for transient vibrations (2000-01-0641) / Koro Uenishi, Katsunori Fujihashi, and Hitoshi Imai ; Development of power sliding door (PSD) system with push-pull cable driving method (2000-01-0080) / Shintaro Suzuki, Ryouichi Fukumoto, Masao Ohhashi, and Katsuhisa Yamada -- Future outlook future developments in electronically controlled body and safety systems / Dan Leih and Ross Bannatyne.
Record Nr. UNINA-9910438317903321
Boston [Massachusetts] : , : SAE International, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang
Autore Delgrossi Luca
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2012]
Descrizione fisica 1 online resource (400 p.)
Disciplina 629.2/76
Altri autori (Persone) ZhangTao <1962->
Collana Information and communication technology series
Soggetto topico Vehicular ad hoc networks (Computer networks) - Safety measures
Automobiles - Safety appliances
Automobiles - Collision avoidance systems
ISBN 1-118-45219-4
1-283-59898-1
1-118-45218-6
9786613911438
1-118-45221-6
Classificazione TEC009020
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42.
5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96.
9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153.
13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202.
14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253.
16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308.
19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367.
Record Nr. UNINA-9910141390903321
Delgrossi Luca  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang
Autore Delgrossi Luca
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2012
Descrizione fisica 1 online resource (400 p.)
Disciplina 629.2/76
Altri autori (Persone) ZhangTao <1962->
Collana Wiley series on information and communication technology
Soggetto topico Vehicular ad hoc networks (Computer networks) - Safety measures
Automobiles - Safety appliances
Automobiles - Collision avoidance systems
ISBN 1-118-45219-4
1-283-59898-1
1-118-45218-6
9786613911438
1-118-45221-6
Classificazione TEC009020
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42.
5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96.
9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153.
13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202.
14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253.
16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308.
19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367.
Record Nr. UNINA-9910828065603321
Delgrossi Luca  
Hoboken, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui