top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced in-flight measurement techniques / / Fritz Boden ... [et al.], editors
Advanced in-flight measurement techniques / / Fritz Boden ... [et al.], editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (xix, 344 pages) : illustrations (some color)
Disciplina 629.134
629.134/53
629.13453
Altri autori (Persone) BodenFritz
Collana Research topics in aerospace
Soggetto topico Flight engineering
Flight testing
ISBN 3-642-34738-X
1-299-33665-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Introduction -- pt. 2. Wing deformation studies -- pt. 3. Propeller deformation studies -- pt. 4. Helicopter investigations -- pt. 5. Flow measurements.
Record Nr. UNINA-9910437898203321
Heidelberg ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Autore Gregory James W.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 629.13453
Collana Aerospace Ser.
Soggetto topico Airplanes - Flight testing
ISBN 1-118-94980-3
1-118-94979-X
1-118-94981-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Series Preface -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Case Study: Supersonic Flight in the Bell XS‐1 -- 1.2 Types of Flight Testing -- 1.2.1 Scientific Research -- 1.2.2 Experimental Flight Test -- 1.2.3 Developmental Test and Evaluation -- 1.2.4 Operational Test and Evaluation -- 1.2.5 Airworthiness Certification -- 1.3 Objectives and Organization of this Book -- References -- Chapter 2 The Flight Environment: Standard Atmosphere -- 2.1 Earth's Atmosphere -- 2.2 Standard Atmosphere Model -- 2.2.1 Hydrostatics -- 2.2.2 Gravitational Acceleration and Altitude Definitions -- 2.2.3 Temperature -- 2.2.4 Viscosity -- 2.2.5 Pressure and Density -- 2.2.6 Operationalizing the Standard Atmosphere -- 2.2.7 Comparison with Experimental Data -- 2.3 Altitudes Used in Aviation -- References -- Chapter 3 Aircraft and Flight Test Instrumentation -- 3.1 Traditional Cockpit Instruments -- 3.1.1 Gyroscopic‐Based Instruments -- 3.1.2 Pressure‐Based Instruments -- 3.1.3 Outside Air Temperature -- 3.1.4 Other Instrumentation -- 3.2 Glass Cockpit Instruments -- 3.3 Flight Test Instrumentation -- 3.3.1 Global Navigation Satellite System -- 3.3.2 Accelerometers -- 3.3.3 Gyroscopes -- 3.3.4 Magnetometers -- 3.3.5 Barometer -- 3.3.6 Fusion of Sensor Data Streams -- 3.4 Summary -- References -- Chapter 4 Data Acquisition and Analysis -- 4.1 Temporal and Spectral Analysis -- 4.2 Filtering -- 4.3 Digital Sampling: Bit Depth Resolution and Sample Rate -- 4.4 Aliasing -- 4.5 Flight Testing Example -- 4.6 Summary -- References -- Chapter 5 Uncertainty Analysis -- 5.1 Error Theory -- 5.1.1 Types of Errors -- 5.1.2 Statistics of Random Error -- 5.1.3 Sensitivity Analysis and Uncertainty Propagation -- 5.1.4 Overall Uncertainty Estimate.
5.1.5 Chauvenet's Criterion for Outliers -- 5.1.6 Monte Carlo Simulation -- 5.2 Basic Error Sources in Flight Testing -- 5.2.1 Uncertainty of Flight Test Instrumentation -- 5.2.2 Example: Uncertainty in Density (Traditional Approach) -- 5.2.3 Example: Uncertainty in True Airspeed (Monte Carlo Approach) -- References -- Chapter 6 Flight Test Planning -- 6.1 Flight Test Process -- 6.2 Risk Management -- 6.3 Case Study: Accept No Unnecessary Risk -- 6.4 Individual Flight Planning -- 6.4.1 Flight Area and Airspace -- 6.4.2 Weather and NOTAMs -- 6.4.3 Weight and Balance -- 6.4.4 Airplane Pre‐Flight -- 6.5 Conclusion -- References -- Chapter 7 Drag Polar Measurement in Level Flight -- 7.1 Theory -- 7.1.1 Drag Polar and Power Required for Level Flight -- 7.1.2 The PIW-VIW Method -- 7.1.3 Internal Combustion Engine Performance Additional details are available in an online supplement, "Basic Performance Prediction of Internal Combustion Engines." -- 7.1.4 Propeller Performance -- 7.2 Flight Testing Procedures -- 7.3 Flight Test Example: Cirrus SR20 -- References -- Chapter 8 Airspeed Calibration -- 8.1 Theory -- 8.1.1 True Airspeed -- 8.1.2 Equivalent Airspeed -- 8.1.3 Calibrated Airspeed -- 8.1.4 Indicated Airspeed -- 8.1.5 Summary -- 8.2 Measurement Errors -- 8.2.1 Instrument Error -- 8.2.2 System Lag -- 8.2.3 Position Error -- 8.3 Airspeed Calibration Methods -- 8.3.1 Boom‐Mounted Probes -- 8.3.2 Trailing Devices and Pacer Aircraft -- 8.3.3 Ground‐Based Methods -- 8.3.4 Global Positioning System Method -- 8.4 Flight Testing Procedures -- 8.5 Flight Test Example: Cirrus SR20 -- References -- Chapter 9 Climb Performance and Level Acceleration to Measure Excess Power -- 9.1 Theory -- 9.1.1 Steady Climbs -- 9.1.2 Energy Methods -- 9.2 Flight Testing Procedures -- 9.2.1 Direct Measurement of Rate of Climb -- 9.2.2 Measurement of Level Acceleration.
9.3 Data Analysis -- 9.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 10 Glide Speed and Distance -- 10.1 Theory -- 10.1.1 Drag Polar -- 10.1.2 Gliding Flight -- 10.1.3 Glide Hodograph -- 10.1.4 Best Glide Condition -- 10.2 Flight Testing Procedures -- 10.3 Data Analysis -- 10.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 11 Takeoff and Landing -- 11.1 Theory -- 11.1.1 Takeoff Ground Roll -- 11.1.2 Landing Ground Roll -- 11.1.3 Rotation Distance -- 11.1.4 Transition Distance -- 11.1.5 Climb Distance -- 11.1.6 Total Takeoff and Landing Distances -- 11.1.7 Simple Estimations -- 11.2 Measurement Methods -- 11.3 Flight Testing Procedures -- 11.3.1 Standard Flight Procedures -- 11.3.2 Flight Test Procedures -- 11.3.3 Data Acquisition -- 11.3.4 Data Analysis -- 11.4 Flight Test Example: Cessna R182 -- References -- Chapter 12 Stall Speed -- 12.1 Theory -- 12.1.1 Viscous Boundary Layers -- 12.1.2 Flow Separation -- 12.1.3 Two‐Dimensional Stall Characteristics -- 12.1.4 Three‐Dimensional Stall Characteristics -- 12.1.5 Stall Control -- 12.1.6 Stall Prediction -- 12.2 Flight Testing Procedures -- 12.2.1 Flight Characteristics -- 12.2.2 Data Acquisition -- 12.3 Data Analysis -- 12.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 13 Turning Flight -- 13.1 Theory -- 13.2 Flight Testing Procedures -- 13.2.1 Airworthiness Certification -- 13.2.2 Educational Flight Testing -- 13.2.3 Piloting -- 13.2.4 Instrumentation and Data Recording -- 13.3 Flight Test Example: Diamond DA40 -- References -- Chapter 14 Longitudinal Stability -- 14.1 Static Longitudinal Stability -- 14.1.1 Theory -- 14.1.2 Trim Condition -- 14.1.3 Flight Testing Procedures -- 14.1.4 Flight Test Example: Cirrus SR20 -- 14.2 Dynamic Longitudinal Stability -- 14.2.1 Theory -- 14.2.2 Flight Testing Procedures -- 14.2.3 Flight Test Example: Cirrus SR20.
References -- Chapter 15 Lateral‐Directional Stability -- 15.1 Static Lateral‐Directional Stability -- 15.1.1 Theory -- 15.1.2 Directional Stability -- 15.1.3 Lateral Stability -- 15.1.4 Flight Testing Procedures -- 15.1.5 Flight Testing Example: Cirrus SR20 -- 15.2 Dynamic Lateral‐Directional Stability -- 15.2.1 Theory -- 15.2.2 Flight Testing Procedures -- 15.2.3 Flight Test Example: Cirrus SR20 -- Nomenclature -- Acronyms and Abbreviations -- References -- Chapter 16 UAV Flight Testing1 -- 16.1 Overview of Unmanned Aircraft -- 16.2 UAV Design Principles and Features -- 16.2.1 Types of Airframes -- 16.2.2 UAV System Architecture -- 16.2.3 Electric Propulsion -- 16.2.4 Command and Control (C2) Link -- 16.2.5 Autonomy -- 16.3 Flight Regulations -- 16.4 Flight Testing Principles -- 16.4.1 Air Data Instrumentation -- 16.4.2 UAV Flight Test Planning -- 16.4.3 Piloting for UAV Flight Testing -- 16.5 Flight Testing Examples with the Peregrine UAS -- 16.5.1 Overview of the Peregrine UAS -- 16.5.2 Propulsion System Characterization -- 16.5.3 Specific Excess Power: Level Acceleration and Rate of Climb -- 16.5.4 Glide Flight Tests -- 16.6 Flight Testing Examples with the Avanti UAS -- 16.6.1 Overview of the Avanti UAS -- 16.6.2 Coast‐Down Testing for the Drag Polar -- 16.6.3 Radio Range Testing -- 16.6.4 Assessment of Autonomous System Performance -- 16.7 Conclusion -- References -- Appendix A Standard Atmosphere Tables -- Appendix B Useful Constants and Unit Conversion Factors -- Reference -- Appendix C Stability and Control Derivatives for a Notional GA Aircraft -- Reference -- Index -- EULA.
Record Nr. UNINA-9910555113303321
Gregory James W.  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Autore Gregory James W.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 629.13453
Collana Aerospace
Soggetto topico Airplanes - Flight testing
ISBN 1-118-94980-3
1-118-94979-X
1-118-94981-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Series Preface -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Case Study: Supersonic Flight in the Bell XS‐1 -- 1.2 Types of Flight Testing -- 1.2.1 Scientific Research -- 1.2.2 Experimental Flight Test -- 1.2.3 Developmental Test and Evaluation -- 1.2.4 Operational Test and Evaluation -- 1.2.5 Airworthiness Certification -- 1.3 Objectives and Organization of this Book -- References -- Chapter 2 The Flight Environment: Standard Atmosphere -- 2.1 Earth's Atmosphere -- 2.2 Standard Atmosphere Model -- 2.2.1 Hydrostatics -- 2.2.2 Gravitational Acceleration and Altitude Definitions -- 2.2.3 Temperature -- 2.2.4 Viscosity -- 2.2.5 Pressure and Density -- 2.2.6 Operationalizing the Standard Atmosphere -- 2.2.7 Comparison with Experimental Data -- 2.3 Altitudes Used in Aviation -- References -- Chapter 3 Aircraft and Flight Test Instrumentation -- 3.1 Traditional Cockpit Instruments -- 3.1.1 Gyroscopic‐Based Instruments -- 3.1.2 Pressure‐Based Instruments -- 3.1.3 Outside Air Temperature -- 3.1.4 Other Instrumentation -- 3.2 Glass Cockpit Instruments -- 3.3 Flight Test Instrumentation -- 3.3.1 Global Navigation Satellite System -- 3.3.2 Accelerometers -- 3.3.3 Gyroscopes -- 3.3.4 Magnetometers -- 3.3.5 Barometer -- 3.3.6 Fusion of Sensor Data Streams -- 3.4 Summary -- References -- Chapter 4 Data Acquisition and Analysis -- 4.1 Temporal and Spectral Analysis -- 4.2 Filtering -- 4.3 Digital Sampling: Bit Depth Resolution and Sample Rate -- 4.4 Aliasing -- 4.5 Flight Testing Example -- 4.6 Summary -- References -- Chapter 5 Uncertainty Analysis -- 5.1 Error Theory -- 5.1.1 Types of Errors -- 5.1.2 Statistics of Random Error -- 5.1.3 Sensitivity Analysis and Uncertainty Propagation -- 5.1.4 Overall Uncertainty Estimate.
5.1.5 Chauvenet's Criterion for Outliers -- 5.1.6 Monte Carlo Simulation -- 5.2 Basic Error Sources in Flight Testing -- 5.2.1 Uncertainty of Flight Test Instrumentation -- 5.2.2 Example: Uncertainty in Density (Traditional Approach) -- 5.2.3 Example: Uncertainty in True Airspeed (Monte Carlo Approach) -- References -- Chapter 6 Flight Test Planning -- 6.1 Flight Test Process -- 6.2 Risk Management -- 6.3 Case Study: Accept No Unnecessary Risk -- 6.4 Individual Flight Planning -- 6.4.1 Flight Area and Airspace -- 6.4.2 Weather and NOTAMs -- 6.4.3 Weight and Balance -- 6.4.4 Airplane Pre‐Flight -- 6.5 Conclusion -- References -- Chapter 7 Drag Polar Measurement in Level Flight -- 7.1 Theory -- 7.1.1 Drag Polar and Power Required for Level Flight -- 7.1.2 The PIW-VIW Method -- 7.1.3 Internal Combustion Engine Performance Additional details are available in an online supplement, "Basic Performance Prediction of Internal Combustion Engines." -- 7.1.4 Propeller Performance -- 7.2 Flight Testing Procedures -- 7.3 Flight Test Example: Cirrus SR20 -- References -- Chapter 8 Airspeed Calibration -- 8.1 Theory -- 8.1.1 True Airspeed -- 8.1.2 Equivalent Airspeed -- 8.1.3 Calibrated Airspeed -- 8.1.4 Indicated Airspeed -- 8.1.5 Summary -- 8.2 Measurement Errors -- 8.2.1 Instrument Error -- 8.2.2 System Lag -- 8.2.3 Position Error -- 8.3 Airspeed Calibration Methods -- 8.3.1 Boom‐Mounted Probes -- 8.3.2 Trailing Devices and Pacer Aircraft -- 8.3.3 Ground‐Based Methods -- 8.3.4 Global Positioning System Method -- 8.4 Flight Testing Procedures -- 8.5 Flight Test Example: Cirrus SR20 -- References -- Chapter 9 Climb Performance and Level Acceleration to Measure Excess Power -- 9.1 Theory -- 9.1.1 Steady Climbs -- 9.1.2 Energy Methods -- 9.2 Flight Testing Procedures -- 9.2.1 Direct Measurement of Rate of Climb -- 9.2.2 Measurement of Level Acceleration.
9.3 Data Analysis -- 9.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 10 Glide Speed and Distance -- 10.1 Theory -- 10.1.1 Drag Polar -- 10.1.2 Gliding Flight -- 10.1.3 Glide Hodograph -- 10.1.4 Best Glide Condition -- 10.2 Flight Testing Procedures -- 10.3 Data Analysis -- 10.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 11 Takeoff and Landing -- 11.1 Theory -- 11.1.1 Takeoff Ground Roll -- 11.1.2 Landing Ground Roll -- 11.1.3 Rotation Distance -- 11.1.4 Transition Distance -- 11.1.5 Climb Distance -- 11.1.6 Total Takeoff and Landing Distances -- 11.1.7 Simple Estimations -- 11.2 Measurement Methods -- 11.3 Flight Testing Procedures -- 11.3.1 Standard Flight Procedures -- 11.3.2 Flight Test Procedures -- 11.3.3 Data Acquisition -- 11.3.4 Data Analysis -- 11.4 Flight Test Example: Cessna R182 -- References -- Chapter 12 Stall Speed -- 12.1 Theory -- 12.1.1 Viscous Boundary Layers -- 12.1.2 Flow Separation -- 12.1.3 Two‐Dimensional Stall Characteristics -- 12.1.4 Three‐Dimensional Stall Characteristics -- 12.1.5 Stall Control -- 12.1.6 Stall Prediction -- 12.2 Flight Testing Procedures -- 12.2.1 Flight Characteristics -- 12.2.2 Data Acquisition -- 12.3 Data Analysis -- 12.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 13 Turning Flight -- 13.1 Theory -- 13.2 Flight Testing Procedures -- 13.2.1 Airworthiness Certification -- 13.2.2 Educational Flight Testing -- 13.2.3 Piloting -- 13.2.4 Instrumentation and Data Recording -- 13.3 Flight Test Example: Diamond DA40 -- References -- Chapter 14 Longitudinal Stability -- 14.1 Static Longitudinal Stability -- 14.1.1 Theory -- 14.1.2 Trim Condition -- 14.1.3 Flight Testing Procedures -- 14.1.4 Flight Test Example: Cirrus SR20 -- 14.2 Dynamic Longitudinal Stability -- 14.2.1 Theory -- 14.2.2 Flight Testing Procedures -- 14.2.3 Flight Test Example: Cirrus SR20.
References -- Chapter 15 Lateral‐Directional Stability -- 15.1 Static Lateral‐Directional Stability -- 15.1.1 Theory -- 15.1.2 Directional Stability -- 15.1.3 Lateral Stability -- 15.1.4 Flight Testing Procedures -- 15.1.5 Flight Testing Example: Cirrus SR20 -- 15.2 Dynamic Lateral‐Directional Stability -- 15.2.1 Theory -- 15.2.2 Flight Testing Procedures -- 15.2.3 Flight Test Example: Cirrus SR20 -- Nomenclature -- Acronyms and Abbreviations -- References -- Chapter 16 UAV Flight Testing1 -- 16.1 Overview of Unmanned Aircraft -- 16.2 UAV Design Principles and Features -- 16.2.1 Types of Airframes -- 16.2.2 UAV System Architecture -- 16.2.3 Electric Propulsion -- 16.2.4 Command and Control (C2) Link -- 16.2.5 Autonomy -- 16.3 Flight Regulations -- 16.4 Flight Testing Principles -- 16.4.1 Air Data Instrumentation -- 16.4.2 UAV Flight Test Planning -- 16.4.3 Piloting for UAV Flight Testing -- 16.5 Flight Testing Examples with the Peregrine UAS -- 16.5.1 Overview of the Peregrine UAS -- 16.5.2 Propulsion System Characterization -- 16.5.3 Specific Excess Power: Level Acceleration and Rate of Climb -- 16.5.4 Glide Flight Tests -- 16.6 Flight Testing Examples with the Avanti UAS -- 16.6.1 Overview of the Avanti UAS -- 16.6.2 Coast‐Down Testing for the Drag Polar -- 16.6.3 Radio Range Testing -- 16.6.4 Assessment of Autonomous System Performance -- 16.7 Conclusion -- References -- Appendix A Standard Atmosphere Tables -- Appendix B Useful Constants and Unit Conversion Factors -- Reference -- Appendix C Stability and Control Derivatives for a Notional GA Aircraft -- Reference -- Index -- EULA.
Record Nr. UNINA-9910678174803321
Gregory James W.  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Introduction to flight testing / / James W. Gregory, Tianshu Liu
Autore Gregory James W.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 629.13453
Collana Aerospace
Soggetto topico Airplanes - Flight testing
ISBN 1-118-94980-3
1-118-94979-X
1-118-94981-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Series Preface -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Case Study: Supersonic Flight in the Bell XS‐1 -- 1.2 Types of Flight Testing -- 1.2.1 Scientific Research -- 1.2.2 Experimental Flight Test -- 1.2.3 Developmental Test and Evaluation -- 1.2.4 Operational Test and Evaluation -- 1.2.5 Airworthiness Certification -- 1.3 Objectives and Organization of this Book -- References -- Chapter 2 The Flight Environment: Standard Atmosphere -- 2.1 Earth's Atmosphere -- 2.2 Standard Atmosphere Model -- 2.2.1 Hydrostatics -- 2.2.2 Gravitational Acceleration and Altitude Definitions -- 2.2.3 Temperature -- 2.2.4 Viscosity -- 2.2.5 Pressure and Density -- 2.2.6 Operationalizing the Standard Atmosphere -- 2.2.7 Comparison with Experimental Data -- 2.3 Altitudes Used in Aviation -- References -- Chapter 3 Aircraft and Flight Test Instrumentation -- 3.1 Traditional Cockpit Instruments -- 3.1.1 Gyroscopic‐Based Instruments -- 3.1.2 Pressure‐Based Instruments -- 3.1.3 Outside Air Temperature -- 3.1.4 Other Instrumentation -- 3.2 Glass Cockpit Instruments -- 3.3 Flight Test Instrumentation -- 3.3.1 Global Navigation Satellite System -- 3.3.2 Accelerometers -- 3.3.3 Gyroscopes -- 3.3.4 Magnetometers -- 3.3.5 Barometer -- 3.3.6 Fusion of Sensor Data Streams -- 3.4 Summary -- References -- Chapter 4 Data Acquisition and Analysis -- 4.1 Temporal and Spectral Analysis -- 4.2 Filtering -- 4.3 Digital Sampling: Bit Depth Resolution and Sample Rate -- 4.4 Aliasing -- 4.5 Flight Testing Example -- 4.6 Summary -- References -- Chapter 5 Uncertainty Analysis -- 5.1 Error Theory -- 5.1.1 Types of Errors -- 5.1.2 Statistics of Random Error -- 5.1.3 Sensitivity Analysis and Uncertainty Propagation -- 5.1.4 Overall Uncertainty Estimate.
5.1.5 Chauvenet's Criterion for Outliers -- 5.1.6 Monte Carlo Simulation -- 5.2 Basic Error Sources in Flight Testing -- 5.2.1 Uncertainty of Flight Test Instrumentation -- 5.2.2 Example: Uncertainty in Density (Traditional Approach) -- 5.2.3 Example: Uncertainty in True Airspeed (Monte Carlo Approach) -- References -- Chapter 6 Flight Test Planning -- 6.1 Flight Test Process -- 6.2 Risk Management -- 6.3 Case Study: Accept No Unnecessary Risk -- 6.4 Individual Flight Planning -- 6.4.1 Flight Area and Airspace -- 6.4.2 Weather and NOTAMs -- 6.4.3 Weight and Balance -- 6.4.4 Airplane Pre‐Flight -- 6.5 Conclusion -- References -- Chapter 7 Drag Polar Measurement in Level Flight -- 7.1 Theory -- 7.1.1 Drag Polar and Power Required for Level Flight -- 7.1.2 The PIW-VIW Method -- 7.1.3 Internal Combustion Engine Performance Additional details are available in an online supplement, "Basic Performance Prediction of Internal Combustion Engines." -- 7.1.4 Propeller Performance -- 7.2 Flight Testing Procedures -- 7.3 Flight Test Example: Cirrus SR20 -- References -- Chapter 8 Airspeed Calibration -- 8.1 Theory -- 8.1.1 True Airspeed -- 8.1.2 Equivalent Airspeed -- 8.1.3 Calibrated Airspeed -- 8.1.4 Indicated Airspeed -- 8.1.5 Summary -- 8.2 Measurement Errors -- 8.2.1 Instrument Error -- 8.2.2 System Lag -- 8.2.3 Position Error -- 8.3 Airspeed Calibration Methods -- 8.3.1 Boom‐Mounted Probes -- 8.3.2 Trailing Devices and Pacer Aircraft -- 8.3.3 Ground‐Based Methods -- 8.3.4 Global Positioning System Method -- 8.4 Flight Testing Procedures -- 8.5 Flight Test Example: Cirrus SR20 -- References -- Chapter 9 Climb Performance and Level Acceleration to Measure Excess Power -- 9.1 Theory -- 9.1.1 Steady Climbs -- 9.1.2 Energy Methods -- 9.2 Flight Testing Procedures -- 9.2.1 Direct Measurement of Rate of Climb -- 9.2.2 Measurement of Level Acceleration.
9.3 Data Analysis -- 9.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 10 Glide Speed and Distance -- 10.1 Theory -- 10.1.1 Drag Polar -- 10.1.2 Gliding Flight -- 10.1.3 Glide Hodograph -- 10.1.4 Best Glide Condition -- 10.2 Flight Testing Procedures -- 10.3 Data Analysis -- 10.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 11 Takeoff and Landing -- 11.1 Theory -- 11.1.1 Takeoff Ground Roll -- 11.1.2 Landing Ground Roll -- 11.1.3 Rotation Distance -- 11.1.4 Transition Distance -- 11.1.5 Climb Distance -- 11.1.6 Total Takeoff and Landing Distances -- 11.1.7 Simple Estimations -- 11.2 Measurement Methods -- 11.3 Flight Testing Procedures -- 11.3.1 Standard Flight Procedures -- 11.3.2 Flight Test Procedures -- 11.3.3 Data Acquisition -- 11.3.4 Data Analysis -- 11.4 Flight Test Example: Cessna R182 -- References -- Chapter 12 Stall Speed -- 12.1 Theory -- 12.1.1 Viscous Boundary Layers -- 12.1.2 Flow Separation -- 12.1.3 Two‐Dimensional Stall Characteristics -- 12.1.4 Three‐Dimensional Stall Characteristics -- 12.1.5 Stall Control -- 12.1.6 Stall Prediction -- 12.2 Flight Testing Procedures -- 12.2.1 Flight Characteristics -- 12.2.2 Data Acquisition -- 12.3 Data Analysis -- 12.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 13 Turning Flight -- 13.1 Theory -- 13.2 Flight Testing Procedures -- 13.2.1 Airworthiness Certification -- 13.2.2 Educational Flight Testing -- 13.2.3 Piloting -- 13.2.4 Instrumentation and Data Recording -- 13.3 Flight Test Example: Diamond DA40 -- References -- Chapter 14 Longitudinal Stability -- 14.1 Static Longitudinal Stability -- 14.1.1 Theory -- 14.1.2 Trim Condition -- 14.1.3 Flight Testing Procedures -- 14.1.4 Flight Test Example: Cirrus SR20 -- 14.2 Dynamic Longitudinal Stability -- 14.2.1 Theory -- 14.2.2 Flight Testing Procedures -- 14.2.3 Flight Test Example: Cirrus SR20.
References -- Chapter 15 Lateral‐Directional Stability -- 15.1 Static Lateral‐Directional Stability -- 15.1.1 Theory -- 15.1.2 Directional Stability -- 15.1.3 Lateral Stability -- 15.1.4 Flight Testing Procedures -- 15.1.5 Flight Testing Example: Cirrus SR20 -- 15.2 Dynamic Lateral‐Directional Stability -- 15.2.1 Theory -- 15.2.2 Flight Testing Procedures -- 15.2.3 Flight Test Example: Cirrus SR20 -- Nomenclature -- Acronyms and Abbreviations -- References -- Chapter 16 UAV Flight Testing1 -- 16.1 Overview of Unmanned Aircraft -- 16.2 UAV Design Principles and Features -- 16.2.1 Types of Airframes -- 16.2.2 UAV System Architecture -- 16.2.3 Electric Propulsion -- 16.2.4 Command and Control (C2) Link -- 16.2.5 Autonomy -- 16.3 Flight Regulations -- 16.4 Flight Testing Principles -- 16.4.1 Air Data Instrumentation -- 16.4.2 UAV Flight Test Planning -- 16.4.3 Piloting for UAV Flight Testing -- 16.5 Flight Testing Examples with the Peregrine UAS -- 16.5.1 Overview of the Peregrine UAS -- 16.5.2 Propulsion System Characterization -- 16.5.3 Specific Excess Power: Level Acceleration and Rate of Climb -- 16.5.4 Glide Flight Tests -- 16.6 Flight Testing Examples with the Avanti UAS -- 16.6.1 Overview of the Avanti UAS -- 16.6.2 Coast‐Down Testing for the Drag Polar -- 16.6.3 Radio Range Testing -- 16.6.4 Assessment of Autonomous System Performance -- 16.7 Conclusion -- References -- Appendix A Standard Atmosphere Tables -- Appendix B Useful Constants and Unit Conversion Factors -- Reference -- Appendix C Stability and Control Derivatives for a Notional GA Aircraft -- Reference -- Index -- EULA.
Record Nr. UNINA-9910816370303321
Gregory James W.  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic recording of flight test data / by G. E. Bennett
Magnetic recording of flight test data / by G. E. Bennett
Autore Bennett, G. E. <George Eric>
Pubbl/distr/stampa Neuilly sur Seine : Advisory group for aerospace research and development, 1974
Descrizione fisica V, 74 p. : ill. ; 30 cm
Disciplina 629.13453
Collana AGARD flight test instrumentation series
Soggetto non controllato Prove in volo dell'aeromobile
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990008805110403321
Bennett, G. E. <George Eric>  
Neuilly sur Seine : Advisory group for aerospace research and development, 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Symposium on Fatigue of Aircraft Structures
Symposium on Fatigue of Aircraft Structures
Pubbl/distr/stampa [Place of publication not identified], : American Society for Testing & Materials, 1960
Descrizione fisica 1 online resource (138 pages) : illustrations
Disciplina 629.13453
Collana ASTM special technical publication
Soggetto topico Airplanes - Testing
Strains and stresses
ISBN 0-8031-6746-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910164757503321
[Place of publication not identified], : American Society for Testing & Materials, 1960
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Un exemple de la determination des principaux coefficients aerodynamiques a partir des essais en vol : communication présentée à la session du Groupe de travail Essais en vol de l'AGARD tenue à Paris en avril 1958 / par G. Leblanc
Un exemple de la determination des principaux coefficients aerodynamiques a partir des essais en vol : communication présentée à la session du Groupe de travail Essais en vol de l'AGARD tenue à Paris en avril 1958 / par G. Leblanc
Autore Leblanc, Gildas
Pubbl/distr/stampa Paris : Groupe consultatif pour la recherche et la realisation aeronautiques, 1958
Descrizione fisica VI, 23 p. : ill. ; 28 cm
Disciplina 629.13453
Collana AGARD report
Soggetto non controllato Prove in volo - Aeromobile
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Altri titoli varianti An example of the determination of the principal aerodynamic coefficients from flight test results
Record Nr. UNINA-990008455990403321
Leblanc, Gildas  
Paris : Groupe consultatif pour la recherche et la realisation aeronautiques, 1958
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui