Acque reflue : progettazione e gestione di impianti per il trattamento e lo smaltimento : impostazione degli schemi di processo ... / Giovanni De Feo, Sabino De Gisi, Maurizio Galasso |
Autore | DE FEO, Giovanni |
Pubbl/distr/stampa | Palermo : D. Flaccovio, 2012 |
Descrizione fisica | XXIII, 1118 p. ; 24 cm |
Disciplina | 628.35 |
Altri autori (Persone) |
DE GISI, Sabino
GALASSO, Maurizio |
Soggetto topico | Acque reflue - Trattamento - Impianti - Gestione [e] Progettazione |
ISBN | 978-88-579-0118-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISA-990003668720203316 |
DE FEO, Giovanni
![]() |
||
Palermo : D. Flaccovio, 2012 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Activated sludge and aerobic biofilm reactors / / Marcos von Sperling, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil |
Autore | Sperling Marcos von |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2007 |
Descrizione fisica | 1 online resource (338 p.) |
Disciplina | 628.35 |
Collana | Biological wastewater treatment series |
Soggetto topico | Sewage - Purification |
ISBN |
1-68015-588-1
1-78040-212-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Cover""; ""Copyright""; ""Contents""; ""Preface""; ""The authors""; ""1. Activated sludge process and main variants""; ""1.1 Introduction""; ""1.2 Variants of the activated sludge process""; ""2. Principles of organic matter removal in continuous-flow activated sludge systems""; ""2.1 Preliminaries""; ""2.2 Sludge age in activated sludge systems""; ""2.3 Suspended solids concentration in the reactor""; ""2.4 Calculation of the reactor volume""; ""2.5 Substrate removal""; ""2.6 Soluble BOD and total BOD in the effluent""; ""2.7 Sludge digestion in the reactor""
""2.8 Recirculation of the activated sludge""""2.9 Production and removal of excess sludge""; ""2.10 Oxygen requirements""; ""2.11 Nutrient requirements""; ""2.12 Influence of the temperature""; ""2.13 Functional relations with the sludge age""; ""3. Design of continuous-flow activated sludge reactors for organic matter removal""; ""3.1 Selection of the sludge age""; ""3.2 Design parameters""; ""3.3 Physical configuration of the reactor""; ""3.4 Design details""; ""4. Design of activated sludge sedimentation tanks""; ""4.1 Types of sedimentation tanks"" ""4.2 Determination of the surface area required for secondary sedimentation tanks""""4.3 Design details in secondary sedimentation tanks""; ""4.4 Design of primary sedimentation tanks""; ""5. Design example of an activated sludge system for organic matter removal""; ""5.1 Introduction""; ""5.2 Model parameters and coefficients""; ""5.3 Design of the conventional activated sludge system""; ""5.4 Summary of the design""; ""6. Principles of biological nutrient removal""; ""6.1 Introduction""; ""6.2 Nitrogen in raw sewage and main transformations in the treatment process"" ""6.3 Principles of nitrification""""6.4 Principles of biological denitrification""; ""6.5 Principles of biological phosphorus removal""; ""7. Design of continuous-flow systems for biological nutrient removal""; ""7.1 Biological nitrogen removal""; ""7.2 Biological removal of nitrogen and phosphorus""; ""8. Intermittent operation systems (sequencing batch reactors)""; ""8.1 Introduction""; ""8.2 Principles of the process""; ""8.3 Process variants""; ""8.4 Design criteria for sequencing batch reactors""; ""8.5 Design methodology for sequencing batch reactors"" ""8.6 Design example of a sequencing batch reactor""""9. Activated sludge for the post-treatment of the effluents from anaerobic reactors""; ""9.1 Design criteria and parameters""; ""9.2 Design example of an activated sludge system for the post-treatment of the effluent from a UASB reactor""; ""10. Biological selectors""; ""10.1 Introduction""; ""10.2 Types of selectors""; ""11. Process control""; ""11.1 Introduction""; ""11.2 Basic concepts of process control""; ""11.3 Dissolved oxygen control""; ""11.4 Solids control""; ""11.5 Monitoring the system"" ""12. Identification and correction of operational problems"" |
Record Nr. | UNINA-9910231249103321 |
Sperling Marcos von
![]() |
||
London : , : IWA Publishing, , 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future / / edited by Ram Lakhan Singh, Rajat Pratap Singh |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (376 pages) |
Disciplina | 628.35 |
Collana | Applied Environmental Science and Engineering for a Sustainable Future |
Soggetto topico |
Waste management
Water pollution Pollution prevention Environmental engineering Biotechnology Environmental management Bacteriology Waste Management/Waste Technology Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Industrial Pollution Prevention Environmental Engineering/Biotechnology Environmental Management |
ISBN | 981-13-1468-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Treatment and recycling of wastewater from pulp and paper mill -- Chapter 3. Treatment and recycling of wastewater from tannery -- Chapter 4. Treatment and recycling of wastewater from dairy industry -- Chapter 5. Treatment and recycling of wastewater from distillery -- Chapter 6. Treatment and recycling of wastewater from winery -- Chapter 7. Treatment and recycling of wastewater from sugar mill -- Chapter 8. Treatment and recycling of wastewater from textile industry -- Chapter 9. Treatment and recycling of wastewater from pharmaceutical industry -- Chapter 10. Treatment and recycling of wastewater from oil refinery/petroleum industry -- Chapter 11. Treatment and recycling of wastewater from Beverages/The Soft Drink Bottling Industry. |
Record Nr. | UNINA-9910350344903321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Algal Systems for Resource Recovery from Waste and Wastewater |
Autore | Lens Piet |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (266 pages) |
Disciplina | 628.35 |
Altri autori (Persone) | KhandelwalAmitap |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Land treatment of wastewater
Resource recovery facilities |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 : Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 : Metabolic modelling of microalgae for wastewater treatment -- 2.1 Introduction -- 2.2 Main Metabolic Pathways -- 2.2.1 Photosynthesis -- 2.2.2 Glycolysis and pentose phosphate pathway -- 2.2.3 Tricarboxylic acid cycle -- 2.2.4 Glyoxylate shunt -- 2.2.5 Lipid biosynthesis -- 2.3 Genome-Scale Metabolic Models -- 2.4 Modelling Metabolic Networks -- 2.5 Tools for Steady-State Conditions -- 2.5.1 Elementary flux modes -- 2.5.1.1 Mathematical construction of EFMs -- 2.5.1.2 Minimal generating sets and EFM reduction -- 2.5.2 Flux balance analysis -- 2.6 Metabolic Networks Reduction -- 2.6.1 The DRUM framework -- 2.7 Case Study: Microalgae Cultivation -- 2.7.1 Introduction: volatile fatty acid -- 2.7.2 Determination of the subnetworks and accumulating metabolites -- 2.7.3 Derivation of MR -- 2.7.4 Choice of kinetic model -- 2.7.5 Model calibration and validation -- 2.7.6 Example of application: optimization of waste treatment time -- 2.8 Conclusion -- References -- Chapter 3 : Wastewater treatment using microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1 Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2 Interactions within microalgal-bacterial consortia -- 3.1.3 Nutrient removal by microalgal-bacterial consortia -- 3.1.4 Microalgal-bacterial systems and configurations.
3.1.5 Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1 Light -- 3.1.5.2 pH -- 3.1.5.3 Hydraulic retention time -- 3.1.5.4 Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1 Advantages on ammonium removal rates -- 3.2.2 Operational conditions and area requirement -- 3.2.3 Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 : Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1 Green algae -- 4.2.2 Brown algae -- 4.2.2.1 Laminaria sp. -- 4.2.2.2 Sargassum sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1 Biogas -- 4.4.2 Biohydrogen -- 4.4.3 Biohythane -- 4.4.4 Bioethanol and biobutanol -- 4.4.4.1 Acetone-butanol-ethanol fermentation -- 4.4.4.2 Biobutanol -- 4.4.4.3 Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1 Biorefinery concepts -- 4.5.2 Key processes -- 4.5.2.1 Anaerobic digestion -- 4.5.2.2 Reactor design -- 4.5.3 Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 : Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1 Biology of microalgae-bacteria consortia -- 5.2.2 Engineering of photobioreactors -- 5.2.3 Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1 Improvement of biological systems. 5.3.2 Allocation and implementation of large-scale facilities -- 5.3.3 Optimal operation of processes -- 5.3.4 Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1 Improvement of sustainability of wastewater treatment -- 5.4.2 Distributed wastewater treatment -- 5.4.3 Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 : Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the Microalgae-Methanotroph Cocultures -- 6.3.1 Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2 Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1 Choice of a suitable biocatalyst -- 6.5.2 Coculture tolerance to contaminants in raw biogas -- 6.5.3 Freshwater consumption required by wastewater treatment -- 6.5.4 Pretreatment of AD effluent -- 6.5.5 Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other Technologies -- Chapter 7 : Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1 Algae as primary producers -- 7.2.2 Algae metabolism -- 7.2.3 Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs. 7.3.1 Algal species tested in MFC cathode compartment -- 7.3.2 Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1 Dual chambers vs sediment MFCs -- 7.4.2 Construction materials, electrolytes, electrodes and separators -- 7.4.3 Electrode materials -- 7.4.4 Separators -- 7.4.5 Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 : Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1 Liquid effluent -- 8.2.2 Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1 AD of microalgae -- 8.3.2 Pretreatment of microalgal biomass -- 8.3.3 Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1 Biorefinery based on integrated microalgae and AD technologies -- 8.5.2 Environmental impacts of integrated microalgae and AD technologies -- 8.5.3 Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 : Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1 Biodiesel production process -- 9.3.2 Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1 Bioethanol production process -- 9.4.2 Hydrolysis -- 9.4.3 Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology. Chapter 10 : Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1 Cosmetics -- 10.3.2 Pharmaceuticals -- 10.3.3 Food supplements -- 10.3.3.1 Protein content of algae -- 10.3.3.2 Single-cell protein -- 10.3.3.3 Carbohydrates -- 10.3.3.4 Lipids -- 10.3.3.5 Vitamins -- 10.3.3.6 Minerals -- 10.3.4 Agricultural products -- 10.3.4.1 Biofertilizer/biostimulants -- 10.3.4.2 Plant growth-promoting substances/hormones -- 10.3.4.3 Biopesticides -- 10.3.5 Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 : Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1 Cultivation conditions -- 11.3.1.1 Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2 Nutrient availability -- 11.3.1.3 Light -- 11.3.1.4 Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2 Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3 PHA blends -- 11.3.3.1 PHA blends with raw materials -- 11.3.3.2 PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1 Harvesting -- 11.4.1.1 Centrifugation -- 11.4.1.2 Filtration -- 11.4.1.3 Flocculation and coagulation -- 11.4.1.4 Gravity sedimentation -- 11.4.1.5 Flotation -- 11.4.2 Drying -- 11.4.3 Extraction -- 11.5 Challenges and Future Perspectives. 11.6 Conclusion. |
Record Nr. | UNINA-9910768495103321 |
Lens Piet
![]() |
||
London : , : IWA Publishing, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Anaerobic biotechnology for bioenergy production [[electronic resource] ] : principles and applications / / Samir Kumar Khanal |
Autore | Khanal Samir Kumar |
Pubbl/distr/stampa | Ames, Iowa, : Wiley-Blackwell, 2008 |
Descrizione fisica | 1 online resource (319 p.) |
Disciplina |
628.35
662/.88 |
Altri autori (Persone) | KhanalSamir Kumar |
Soggetto topico |
Alcohol - Synthesis
Anaerobic bacteria Biomass energy Industrial microbiology Refuse and refuse disposal - Biodegradation Sewage sludge digestion |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-03149-X
9786612031496 0-8138-0454-X 0-8138-0456-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Anaerobic Biotechnology for Bioenergy Production Principles and Applications; Contents; CONTRIBUTORS; PREFACE; 1 OVERVIEW OF ANAEROBIC BIOTECHNOLOGY; 2 MICROBIOLOGY AND BIOCHEMISTRY OF ANAEROBIC BIOTECHNOLOGY; 3 ENVIRONMENTAL FACTORS; 4 KINETICS AND MODELING IN ANAEROBIC PROCESSES; 5 ANAEROBIC REACTOR CONFIGURATIONS FOR BIOENERGY PRODUCTION; 6 MOLECULAR TECHNIQUES IN ANAEROBIC BIOTECHNOLOGY: APPLICATION IN BIOENERGY GENERATION; 7 BIOENERGY RECOVERY FROM SULFATE-RICH WASTE STREAMS AND STRATEGIES FOR SULFIDE REMOVAL; 8 BIOENERGY GENERATION FROM RESIDUES OF BIOFUEL INDUSTRIES
9 BIOHYDROGEN PRODUCTION: FUNDAMENTALS, CHALLENGES, AND OPERATION STRATEGIES FOR ENHANCED YIELD10 MICROBIAL FUEL CELL: NOVEL ANAEROBIC BIOTECHNOLOGY FOR ENERGY GENERATION FROM WASTEWATER; 11 PRETREATMENT OF HIGH-SOLIDS WASTES/RESIDUES TO ENHANCE BIOENERGY RECOVERY; 12 BIOGAS PROCESSING AND UTILIZATION AS AN ENERGY SOURCE; INDEX |
Record Nr. | UNINA-9910146150503321 |
Khanal Samir Kumar
![]() |
||
Ames, Iowa, : Wiley-Blackwell, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Anaerobic biotechnology for bioenergy production [[electronic resource] ] : principles and applications / / Samir Kumar Khanal |
Autore | Khanal Samir Kumar |
Pubbl/distr/stampa | Ames, Iowa, : Wiley-Blackwell, 2008 |
Descrizione fisica | 1 online resource (319 p.) |
Disciplina |
628.35
662/.88 |
Altri autori (Persone) | KhanalSamir Kumar |
Soggetto topico |
Alcohol - Synthesis
Anaerobic bacteria Biomass energy Industrial microbiology Refuse and refuse disposal - Biodegradation Sewage sludge digestion |
ISBN |
1-282-03149-X
9786612031496 0-8138-0454-X 0-8138-0456-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Anaerobic Biotechnology for Bioenergy Production Principles and Applications; Contents; CONTRIBUTORS; PREFACE; 1 OVERVIEW OF ANAEROBIC BIOTECHNOLOGY; 2 MICROBIOLOGY AND BIOCHEMISTRY OF ANAEROBIC BIOTECHNOLOGY; 3 ENVIRONMENTAL FACTORS; 4 KINETICS AND MODELING IN ANAEROBIC PROCESSES; 5 ANAEROBIC REACTOR CONFIGURATIONS FOR BIOENERGY PRODUCTION; 6 MOLECULAR TECHNIQUES IN ANAEROBIC BIOTECHNOLOGY: APPLICATION IN BIOENERGY GENERATION; 7 BIOENERGY RECOVERY FROM SULFATE-RICH WASTE STREAMS AND STRATEGIES FOR SULFIDE REMOVAL; 8 BIOENERGY GENERATION FROM RESIDUES OF BIOFUEL INDUSTRIES
9 BIOHYDROGEN PRODUCTION: FUNDAMENTALS, CHALLENGES, AND OPERATION STRATEGIES FOR ENHANCED YIELD10 MICROBIAL FUEL CELL: NOVEL ANAEROBIC BIOTECHNOLOGY FOR ENERGY GENERATION FROM WASTEWATER; 11 PRETREATMENT OF HIGH-SOLIDS WASTES/RESIDUES TO ENHANCE BIOENERGY RECOVERY; 12 BIOGAS PROCESSING AND UTILIZATION AS AN ENERGY SOURCE; INDEX |
Record Nr. | UNINA-9910829998903321 |
Khanal Samir Kumar
![]() |
||
Ames, Iowa, : Wiley-Blackwell, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Anaerobic biotechnology for bioenergy production : principles and applications / / Samir Kumar Khanal |
Autore | Khanal Samir Kumar |
Pubbl/distr/stampa | Ames, Iowa, : Wiley-Blackwell, 2008 |
Descrizione fisica | 1 online resource (319 p.) |
Disciplina |
628.35
662/.88 |
Soggetto topico |
Alcohol - Synthesis
Anaerobic bacteria Biomass energy Industrial microbiology Refuse and refuse disposal - Biodegradation Sewage sludge digestion |
ISBN |
1-282-03149-X
9786612031496 0-8138-0454-X 0-8138-0456-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Anaerobic Biotechnology for Bioenergy Production Principles and Applications; Contents; CONTRIBUTORS; PREFACE; 1 OVERVIEW OF ANAEROBIC BIOTECHNOLOGY; 2 MICROBIOLOGY AND BIOCHEMISTRY OF ANAEROBIC BIOTECHNOLOGY; 3 ENVIRONMENTAL FACTORS; 4 KINETICS AND MODELING IN ANAEROBIC PROCESSES; 5 ANAEROBIC REACTOR CONFIGURATIONS FOR BIOENERGY PRODUCTION; 6 MOLECULAR TECHNIQUES IN ANAEROBIC BIOTECHNOLOGY: APPLICATION IN BIOENERGY GENERATION; 7 BIOENERGY RECOVERY FROM SULFATE-RICH WASTE STREAMS AND STRATEGIES FOR SULFIDE REMOVAL; 8 BIOENERGY GENERATION FROM RESIDUES OF BIOFUEL INDUSTRIES
9 BIOHYDROGEN PRODUCTION: FUNDAMENTALS, CHALLENGES, AND OPERATION STRATEGIES FOR ENHANCED YIELD10 MICROBIAL FUEL CELL: NOVEL ANAEROBIC BIOTECHNOLOGY FOR ENERGY GENERATION FROM WASTEWATER; 11 PRETREATMENT OF HIGH-SOLIDS WASTES/RESIDUES TO ENHANCE BIOENERGY RECOVERY; 12 BIOGAS PROCESSING AND UTILIZATION AS AN ENERGY SOURCE; INDEX |
Record Nr. | UNINA-9910877728503321 |
Khanal Samir Kumar
![]() |
||
Ames, Iowa, : Wiley-Blackwell, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Application of Microalgae in Wastewater Treatment : Volume 2: Biorefinery Approaches of Wastewater Treatment / / edited by Sanjay Kumar Gupta, Faizal Bux |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (562 pages) |
Disciplina | 628.35 |
Soggetto topico |
Water - Pollution
Microbiology Waste management Pollution prevention Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Waste Management/Waste Technology Industrial Pollution Prevention Applied Microbiology |
ISBN | 3-030-13909-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter1: Phycoremediation of Nutrients and Valorisation of Microalgal Biomass: An Economic Perspective -- Chapter2: Astaxanthin production by microalgae Haematococcus pluvialis through wastewater treatment: waste to resource -- Chapter3: Potential of microalgae for integrated biomass production utilizing CO2 and food industry wastewater -- Chapter4: Microalgae: A biorefinary approach for the treatment of aquaculture wastewater -- Chapter5: Dual role of microalgae in wastewater treatment and biodiesel production -- Chapter6: A Biorefinery From Nannochloropsis spp. utilizing wastewater resources -- Chapter7: Cultivation of microalgae on anaerobically digested agro-industrial wastes and by-products -- Chapter8: Industrial wastewaters based microalgal biorefinery: A dual strategy to remediate waste and produce microalgal bioproducts -- Chapter9: Phyco-remediation of dairy effluents and biomass valorisation: a sustainable approach -- Chapter10: Commercial potential of Phycoremediation of wastewater: A way forward -- Chapter11: Potential biotechnological applications of microalgae grown in wastewater: A holistic approach -- Chapter12: Microalgal biofuels production from industrial and municipal wastewaters -- Chapter13: Potential of microalgae for wastewater treatment and its valorization into added-value products -- Chapter14: Microbial carbon capture cell: Advanced bioelectrochemical system for wastewater treatment, electricity generation and algal biomass production -- Chapter15: Microalgal systems for integrated carbon sequestration from flue gas and wastewater treatment -- Chapter16: Industrial waste water based algal biorefineries: Application constraints and future prospects -- Chapter17: Volarization of nutrient rich urinal wastewater by microalgae for biofuel production -- Chapter18: Comprehensive overview of biomethane production potential of algal biomass cultivated in wastewater -- Chapter19: Role of Microalgal biotechnology in environmental sustainability -- Chapter20; An integrated approach of wastewater mitigation and biomass production for biodiesel using Scenedesmus sp. -- Chapter21: Microalgae and wastewaters: From ecotoxicological interactions to produce a carbohydrate-rich biomass towards biofuel application -- Chapter22: Comprehensive evaluation of High Rate Algal Ponds: wastewater treatment and biomass production. |
Record Nr. | UNINA-9910337888703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Application of Microalgae in Wastewater Treatment : Volume 1: Domestic and Industrial Wastewater Treatment / / edited by Sanjay Kumar Gupta, Faizal Bux |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (442 pages) |
Disciplina | 628.35 |
Soggetto topico |
Water - Pollution
Microbiology Waste management Pollution prevention Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Waste Management/Waste Technology Industrial Pollution Prevention Applied Microbiology |
ISBN | 3-030-13913-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter1: Phycoremediation Technology: A Global prospective -- Chapter2: The diatoms: from eutrophic indicators to mitigators -- Chapter3: A review on micropollutants removal by microalgae -- Chapter4: Developing designer microalgae consortia: A suitable approach to sustainable wastewater treatment -- Chapter5: Outdoor Microalgae Cultivation for Wastewater Treatment -- Chapter6: Current state of knowledge on algae mediated remediation of Endocrine Disrupting Chemicals (EDCs) from wastewater -- Chapter7: Bioremediation of municipal sewage using potential microalgae -- Chapter8: Phycoremediation of Petroleum Hydrocarbons Polluted Sites: Application, Challenges and Future Prospects -- Chapter9: Genetic Technologies and Enhancement of Algal Utilization in Wastewater Treatment and Bioremediation -- Chapter10: Potential and Feasibility of the Microalgal system in removal of pharmaceutical compounds from wastewater -- Chapter11: Phycoremediation of persistent organic pollutants from wastewater: Retrospect and prospects -- Chapter12: Feasibility of microalgal technologies in pathogens removal from wastewater -- Chapter13: Remediation of domestic wastewater using algal-bacterial biotechnology -- Chapter14: Phycoremediation of textile waste water: Possibilities and Constraints -- chapter15: Potential and application of Diatoms for industry-specific wastewater treatment -- Chapter16: Feasibility of using bacterial-microalgal consortium for the bioremediation of organic pesticides: Application constraints and future prospects -- Chapter17: Potential of blue-green algae in wastewater treatment -- Chapter18: Photobioreactors for Wastewater Treatment -- Chapter19: Design considerations of algal systems for wastewater treatment -- Chapter20: Phycoremediation of heavy metals from water and wastewater. |
Record Nr. | UNINA-9910337888603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Application of Microbial Technology in Wastewater Treatment and Bioenergy Recovery / / edited by Shaon Ray Chaudhuri |
Autore | Ray Chaudhuri Shaon |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (643 pages) |
Disciplina | 628.35 |
Altri autori (Persone) | Ray Chaudhuri |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Human ecology - Study and teaching
Refuse and refuse disposal Microbial ecology Environmental Studies Waste Management/Waste Technology Environmental Microbiology |
ISBN |
9789819734580
9819734584 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. From Ignorance to Concern: Highlighting New Pollutants in Sewage Sludge -- Chapter 2. Advanced Treatment Techniques for Deodorization of Industrial off Gases and Wastewater Pollutant (BTEX) Removal -- Chapter 3. Unveiling the Sulfur Surge: Assessing Global Freshwater Contamination and Innovating Sustainable Bioremediation Strategies -- Chapter 4. Sulphate Reducing Bacteria in wastewater treatment processes -- Chapter 5. Different approaches for treating aquaculture wastewater and its reuse -- Chapter 6. Valorization of waste water by the application of probiotic, nitrifying and denitrifying bacterial consortium -- Chapter 7. Hexamine, a major wastewater pollutant: the complete story -- Chapter 8. Application of microbial technology in wastewater treatment -- Chapter 9. Role of the Microbial Community in Energy Recovery via Wastewater Treatment -- Chapter 10. Microbial Cultures and Pre-treatment Strategies for Hydrogen Production from Agricultural Crop Residues -- Chapter 11. Microalgae: nature’s green gold and their potential to meet sustainable development goals -- Chapter 12. Potential and feasibility of metal cyanoremediation in the environment -- Chapter 13. Algae-mediated Wastewater Valorization and Bioenergy Recovery -- Chapter 14. Microalgae-Based Biofuel for Sustainable Bioenergy Production -- Chapter 15. Green Fuel Revolution: Microalgae in Wastewater for Sustainable Biodiesel Production -- Chapter 16. Microbial biofilms in wastewater treatment: A sustainable approach -- Chapter 17. Membrane Technology for Wastewater Treatment and Biogas Upgrading -- Chapter 18. Simultaneous Treatment of Wastewater with Energy Recovery: A Microbial Fuel Cell Approach -- Chapter 19. Microbial Fuel Cells: Bifunctionalized Approach for Wastewater Treatment and Energy Recovery Innovation -- Chapter 20. Nanoparticles: A New Paradigm for Wastewater Treatment -- Chapter 21. Nanomaterial Innovations for Environmental Health: Advancing Wastewater Treatment Technologies -- Chapter 22. Carbon-based layered double hydroxides for solar photo-mineralisation of textile dye waste -- Chapter 23. Nanobiotechnology in Wastewater Treatment and Circular Economy: Frontiers in Wastewater Management -- Chapter 24. Visible Light Driven Photocatalysis Using Semiconductor and Plasmonic Nanoparticles for Industrial Waste Water Treatment. |
Record Nr. | UNINA-9910913790203321 |
Ray Chaudhuri Shaon
![]() |
||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|