top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
L'acqua : utilizzo, depurazione, recupero / Francesco Calza
L'acqua : utilizzo, depurazione, recupero / Francesco Calza
Autore Calza, Francesco
Edizione [3. ed.]
Pubbl/distr/stampa Milano : Tecniche nuove, 2008
Descrizione fisica XVI, 303 p. : ill. ; 24 cm
Disciplina 628.162
Soggetto topico Acqua - Utilizzazione
ISBN 9788848115407
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione und
Record Nr. UNISALENTO-991003824519707536
Calza, Francesco  
Milano : Tecniche nuove, 2008
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Activated carbon for water and wastewater treatment : integration of adsorption and biological treatment / / Ferhan Cecen and Ozgur Aktas
Activated carbon for water and wastewater treatment : integration of adsorption and biological treatment / / Ferhan Cecen and Ozgur Aktas
Autore Cecen Ferhan
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2012
Descrizione fisica 1 online resource (418 p.)
Disciplina 628.162
Altri autori (Persone) AktasOzgur
Soggetto topico Water - Purification
Sewage - Purification
Carbon, Activated
ISBN 3-527-63945-4
1-283-86972-1
3-527-63946-2
3-527-63944-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; Preface; List of Abbreviations; Acknowledgement; 1: Water and Wastewater Treatment: Historical Perspective ofActivated Carbon Adsorption and its Integration with Biological Processes; 1.1 Historical Appraisal of Activated Carbon; 1.2 General Use of Activated Carbon; 1.3 Application of Activated Carbon in Environmental Pollution; 1.3.1 Activated Carbon in Drinking Water Treatment; 1.3.2 Activated Carbon in Wastewater Treatment; 1.3.2.1 Municipal Wastewater Treatment
1.3.2.2 Industrial Wastewater Treatment1.3.3 Applications of Activated Carbon in Other Environmental Media; 1.3.3.1 Remediation of Contaminated Groundwater and Soil; 1.3.3.2 Treatment of Flue Gases; 1.3.3.3 Water Preparation for Industrial Purposes; 1.3.4 Integration of Activated Carbon Adsorption withBiological Processes in Wastewater and Water Treatment; 1.3.4.1 Wastewater Treatment; 1.3.4.2 Water Treatment; 1.3.5 Improved Control of Pollutants through Integrated Adsorption and Biological Treatment; 2: Fundamentals of Adsorption onto Activated Carbon in Water and Wastewater Treatment
2.1 Activated Carbon2.1.1 Preparation of Activated Carbons; 2.1.2 Characteristics of Activated Carbon; 2.1.3 Activated Carbon Types; 2.1.3.1 Powdered Activated Carbon (PAC); 2.1.3.2 Granular Activated Carbon (GAC); 2.2 Adsorption; 2.2.1 Types of Adsorption; 2.2.2 Factors Influencing Adsorption; 2.2.2.1 Surface Area of Adsorbent; 2.2.2.2 Physical and Chemical Characteristics of the Adsorbate; 2.2.2.3 pH; 2.2.2.4 Temperature; 2.2.2.5 Porosity of the Adsorbent; 2.2.2.6 Chemical Surface Characteristics; 2.2.3 Kinetics of Adsorption; 2.2.3.1 Transport Mechanisms
2.2.4 Adsorption Equilibrium and Isotherms2.2.5 Single- and Multisolute Adsorption; 2.2.5.1 Single Solute Adsorption; 2.2.5.2 Multisolute Adsorption; 2.3 Activated Carbon Reactors in Water and Wastewater Treatment; 2.3.1 PAC Adsorbers; 2.3.2 GAC Adsorbers; 2.3.2.1 Purpose of Use; 2.3.2.2 Types of GAC Adsorbers; 2.3.2.3 Operation of GAC Adsorbers; 2.3.2.4 Breakthrough Curves; 2.4 Activated Carbon Regeneration and Reactivation; 3: Integration of Activated Carbon Adsorption and Biological Processes in Wastewater Treatment
3.1 Secondary and Tertiary Treatment: Progression fromSeparate Biological Removal and Adsorption to Integrated Systems3.1.1 Activated Carbon in Secondary Treatment; 3.1.1.1 PAC; 3.1.1.2 GAC; 3.1.2 Activated Carbon in Tertiary Treatment; 3.1.2.1 PAC; 3.1.2.2 GAC; 3.2 Fundamental Mechanisms in Integrated Adsorption and Biological Removal; 3.2.1 Main Removal Mechanisms for Organic Substrates; 3.2.1.1 Biodegradation/Biotransformation; 3.2.1.2 Sorption onto Sludge; 3.2.1.3 Sorption onto Activated Carbon; 3.2.1.4 Abiotic Degradation/Removal
3.2.2 Main Interactions between Organic Substrates, Biomass, and Activated Carbon
Record Nr. UNINA-9910811558203321
Cecen Ferhan  
Weinheim, Germany, : Wiley-VCH, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Activated carbon for water and wastewater treatment [[electronic resource] ] : integration of adsorption and biological treatment / / Ferhan C̦ec̦en and Özgür Aktaș
Activated carbon for water and wastewater treatment [[electronic resource] ] : integration of adsorption and biological treatment / / Ferhan C̦ec̦en and Özgür Aktaș
Autore Çeçen Ferhan
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2012
Descrizione fisica 1 online resource (418 p.)
Disciplina 628.162
Altri autori (Persone) AktaşÖzgür
Soggetto topico Water - Purification
Sewage - Purification
Carbon, Activated
ISBN 3-527-63945-4
1-283-86972-1
3-527-63946-2
3-527-63944-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; Preface; List of Abbreviations; Acknowledgement; 1: Water and Wastewater Treatment: Historical Perspective ofActivated Carbon Adsorption and its Integration with Biological Processes; 1.1 Historical Appraisal of Activated Carbon; 1.2 General Use of Activated Carbon; 1.3 Application of Activated Carbon in Environmental Pollution; 1.3.1 Activated Carbon in Drinking Water Treatment; 1.3.2 Activated Carbon in Wastewater Treatment; 1.3.2.1 Municipal Wastewater Treatment
1.3.2.2 Industrial Wastewater Treatment1.3.3 Applications of Activated Carbon in Other Environmental Media; 1.3.3.1 Remediation of Contaminated Groundwater and Soil; 1.3.3.2 Treatment of Flue Gases; 1.3.3.3 Water Preparation for Industrial Purposes; 1.3.4 Integration of Activated Carbon Adsorption withBiological Processes in Wastewater and Water Treatment; 1.3.4.1 Wastewater Treatment; 1.3.4.2 Water Treatment; 1.3.5 Improved Control of Pollutants through Integrated Adsorption and Biological Treatment; 2: Fundamentals of Adsorption onto Activated Carbon in Water and Wastewater Treatment
2.1 Activated Carbon2.1.1 Preparation of Activated Carbons; 2.1.2 Characteristics of Activated Carbon; 2.1.3 Activated Carbon Types; 2.1.3.1 Powdered Activated Carbon (PAC); 2.1.3.2 Granular Activated Carbon (GAC); 2.2 Adsorption; 2.2.1 Types of Adsorption; 2.2.2 Factors Influencing Adsorption; 2.2.2.1 Surface Area of Adsorbent; 2.2.2.2 Physical and Chemical Characteristics of the Adsorbate; 2.2.2.3 pH; 2.2.2.4 Temperature; 2.2.2.5 Porosity of the Adsorbent; 2.2.2.6 Chemical Surface Characteristics; 2.2.3 Kinetics of Adsorption; 2.2.3.1 Transport Mechanisms
2.2.4 Adsorption Equilibrium and Isotherms2.2.5 Single- and Multisolute Adsorption; 2.2.5.1 Single Solute Adsorption; 2.2.5.2 Multisolute Adsorption; 2.3 Activated Carbon Reactors in Water and Wastewater Treatment; 2.3.1 PAC Adsorbers; 2.3.2 GAC Adsorbers; 2.3.2.1 Purpose of Use; 2.3.2.2 Types of GAC Adsorbers; 2.3.2.3 Operation of GAC Adsorbers; 2.3.2.4 Breakthrough Curves; 2.4 Activated Carbon Regeneration and Reactivation; 3: Integration of Activated Carbon Adsorption and Biological Processes in Wastewater Treatment
3.1 Secondary and Tertiary Treatment: Progression fromSeparate Biological Removal and Adsorption to Integrated Systems3.1.1 Activated Carbon in Secondary Treatment; 3.1.1.1 PAC; 3.1.1.2 GAC; 3.1.2 Activated Carbon in Tertiary Treatment; 3.1.2.1 PAC; 3.1.2.2 GAC; 3.2 Fundamental Mechanisms in Integrated Adsorption and Biological Removal; 3.2.1 Main Removal Mechanisms for Organic Substrates; 3.2.1.1 Biodegradation/Biotransformation; 3.2.1.2 Sorption onto Sludge; 3.2.1.3 Sorption onto Activated Carbon; 3.2.1.4 Abiotic Degradation/Removal
3.2.2 Main Interactions between Organic Substrates, Biomass, and Activated Carbon
Record Nr. UNINA-9910130961203321
Çeçen Ferhan  
Weinheim, Germany, : Wiley-VCH, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Activated sludge process design and control : theory and practice (1) / edited by W. Wesley, Petr Grau
Activated sludge process design and control : theory and practice (1) / edited by W. Wesley, Petr Grau
Pubbl/distr/stampa Lancaster : Technomic publishing company, c1992
Descrizione fisica XIII, 268 p ; 23 cm
Disciplina 628.162
Soggetto topico Acque - Inquinamento
Acque luride - Depurazione
ISBN 0-87762-889-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990001004540203316
Lancaster : Technomic publishing company, c1992
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced magnetic adsorbents for water treatment : fundamentals and new perspectives / / edited by Lucas Meili, Guilherme Luiz Dotto
Advanced magnetic adsorbents for water treatment : fundamentals and new perspectives / / edited by Lucas Meili, Guilherme Luiz Dotto
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (510 pages)
Disciplina 628.162
Collana Environmental Chemistry for a Sustainable World
Soggetto topico Water - Purification
ISBN 3-030-64092-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Fundamentals of Adsorption in Liquid Phase -- 1.1 Introduction -- 1.2 Adsorption Operation -- 1.3 Adsorption Kinetics in Liquid Phase: Theoretical Aspects -- 1.3.1 Crank Model -- 1.3.2 Weber and Morris Model -- 1.3.3 Pseudo First-Order Model (PFO) -- 1.3.4 Pseudo Second-Order (PSO) Model -- 1.3.5 Elovich Model -- 1.3.6 Experimental Procedure -- 1.4 Adsorption Equilibrium: Theoretical Aspects of Adsorption Isotherms -- 1.4.1 Langmuir Model -- 1.4.2 Freundlich Model -- 1.4.3 Temkin Model -- 1.4.4 Dubinin-Radushkevich Model -- 1.4.5 Sips Model -- 1.4.6 Redlich-Peterson Model -- 1.4.7 Batch Experimental Procedure -- 1.5 Thermodynamics of Adsorption -- 1.6 Conclusions -- References -- Chapter 2: Methods of Synthesis of Magnetic Adsorbents -- 2.1 Introduction -- 2.2 Magnetism and Magnetic Adsorbents -- 2.2.1 Magnetism -- 2.2.2 Magnetic Adsorbents -- 2.2.3 Synthesis by Coprecipitation -- 2.3 Synthesis Procedures of Magnetic Adsorbents Used for Contaminants Adsorption Process -- 2.3.1 Adsorbents Based on the Carbon Matrix -- 2.3.2 Adsorbents Based on Silica -- 2.3.3 Adsorbents Based on Graphene Oxide -- 2.3.4 Adsorbents Based on Zeolites -- 2.3.5 Adsorbents Based on Polymer Beads -- 2.3.6 Bioadsorbents -- 2.4 Conclusion -- References -- Chapter 3: Magnetic Biosorbents and Their Applications in Water Remediation -- 3.1 Introduction -- 3.1.1 Polluted Water: The Cause of the Problem -- 3.1.2 Improved Biosorbents: The Origin of the Solution -- 3.2 Magnetic Biosorbents -- 3.2.1 From the Creation to the Present -- 3.2.2 Preparation Techniques of Magnetic Nanoparticles and Biosorbents -- Sol-Gel Method -- Hydrothermal Method -- Coprecipitation Method -- Microemulsion Method -- Other Synthesis Methods -- Preparation of Magnetic Biosorbents -- 3.2.3 Characterization Techniques.
Fourier Transform Infrared Spectroscopy -- Scanning Electron Microscopy -- Energy-Dispersive X-ray Spectroscopy -- X-ray Photoelectron Spectroscopy -- X-ray Diffraction Spectroscopy -- Thermogravimetric Analysis -- Vibrating Sample Magnetometry -- 3.3 Magnetic Biosorbents Used for Water Remediation -- 3.3.1 Removal of Metals and Metalloids -- 3.3.2 Removal of Dyes -- 3.3.3 Removal of Other Contaminants -- 3.4 Conclusions, Trends, and Future Perspectives -- References -- Chapter 4: Lignocellulosic Wastes as Precursor of Carbonaceous Magnetic Adsorbents by Organic and Inorganic Pollutants Adsorpt... -- 4.1 Introduction -- 4.1.1 Synthesis of Adsorbents with Magnetic Nanoparticles -- 4.1.2 What Is Magnetite? -- 4.2 Methodology -- 4.2.1 Materials and Reagents -- 4.2.2 Sample Preparation -- Oxidized Activated Carbon -- Fique Bagasse Biochar Preparation -- Coated Magnetic Carbonaceous Materials -- 4.2.3 Physicochemical Characterization Techniques -- 4.2.4 Determination of Caffeine and Nickel Adsorption Capacity -- 4.3 Results and Discussion -- 4.3.1 Physical Properties of Magnetic Carbonaceous Composites -- 4.3.2 Chemical Properties of Magnetic Carbonaceous Composites -- 4.3.3 Caffeine and Nickel Removal from Aqueous Solution -- Caffeine Equilibrium and Kinetic Studies -- Nickel Adsorption -- Adsorption Mechanism -- 4.4 Conclusion -- References -- Chapter 5: Magnetic Biochar Fibers for Copper Removal -- 5.1 Introduction -- 5.1.1 Hydrolysis and Complexation Reactions of Cu(II) Ions -- 5.1.2 Environmental Chemistry of Cu(II) -- 5.1.3 Analysis of Cu(II) by Cu(II)-ISE Electrode -- 5.2 Preparation of Magnetic Biochar Fibers -- 5.3 Adsorption of Cu(II) by Magnetic Biochars -- 5.3.1 Adsorption Modeling and Thermodynamic Studies -- 5.4 Conclusions and Outlook -- References -- Chapter 6: Synthesizing Magnetic Adsorbents for Landfill Leachate Remediation.
6.1 Introduction -- 6.2 Leachate Properties and Treatment Options -- 6.2.1 Ammonia -- 6.2.2 Humic and Fulvic Acids -- 6.2.3 Leachate Treatment Options -- 6.3 Magnetic Adsorbents for Leachate Treatment -- 6.4 Conclusion -- References -- Chapter 7: Removal of Emerging Pollutants Using Magnetic Adsorbents -- 7.1 Introduction -- 7.1.1 Depletion of Water Resources -- 7.1.2 Contamination by Emerging Contaminants -- 7.1.3 Wastewater Treatment Approaches -- 7.1.4 Adsorption Technology -- 7.1.5 Adsorption Technology Using Magnetic Adsorbents -- 7.2 Application of Magnetic Adsorbents in the Removal of Emerging Contaminants -- 7.2.1 Antibiotics -- 7.2.2 Endocrine-Disrupting Chemicals (EDCs) -- 7.2.3 Nonsteroidal Anti-inflammatory Drugs -- 7.3 Conclusions -- References -- Chapter 8: Magnetically Modified Biological Materials for Dye Removal -- 8.1 Introduction -- 8.2 Biological Materials for Dye Adsorption -- 8.3 Magnetically Modified Biological Materials for Dye Adsorption -- 8.3.1 Magnetic Materials for Modification of Biological Materials -- 8.3.2 Magnetic Modification of Biological Materials -- 8.4 Magnetically Modified Plant-Based Materials for Dye Adsorption -- 8.5 Magnetically Modified Microbial Cells for Dye Adsorption -- 8.6 Magnetically Modified Microalgae, Marine Algae, Seagrass and Related Organisms for Dye Adsorption -- 8.7 Magnetically Modified Marine Polysaccharides for Dye Adsorption -- 8.8 Recyclability of Spent Magnetic Biosorbents -- 8.9 Magnetically Modified Biomaterials for Dye Analysis -- 8.10 Conclusions -- References -- Chapter 9: Regeneration of Magnetic Adsorbents Saturated by Organic Pollutants -- 9.1 Introduction -- 9.2 Organic Pollutants -- 9.3 Magnetic Adsorbents -- 9.4 Adsorption/Desorption Mechanism -- 9.4.1 Electrostatic Interaction -- 9.4.2 Van der Waals Interaction -- 9.4.3 Adsorption in Pores -- 9.5 Regeneration.
9.5.1 Regeneration Efficiency Calculation -- 9.5.2 Regeneration Classifications -- 9.6 Desorption-Based Regeneration -- 9.6.1 Regeneration in Alkali Solution -- 9.6.2 Regeneration in Acidic Solution -- 9.6.3 Regeneration with Salt Solution -- 9.6.4 Regeneration by Solvent -- 9.7 Decomposition-Based Regeneration -- 9.8 Advanced Oxidation Regeneration -- 9.8.1 Fenton Oxidation Mechanism -- 9.8.2 Fenton Oxidation Regeneration -- 9.8.3 Electro-Fenton Oxidation -- 9.8.4 Electro-Fenton Regeneration -- 9.9 Future Outlook -- References -- Chapter 10: Magnetic Nanofibers for Contaminants´ Removal from Water -- 10.1 Introduction -- 10.2 Aspects Involved in Synthesis of Nanofibers -- 10.3 Polymers Used to Produce Electrospun Nanofibers -- 10.4 Magnetic Nanofibers -- 10.4.1 Electrospinning -- 10.4.2 Template Method -- 10.4.3 Phase Separation Method -- 10.4.4 Magnetic Field-Assisted Method -- 10.5 Magnetic Nanofibers for Contaminants´ Removal -- 10.5.1 Characterization of Magnetic Nanofibers for Contaminants´ Removal -- 10.5.2 Application of Magnetic Nanofibers in the Contaminants´ Removal -- 10.6 Conclusions -- References -- Chapter 11: Magnetic Solid-Phase-Based Sorbents for Isolation/Preconcentration and Removal of Pesticides -- 11.1 Introduction -- 11.2 Magnetic Sorbents -- 11.3 Magnetic Solid-Phase-Based Extractions -- 11.3.1 Carbon-Based Sorbents -- 11.3.2 Organic-Inorganic Hybrid Silica-Based Sorbents -- 11.3.3 Polymer-Based Sorbents -- 11.3.4 Metal Organic Framework Sorbents -- 11.3.5 Ionic Liquids and Deep Eutectic Solvent-Based Sorbents -- 11.4 Interaction Mechanism -- 11.5 Conclusions -- References -- Chapter 12: Characterization and Application of Fe-Magnetic Materials and Nanomaterials for Application in the Aqueous Matrice... -- 12.1 Introduction -- 12.2 General Aspect of Fe-Magnetic Materials and Nanomaterials.
12.3 Conventional and Nonconventional Characterization Techniques of Fe-Magnetic Materials -- 12.3.1 Electron Microscopy -- Transmission Electron Microscopy (TEM) -- Scanning Electron Microscopy (SEM) -- 12.3.2 X-Ray Diffraction (XRD) -- 12.3.3 X-Ray Photoelectron Spectroscopy (XPS) -- 12.3.4 Raman Spectroscopy -- 12.3.5 Mössbauer Spectroscopy -- 12.4 Adsorption Process for the Removal of Inorganic Pollutants from Wastewater -- 12.5 Use of Fe-Based Nanomaterials in AOPs for the Removal of Organic Pollutants -- 12.6 Conclusions -- References -- Chapter 13: Advanced Magnetic Adsorbents Prepared from Emulsion Template for Water Treatment -- 13.1 Introduction -- 13.2 Preparation of Magnetic Materials from Emulsion Template -- 13.2.1 Magnetic Nanoparticles -- 13.2.2 The Magnetic Microspheres -- 13.2.3 The Magnetic Porous Materials -- 13.3 The Application of the Magnetic Materials Prepared by Emulsion Template in Water Treatment -- 13.3.1 Removal of Heavy Metal Ions -- Magnetic Nanoparticles -- The Magnetic Microsphere -- The Magnetic Porous Material -- 13.3.2 Removal of Organic Pollutant -- Magnetic Nanoparticles -- The Magnetic Microsphere -- Magnetic Porous Material -- 13.3.3 The Oil-Water Separation -- Magnetic Nanoparticles -- Magnetic Microsphere -- Magnetic Porous Material -- 13.4 Conclusions and Future Prospects -- References -- Chapter 14: Chitosan-Based Magnetic Adsorbents -- 14.1 Introduction -- 14.2 General Aspects Involved in Synthesis of Magnetic Chitosan Adsorbents -- 14.2.1 Magnetic Particles and Their Main Features -- 14.2.2 Crosslinking of Chitosan Polymeric Chains -- 14.2.3 Functionalization -- 14.3 Common Shapes of Chitosan-Based Magnetic Adsorbents -- 14.3.1 Powders -- 14.3.2 Beads -- 14.3.3 Films -- 14.4 Application in Wastewater Treatment -- 14.5 Conclusions -- References.
Chapter 15: Methods Used for Performance Enhancement of Iron-Based Magnetic Adsorbents in Water Systems.
Record Nr. UNINA-9910768194303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Nano-Bio Technologies for Water and Soil Treatment / / edited by Jan Filip, Tomáš Cajthaml, Petra Najmanová, Miroslav Černík, Radek Zbořil
Advanced Nano-Bio Technologies for Water and Soil Treatment / / edited by Jan Filip, Tomáš Cajthaml, Petra Najmanová, Miroslav Černík, Radek Zbořil
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXV, 657 p. 210 illus., 133 illus. in color.)
Disciplina 628.162
Collana Applied Environmental Science and Engineering for a Sustainable Future
Soggetto topico Water pollution
Waste management
Pollution prevention
Ecotoxicology
Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Waste Management/Waste Technology
Industrial Pollution Prevention
Depuració de l'aigua
Descontaminació dels sòls
Control de la contaminació
Nanotecnologia
Soggetto genere / forma Llibres electrònics
ISBN 3-030-29840-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Part I Reductive Technologies -- Geochemical Principles of Reductive Remediation Processes -- Nanoscale Zero-Valent Iron Particles for Water Treatment: from Basic Principles to Field-Scale Applications -- Other Chemical Reductive Methods -- Combination of Electrokinetics and nZVI Remediation -- Field Study I: In Situ Chemical Reduction Using Nanoscale Zero-valent Iron Materials to Degrade Chlorinated Hydrocarbons -- Field Study II: Pilot Application of nZVI/DC-combined Methods at Aargau Site -- Part II Oxidative Technologies -- Introduction to Oxidative Technologies for Water Treatment -- Ferrates as Powerful Oxidants in Water Treatment Technologies -- Radical Reactions and Their Application for Water Treatment -- Photo-oxidation Technologies for Advanced Water Treatment -- The Use of Nanomaterials in Electro-Fenton and Photoelectro-Fenton Processes -- Field Study III: Evidence Gained from Site Studies for the Performance of Ferrate(VI) in Water and Wastewater Treatment -- Field Study IV: Arsenic Removal from Groundwater by Ferrate with the Concurrent Disinfecting Effect—Semi-pilot on-site Application -- Field Study V: Combined Oxidation Technology using Ferrates (FeIV–VI) and Hydrogen Peroxide for Rapid and Effective Remediation of Contaminated Water—Comprehensive Practically Focused Study -- Part III Biotechnologies for Water Treatment -- Biotechnologies for Water Treatment -- Enzyme-Based Nanomaterials in Bioremediation -- Bioelectrochemical Processes for the Treatment of Oil-Contaminated Water and Sediments -- Field Study VI: The Effect of Loading Strategies on Removal Efficiencies of a Hybrid Constructed Wetland Treating mixed Domestic and Agro-Industrial Wastewaters -- Field Study VII: Field Study of Three Different Injectable Oxygen Sources to Enhance Mono-Aromatic Solvents in situ Biodegradation -- Field Study VIII: Nano-bioremediation: nZVI for Inorganic and Organic Contamination -- Part IV Biotechnologies for Soil Treatment -- Biotechnologies for Soil Treatment -- Mycoremediation of Contaminated Soils -- Composting Practices for the Remediation of Matrices Contaminated by Recalcitrant Organic Pollutants -- Modern Bioremediation Approaches: Use of Biosurfactants, Emulsifiers, Enzymes, Biopesticides, GMOs -- Field Study IX: Pilot-Scale Composting of PAH-Contaminated Materials—Two Different Approaches -- Field Study X: Oil Waste Processing Using Combination of Physical Pretreatment and Bioremediation -- Part V Ecotoxicology of Both Environmental Pollutants and Nanomaterials Used for Remediation -- Ecotoxicology of Environmental Pollutants -- Ecotoxicity of Nanomaterials Used for Remediation -- VI Future Prospects -- Future Prospects for Treating Contaminants of Emerging Concern in Water and Soils/Sediments -- Part VII Technical Chapters -- Tool I: Characterization of nZVI Mobility in 1D and Cascade Columns by Ferromagnetic Susceptibility Sensor -- Tool II: Membrane Interface Probe -- Tool III: Fracturing for Enhanced Delivery of In situ Remediation Substances in Contaminated Sediments -- Tool IV: Monitoring of nZVI Migration and Fate in the Groundwater Conditions -- Tool V: Microbiological Methods for Monitoring nZVI Performance in Groundwater Conditions.
Record Nr. UNINA-9910373894703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced nanomaterials for water engineering, treatment, and hydraulics / / Tawfik A. Saleh [editor]
Advanced nanomaterials for water engineering, treatment, and hydraulics / / Tawfik A. Saleh [editor]
Autore Saleh Tawfik A.
Pubbl/distr/stampa Hershey, Pennsylvania : , : IGI Global, , 2017
Descrizione fisica PDFs (384 pages) : illustrations
Disciplina 628.162
Collana Advances in Environmental Engineering and Green Technologies (AEEGT) Book Series
Soggetto topico Water - Purification - Materials
Nanostructured materials - Industrial applications
Soggetto non controllato Biomaterials
Chemical substance removal
Chitosan nanoparticles
Environmental concerns
Hexavalent chromium
Pollutants degradation
Waste water
ISBN 9781522521372
9781522521365
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An overview of nanomaterials for water technology / Tawfik A. Saleh -- Scientific insights into modified and non-modified biomaterials for sorption of heavy metals from water / Tawfik A. Saleh [and 3 others] -- Principles and advantages of microwave-assisted methods for the synthesis of nanomaterials for water purification / Tawfik A. Saleh [and 3 others] -- Fundamentals and sources of magnetic nanocomposites and their sorption properties / Victor O. Shikuku, Chispin O Kowenje, Wilfrida N. Nyairo -- Advanced nanomaterials for water engineering and treatment: nano-metal oxides and their nanocomposites / Rabia Nazir -- Advanced nanomaterials for the removal of chemical substances and microbes from contaminated and waste water / Kamlesh Shrivas, Archana Ghosale, Pathik Maji -- Biomass-derived activated carbon: synthesis, functionalized, and photocatalysis application / Samira Bagheri, Nurhidayatullaili Muhd Julkapli -- Polymer consumption, environmental concerns, possible disposal options, and recycling for water treatment / Tawfik A. A. Saleh, Gaddafi I. Danmaliki -- Characteristics of chitosan nanoparticles for water and wastewater treatment: chitosan for water treatment / Cayla Cook, Veera Gnaneswar Gude -- Performance of chitosan micro/nanoparticles to remove hexavalent chromium from residual water / Jimena Bernadette Dima, Noemí Zaritzky -- Applications of nanomaterials for water treatment: a future avenue / Anupreet Kaur.
Record Nr. UNINA-9910162956403321
Saleh Tawfik A.  
Hershey, Pennsylvania : , : IGI Global, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Oxidation Processes : Applications, Trends, and Prospects / / Ciro Bustillo-Lecompte
Advanced Oxidation Processes : Applications, Trends, and Prospects / / Ciro Bustillo-Lecompte
Autore Bustillo-Lecompte Ciro
Edizione [1st ed.]
Pubbl/distr/stampa 2020
Descrizione fisica 1 online resource (1 p.)
Disciplina 628.162
Soggetto topico Technology & Engineering / Civil
Technology
Soggetto non controllato Technology & Engineering
Civil
General
ISBN 1-83880-971-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910476768303321
Bustillo-Lecompte Ciro  
2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced oxidation processes : applications, trends, and prospects / / edited by Ciro Bustillo-Lecompte
Advanced oxidation processes : applications, trends, and prospects / / edited by Ciro Bustillo-Lecompte
Pubbl/distr/stampa London, United Kingdom : , : IntechOpen, , [2020]
Descrizione fisica 1 online resource (182 pages) : illustrations
Disciplina 628.162
Soggetto topico Water - Purification
Sewage - Purification
ISBN 1-78984-891-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advanced Oxidation Processes
Record Nr. UNINA-9910409726203321
London, United Kingdom : , : IntechOpen, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Oxidation Processes for Wastewater Treatment : Emerging Green Chemical Technology
Advanced Oxidation Processes for Wastewater Treatment : Emerging Green Chemical Technology
Autore Ameta Suresh C
Pubbl/distr/stampa San Diego : , : Elsevier Science & Technology, , 2018
Descrizione fisica 1 online resource
Disciplina 628.162
Altri autori (Persone) AmetaRakshit
Soggetto topico Water - Aeration
Water - Purification - Oxidation
Sewage - Purification - Oxidation
ISBN 0-12-810525-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Advanced Oxidation Processes for WasteWater Treatment -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Authors -- Preface -- 1 Introduction -- 1.1 Environment -- 1.2 Pollution -- 1.3 Water Pollution -- 1.4 Wastewater Treatment -- 1.4.1 Primary Treatment -- 1.4.1.1 Phase Separation -- 1.4.1.1.1 Sedimentation -- 1.4.1.1.2 Filtration -- 1.4.2 Secondary Treatment -- 1.4.2.1 Oxidation -- 1.4.2.1.1 Biochemical Oxidation -- 1.4.2.1.2 Chemical Oxidation -- 1.4.2.2 Polishing -- 1.4.3 Tertiary Treatment -- 1.5 Advanced Oxidation Processes -- 1.6 Advantages -- 1.7 Applications -- References -- 2 UV-Hydrogen Peroxide Processes -- 2.1 Introduction -- 2.2 Fundamentals -- 2.2.1 UV Lamps -- 2.2.2 Quartz Sleeve -- 2.2.3 Optical Path on the UV Reactor -- 2.2.4 Effluent Optical Properties and Characteristics -- 2.3 Kinetics -- 2.3.1 UV-H2O2 Oxidation Kinetics -- 2.4 A Simplified Model for Performance Evaluation -- 2.4.1 Fundamental on Reactor Design -- 2.5 UV/H2O2 Oxidation Process Design -- 2.5.1 Effluent Characteristics -- 2.5.2 Bench Scale Evaluation Tests -- 2.5.3 Pilot-Plant Evaluation Units -- 2.6 Practical Applications -- 2.6.1 Slaughterhouse Wastewater -- 2.6.2 Oil-Water Emulsion -- 2.6.3 Pharmaceuticals -- 2.6.4 Dyes -- 2.6.5 Removal of Estrogens -- References -- 3 Fenton and Photo-Fenton Processes -- 3.1 Introduction -- 3.2 Types of Fenton Processes -- 3.2.1 Fenton Processes -- 3.2.2 Photo-Fenton Processes -- 3.3 Electro-Fenton Processes -- 3.4 Sono-Fenton and Sono-Photo-Fenton Processes -- 3.5 Heterogeneous Fenton and Photo-Fenton Processes -- 3.6 Combined (Hybrid) Fenton and Photo-Fenton Processes -- 3.7 Applications -- 3.7.1 Dyes -- 3.7.2 Agrochemicals -- 3.7.3 Pharmaceuticals -- 3.7.4 Petroleum Refinery Effluents -- 3.7.5 Surfactants -- 3.7.6 Leachates -- 3.7.7 Other Pollutants -- 3.8 Recent Developments.
References -- 4 Ferrioxalate-Mediated Processes -- 4.1 Introduction -- 4.2 The Fenton and Photo-Fenton Reactions -- 4.3 The Ferrioxalate-Mediated Fenton Reaction -- 4.3.1 Influence of pH -- 4.3.2 Iron Complexes with Organic and Inorganic Substances -- 4.3.3 Reaction Mechanisms -- 4.3.4 Optimization -- 4.4 Applications -- 4.4.1 Textile Industry -- 4.4.2 Chemical Industry and Pesticides -- 4.4.3 Pharmaceutical Industry -- 4.4.4 Food and Beverage Industry -- 4.4.5 Water Disinfection -- 4.5 Future Trends -- References -- Further Reading -- 5 Ozone-Based Processes -- 5.1 Introduction -- 5.2 Ozone-Based AOPs -- 5.2.1 Ozone/Hydrogen Peroxide -- 5.2.2 Ozone/UV -- 5.2.3 Catalytic Ozonation -- 5.3 Ozonation By-Products -- 5.4 WasteWater Ozonation and Ozone-Based AOPs -- 5.4.1 Municipal Wastewater Treatment -- 5.4.2 Industrial Wastewater Treatment -- 5.5 Recent Studies -- 5.5.1 Landfill Leachate Treatment -- 5.5.2 Industrial Wastewater Treatment -- 5.5.3 Domestic/Municipal Wastewater Treatment -- 5.5.4 Hospital Wastewater Treatment -- 5.5.5 Ozone-Based Municipal Wastewater Treatment and Water Reuse in the United States -- 5.6 Existing Ozone-Based Advanced Water Reclamation Facilities -- 5.7 Planned Ozone-Based Advanced Water Reclamation Projects -- 5.8 Concluding Remarks -- References -- 6 Photocatalysis -- 6.1 Introduction -- 6.2 Photcatalysis -- 6.2.1 Binary Oxides -- 6.2.2 Ternary and Quaternary Oxides -- 6.3 Modifications -- 6.3.1 Doping -- 6.3.2 Codoping -- 6.3.3 Coupled Semiconductors or Composites -- 6.3.4 Substitution -- 6.3.5 Sensitization -- 6.3.6 Miscellaneous -- 6.3.6.1 Mechanism -- 6.4 Wastewater Treatment -- 6.4.1 Dye Degradation -- 6.4.2 Antimicrobial Activity -- 6.4.3 Organic Pollutants Elimination -- 6.4.4 Removal of Heavy Metal -- 6.4.5 Degradation of Oil in Wastewater -- 6.5 Immobilization -- 6.6 Effect of Morphology -- 6.7 Other Applications.
References -- 7 Sonolysis -- 7.1 Introduction -- 7.2 Principles of the Process -- 7.3 Types of Main Reactors (Reaction Systems) -- 7.4 The Effect of Sonochemical Operational Parameters -- 7.4.1 Ultrasound Frequency -- 7.4.2 Dissolved Gas -- 7.4.3 Power Input -- 7.4.4 Effect of Bulk Temperature -- 7.4.5 Pollutant Concentration -- 7.5 Effect of the Chemical Pollutant Nature and Its Transformations Upon Sonochemical Process -- 7.5.1 Structural Effects and Physico-Chemical Properties -- 7.5.1.1 Small Chlorinated Hydrocarbons (SCHs) -- 7.5.1.2 Monocyclic Aromatic Compounds (MACs) -- 7.5.1.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 7.5.1.4 Perfluoroalkyl Sulfonates (PFAS) and Perfluoroalkyl Acids (PFAA) -- 7.5.1.5 Phthalate Acid Esters (Phthalates) -- 7.5.1.6 Textile Dyes -- 7.5.1.7 Organophosphorus Pesticides (OPPs) -- 7.5.1.8 Pharmaceuticals -- 7.5.2 Sonochemical Transformations of Pollutants and Their Implications -- 7.6 Influence of Water Matrix in the Pollutants Degradation -- 7.6.1 Effect of pH -- 7.6.2 Sonochemical Degradation in Presence of Inorganic Components -- 7.6.3 Sonochemical Degradation of Pollutants in Presence of Other Organic Components -- 7.7 Combination of Sonochemistry With Other Processes -- References -- Further Reading -- 8 Microwave/Hydrogen Peroxide Processes -- 8.1 Introduction -- 8.1.1 Microwave Chemistry -- 8.1.2 Losses Factor or Tan δ -- 8.1.3 Characteristic of Heating Microwave -- 8.2 Wastewater Treatment -- 8.2.1 Energy Intensity -- 8.2.2 pH -- 8.2.3 Pollutants Concentration -- 8.2.4 H2O2 Concentration -- 8.2.5 Radical Scavengers -- 8.3 Enhancement of Sludge Anaerobic Biodegradability -- 8.3.1 Volatile Fatty Acids Production By MW/H2O2 -- 8.3.2 Change of Biological Nutrient in Anaerobic Sludge -- 8.3.3 Biochemical Methane Potential Assays -- 8.3.4 Effect Of H2O2 on Anaerobic Sludge Pretreatment.
8.3.5 Inhibitory Effects on Microbial Methabolism -- 8.3.6 Regression Model Optimizing H2O2 -- 8.3.7 Effect of pH on Anaerobic Sludge Pretreatment -- 8.3.8 Fate of Organic Matters -- 8.3.9 Morphological Changes of Sludge -- 8.3.10 Improvement Of EPS Extraction From Anaerobic Sludge -- 8.3.11 Thermodynamic Analysis of WAS Hydrolysis -- 8.3.12 Cost Analysis of Anaerobic Sludge Pretreatment -- 8.3.13 Impact of MW Specific Energy on Anaerobic Sludge Pretreatment -- 8.3.14 Release of Heavy Metals -- 8.3.15 Effects of MW/H2O2 Pretreatment on Anaerobic Sludge Rheology -- References -- Further Reading -- 9 Gamma-ray, X-ray and Electron Beam Based Processes -- 9.1 Introduction -- 9.2 Sources of Radiation-Technological Installations -- 9.3 Disinfection of Wastewaters -- 9.4 Radiolytic Decomposition of Individual Compounds -- 9.5 Chemical Enhancement of Radiolytic Processes -- 9.6 Purification of Wastewaters of Different Origin -- 9.7 Economic Aspects -- 9.8 Conclusions -- Acknowledgments -- References -- 10 Supercritical Water Oxidation -- 10.1 Introduction -- 10.1.1 Density -- 10.1.2 Dielectric Constant -- 10.1.3 Ionic Product -- 10.1.4 Viscosity -- 10.1.5 Heat Capacity -- 10.1.6 Thermal Conductivity -- 10.2 Development of SCWO -- 10.3 Detected Problems -- 10.4 Energy Recovery in SCWO Plants -- 10.5 Economic Aspects -- 10.6 Conclusions -- Acknowledgements -- References -- Further Reading -- 11 Electrochemical Oxidation Processes -- 11.1 Introduction -- 11.2 Electrochemical Oxidation Processes -- 11.2.1 Photoelectrochemical Processes -- 11.2.2 Photoelectro-Fenton (PEF) and Solar Photoelectro-Fenton (SPEF) Processes -- 11.2.3 Photoelectrocatalysis (PEC) -- 11.2.4 Hybrid Combinations of PEF and PEC -- 11.2.5 Sonoelectrochemical Processes -- 11.2.6 Sonoelectrolysis -- 11.2.7 Sonoelectro-Fenton (SEF) -- 11.3 Advantages -- 11.4 Disadvantages -- 11.5 Applications.
11.6 Current Scenario -- 11.7 Future Prospects -- References -- 12 Catalytic Wet Peroxide Oxidation -- 12.1 Introduction -- 12.2 Catalysts for CWPO -- 12.2.1 Nonsupported Metal Based Catalysts -- 12.2.1.1 Zero Valent Iron (Fe0) -- 12.2.1.2 Iron Minerals -- 12.2.1.3 Supported or Nonsupported Mixed Metal Oxides -- 12.2.2 Supported Metal Based Catalysts -- 12.2.2.1 Clay-Based Material as Support -- 12.2.2.1.1 Pillared interlayered clays -- 12.2.2.1.2 Alumina -- 12.2.2.1.3 Zeolite -- 12.2.2.2 Carbon-Based Materials as Support -- 12.2.2.2.1 Activated carbon (AC) -- 12.2.2.2.2 Multiwalled carbon nanotubes (MWCNTs) -- 12.2.2.2.3 Graphene-based materials -- 12.2.2.3 Organic-Based Materials as Support -- 12.3 Efficiency of CWPO of Phenol -- 12.4 Effect of the Main Parameters -- 12.4.1 Effect of Initial pH -- 12.4.2 Effect of Temperature -- 12.4.3 Effect of H2O2 Dosage -- 12.4.4 Effect of the Catalyst Load -- 12.5 CWPO Performance -- References -- Index -- Back Cover.
Record Nr. UNINA-9910583367203321
Ameta Suresh C  
San Diego : , : Elsevier Science & Technology, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui