top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Agriculture waste management and bioresource : the circular economy perspective / / edited by Pardeep Singh [and three others]
Agriculture waste management and bioresource : the circular economy perspective / / edited by Pardeep Singh [and three others]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (412 pages)
Disciplina 628/.74
Soggetto topico Agricultural wastes - Recycling
ISBN 1-119-80842-1
1-119-80833-2
1-119-80835-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright Page -- List of Contributors -- 1 Agricultural Waste as a Resource: The Lesser Travelled Road to Sustainability -- 1.1 Introduction -- 1.2 Sources of Agricultural Waste Generation -- 1.3 Agricultural Waste Characterization -- 1.4 Waste to Wealth: Agricultural Waste Management Approaches -- 1.5 Challenges in Agricultural Waste Management -- 1.6 Conclusion -- References -- 2 Sustainable Physical Methods Used for the Management of Agricultural Waste Biomass -- 2.1 Introduction -- 2.2 Major Crops for Agricultural Waste Generation -- 2.3 Predominant Agriculture Residue of Agricultural Crops -- 2.4 Forest Biomass -- 2.5 The Application of Biomass Waste -- 2.6 Challenges in Biomass Residues Utilization -- 2.7 The Waste Management Concept -- 2.8 Waste Management Systems -- 2.9 The Choice of Technology -- 2.10 Sustainable Physical Methods for Agricultural Biomass Management -- 2.11 Biomass Waste Management: Adverse Effect of Biomass Waste -- 2.12 Sustainable Use of Biomass Resources -- 2.13 A Case Study of Southeast Spain: Managing Agriculture Waste Biomass -- 2.14 Conclusion -- References -- 3 An Overview of Biomass Conversion from Agricultural Waste: Address on Environmental Sustainability -- 3.1 Introduction -- 3.2 Environmental Concerns of Renewable and Fossil Energy -- 3.3 Agriculture and Biofuels -- 3.4 Agricultural Residue Composition and Properties -- 3.5 Agricultural Residue Pre‐treatment Methods -- 3.6 Biomass Conversion Technologies -- 3.7 Production of Biofuels from Agricultural Biomass -- 3.8 Factors Influencing Biofuel Production -- 3.9 Biofuel Energy Potentials in India -- 3.10 Environmental and Economic Concern of Agriculture‐Based Biofuel Production -- 3.11 Future Perspectives -- 3.12 Conclusions -- Acknowledgements -- References.
4 Agriculture Wastes: Generation and Sustainable Management -- 4.1 Introduction -- 4.2 Agrowastes and Its Composition -- 4.3 Agricultural Wastes as Source of Pollution -- 4.4 Realization of Sustainable Development from Agrowaste -- 4.5 Conclusion and Future Prospects -- References -- 5 Microbiological Digestion of Agricultural Biomass: Prospects and Challenges in Generating Clean and Green Energy -- 5.1 Introduction -- 5.2 Agricultural Waste: Generation to Proper Utilization of Agricultural Waste -- 5.3 Anaerobic Digestion -- 5.4 Way Forward -- 5.5 Conclusion -- References -- 6 Nothing is 'Waste' in Agriculture: From Nanotechnology and Bioprocesses Perspectives -- 6.1 Introduction -- 6.2 Relevance and Opportunities to Use Nanotechnology -- 6.3 Increase Productivity of Soil -- 6.4 Precision Farming -- 6.5 Restoration of Environmental Health -- 6.6 Agricultural Application of Nanotechnology -- 6.7 Nanofertilizers and Nanopesticides -- 6.8 Nanotechnology for Food Industry -- 6.9 Microbial Techniques for Bio‐Transforming Food and Agricultural Waste into Resources -- 6.10 Bioconversion of Food Waste to Wealth -- 6.11 Biowaste and its Products for Agricultural Sustainability -- 6.12 Post‐Harvest Agriculture Waste Management Using NPs -- 6.13 Sustainable Agriculture in India: Some Policy Recommendation -- 6.14 Risk and Safety Aspects of Nanotechnology in Agriculture -- 6.15 Conclusion and Future Implications -- Acknowledgement -- Conflict of Interest -- References -- 7 Agro‐Wastes as Low‐Cost Biosorbent for Dyes Removal from Wastewater -- 7.1 Introduction -- 7.2 Dyes Classification and Their Toxicity -- 7.3 Conventional Dye Removal Technologies from Wastewaters -- 7.4 Agricultural Wastes and Characterization -- 7.5 Agricultural Wastes: An Excellent Dye Adsorbent -- 7.6 Adsorption Kinetics and Isotherm -- 7.7 Factors Influencing Dye Removal Using Agro‐Wastes.
7.8 Economic and Environmental Concern of Agricultural Wastes‐Based Dye Removal -- 7.9 Conclusions and Recommendations -- References -- 8 Agricultural Waste as Source of Organic Fertilizer and Energy -- 8.1 Introduction -- 8.2 Agricultural Waste -- 8.3 The Potential Risk of Agriculture Waste on Human and Environment -- 8.4 Traditional Technologies Used for Recycling of Agricultural Waste -- 8.5 Advanced Technology of Agricultural Waste for the Energy Production -- 8.6 Sustainable Use of Agriculture Waste for Biofuel Production -- 8.7 Conclusion -- References -- 9 Production of Bioethanol Using Agricultural Waste: An Overview -- 9.1 Introduction -- 9.2 Origin of Bioethanol -- 9.3 Production Policy of Bioethanol in some Countries with Focus on India -- 9.4 Distribution of Bioethanol Worldwide -- 9.5 Comparison of Ethanol and Gasoline -- 9.6 First‐Generation Bioethanol -- 9.7 Prospects -- 9.8 Challenges -- 9.9 Conclusion -- References -- 10 Bioethanol Production from Lignocellulose Agricultural Waste Biomass -- 10.1 Introduction -- 10.2 Discussion -- 10.3 Conclusion -- References -- 11 Hydrothermal Liquefaction of Waste Agricultural Biomass for Biofuel and Biochar -- 11.1 Introduction -- 11.2 Composition of Waste Obtained from Agriculture -- 11.3 Hydrothermal Liquefaction -- 11.4 Recent Development in HTL Technology -- 11.5 Process for Degradation of Cellulose -- 11.6 Products of HTL -- 11.7 Factors Affecting the Productivity of Bio‐Crude Oil -- 11.8 HTL: Future Prospects and Practical Limitations -- References -- 12 Biogas Production through Anaerobic Digestion of Agricultural Wastes: State of Benefits and its Future Trend -- 12.1 Introduction -- 12.2 Anaerobic versus Aerobic Digestion -- 12.3 Biochemical and Microbiological Aspect of Anaerobic Digestion -- 12.4 Parameters Involved in the Process -- 12.5 Anaerobic Digestion Process.
12.6 By‐Products of Anaerobic Digestion -- 12.7 Types of Digesters -- 12.8 Mesophilic and Thermophilic Process -- 12.9 Suitable Wastes for Anaerobic Digestion -- 12.10 Perspective of Anaerobic Digestion -- 12.11 Policies and Application of Anaerobic Digestion Technology -- 12.12 Concluding Remarks -- References -- 13 Expansion of Agricultural Residues to Biofuel Processing and Production -- 13.1 Introduction -- 13.2 Agricultural Residues and Importance in Biofuel Production -- 13.3 Process of Conversion of Biomass Residue to Biofuels -- 13.4 Agricultural Residue Sources for Biofuel Production -- 13.5 Conclusion -- References -- 14 Creating Wealth from Agrowaste: Success Stories from India -- 14.1 Global Scenario of Agriculture -- 14.2 National Scenario -- 14.3 Types of Organic Inputs for Farms -- 14.4 Production by Self‐Help Groups (SHGs): A Microunit of Circular Economy -- 14.5 Linkages to United Nations Sustainable Development Goals (UNSDGs) and Government Schemes -- 14.6 Statistics of Stubble Burning in India -- 14.7 The Adverse Impacts of Stubble Burning on the Environment -- 14.8 Alternative Strategies to Stubble Burning in India -- 14.9 Riches from Rags' Studies from Rural India: Case Studies of Recycling Farm Wastes into Valuable Products -- References -- Web Links -- Index -- End User License Agreement.
Record Nr. UNINA-9910830702003321
Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phytotechnology with biomass production : sustainable management of contaminated sites / / edited by Larry E. Erickson and Valentina Pidlisnyuk
Phytotechnology with biomass production : sustainable management of contaminated sites / / edited by Larry E. Erickson and Valentina Pidlisnyuk
Autore Erickson Larry E
Edizione [First edition.]
Pubbl/distr/stampa Taylor & Francis, 2021
Descrizione fisica 1 online resource (243 pages)
Disciplina 628/.74
Soggetto topico Phytoremediation
Soil remediation
Energy crops
SCIENCE / Environmental Science
TECHNOLOGY / Agriculture / Soil Science
ISBN 9781003082613
1003082610
9781000387285
1000387283
9781000387308
1000387305
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- 1. Introduction -- 1.1 Soil Quality -- 1.1.1 Soil Contamination -- 1.1.2 Types of Contaminants -- 1.2 Phytotechnology with Biomass Production -- 1.3 Miscanthus -- 1.4 Case Studies -- References -- 2. Phytotechnologies for Site Remediation -- 2.1 Introduction -- 2.2 Phytotechnologies -- 2.3 Phytostabilization of Arable Land Contaminated with Trace Elements -- 2.4 Bioenergy Crops and Phytostabilization Options -- 2.5 M. × giganteus as an Effective Phytoagent -- 2.5.1 Miscanthus Tolerance to Metals and Removal Capacity -- 2.5.2 Changes in Soil Parameters Induced by Miscanthus Phytoremediation -- 2.6 Miscanthus Phytotechnology in Action -- 2.6.1 M. × giganteus Application for Phytoremediation of Trace Elements' Contaminated Mining Soil, Tekeli, Kazakhstan -- 2.6.2 M. × giganteus Application for Phytoremediation of Post-Industrial Soil Contaminated with Trace Elements, Bakar, Croatia -- 2.6.3 Field Study Results, Fort Riley, Kansas, USA -- 2.7 Conclusions -- References -- 3. Remediation of Sites Contaminated by Organic Compounds -- 3.1 Introduction -- 3.2 Types of Organic Contaminants -- 3.2.1 Remediation of Petroleum Contaminants -- 3.2.2 Remediation of Explosives -- 3.2.3 Remediation of Chlorinated Hydrocarbons -- 3.2.4 Remediation of Pesticides -- 3.3 Landfills and Containment -- 3.4 Phytoremediation of Organic Contaminants with Miscanthus -- References -- 4. Phytomining Applied for Postmining Sites -- 4.1 Introduction -- 4.2 Advantages and Limitations of Phytomining -- 4.3 Field Experiments on Phytomining -- 4.4 Agronomic Practices -- 4.5 Economic Viability and Environmental Considerations -- 4.6 Options for Commercial Application of Phytomining -- 4.7 Conclusions and Perspectives -- References.
5. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites -- 5.1 Plant Selection and Breeding -- 5.2 Plant Establishment -- 5.2.1 Weight -- 5.2.2 Water -- 5.2.3 Weeds -- 5.2.4 Weather -- 5.3 Site Characterization -- 5.4 Plant Nutrition and Supplementation -- 5.5 Role of Soil Amendments -- 5.5.1 Impact of Soil Amendments on the Phytoremediation of Soil Contaminated by Organic Substances -- 5.5.2 Impact of Soil Amendments on Miscanthus Production in Postmilitary Soil -- 5.5.3 Impact of Soil Amendments on Miscanthus Biomass Production in Contaminated Postmining Soil -- 5.6 Geography and Soil Types -- 5.7 Role of Plant Growth Regulators in Production of M. × giganteus -- 5.7.1 Lab Research on Impact of PGRs on Phytoremediation with Biomass Production Using Soils from Military Sites Contaminated with Trace Elements -- 5.7.2 Field Research on Impact of PGRs on Biomass Parameters of M. × giganteus during Field Production on the Marginal and Slightly Contaminated Lands -- References -- 6. Balancing Soil Health and Biomass Production -- 6.1 Introduction -- 6.2 Properties of Soils -- 6.3 Soil Quality -- 6.4 Soil Health Affects Human Health -- 6.5 Improving Soil Health Using Phytotechnology -- 6.6 Conclusions -- References -- 7. Plant-Microbe Associations in Phytoremediation -- 7.1 Role of Plant-Microbe Association in Phytoremediation -- 7.1.1 Endophytic Bacteria -- 7.1.2 Rhizobacteria -- 7.2 Impact of PGPB Isolated from Contaminated Soil to Phytoremediation with Miscanthus -- 7.3 Influence of Rhizobacteria Isolated from Miscanthus Rhizosphere to Phytoremediation of Trace Elements Contaminated Soil -- 7.4 Changing of Soil Microbial Communities during Miscanthus Production at the Contaminated Military Land -- References -- 8. Plant Feeding Insects and Nematodes Associated with Miscanthus -- 8.1 Introduction.
8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts -- 8.2.1 Miscanthus Mealybug -- 8.2.1.1 Identification -- 8.2.1.2 Life Cycle -- 8.2.1.3 Damage -- 8.2.2 Aphids -- 8.2.2.1 Identification -- 8.2.2.2 Life Cycle -- 8.2.2.3 Damage -- 8.2.2.4 Identification -- 8.2.2.5 Life Cycle -- 8.2.2.6 Damage -- 8.3 Plant Feeding Insects with Chewing Mouth Parts -- 8.3.1 Generalist Coleoptera -- 8.3.1.1 Identification -- 8.3.1.2 Life Cycle -- 8.3.1.3 Damage -- 8.3.2 Generalist Lepidoptera -- 8.3.2.1 Identification -- 8.3.2.2 Life Cycle -- 8.3.2.3 Damage -- 8.3.3 Generalist Coleopteran -- 8.3.3.1 Identification -- 8.3.3.2 Life Cycle -- 8.3.3.3 Damage -- 8.4 Plant Feeding Nematodes Associate with M. × giganteus -- 8.4.1 PPNs − Potential Vector of Plant Viruses -- 8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders -- 8.4.3 The Indication of M. × giganteus Plantation State with Plant-Feeding Nematodes -- References -- 9. Economics of Phytoremediation with Biomass Production -- 9.1 Introduction to Phytoremediation with Biomass Production -- 9.2 Sustainable Approach -- 9.3 Benefits of Remediation -- 9.4 Motivation for Action -- 9.5 Economics of Phytoremediation -- 9.6 Economics of Biomass Production -- 9.7 Bioeconomy of Miscanthus in Europe -- 9.8 Conclusions -- References -- 10. Miscanthus Biomass for Alternative Energy Production -- 10.1 Introduction -- 10.2 Evaluation of Biomass Suitability for Energy -- 10.3 Bioethanol Production -- 10.3.1 Physicochemical Pretreatment -- 10.3.2 Enzymatic Hydrolysis and Fermentation -- 10.4 Biomethane and Biohydrogen Production -- 10.5 Thermochemical Conversion -- 10.5.1 Heat and Power Generation -- 10.5.2 Bio-Oil and Syngas Production -- References -- 11. Miscanthus as Raw Materials for Bio-based Products -- 11.1 Introduction -- 11.2 Material Products -- 11.2.1 Agricultural Products -- 11.2.1.1 Bedding Applications.
11.2.1.2 Mulch Applications -- 11.2.2 Insulation -- 11.2.3 Composites, Building Materials, Cement -- 11.2.4 Composite Materials -- 11.2.5 Hemicelluloses -- 11.3 Processing of Miscanthus to Fibers, Pulp, and Papers -- 11.4 Production of Pulp from M. × giganteus Biomass Produced on Pb-Contaminated Soil -- References -- 12. Conclusions and Recommendations -- 12.1 Conclusions -- 12.2 Recommendations -- References -- Index.
Altri titoli varianti Phytotechnology with Biomass Production
Record Nr. UNINA-9910488731303321
Erickson Larry E  
Taylor & Francis, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui