top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chaos in structural mechanics / / J. Awrejcewicz, V. A. Krysko
Chaos in structural mechanics / / J. Awrejcewicz, V. A. Krysko
Autore Awrejcewicz J (Jan)
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2008]
Descrizione fisica 1 online resource (423 p.)
Disciplina 624.17015118
Collana Springer complexity
Soggetto topico Chaotic behavior in systems
Structural analysis (Engineering) - Mathematical models
ISBN 1-281-92068-1
9786611920685
3-540-77676-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Theory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions.
Record Nr. UNINA-9910143970503321
Awrejcewicz J (Jan)  
Berlin, Germany : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling, Solving and Application for Topology Optimization of Continuum Structures : ICM Method Based on Step Function / / Yunkang Sui, Xirong Peng
Modeling, Solving and Application for Topology Optimization of Continuum Structures : ICM Method Based on Step Function / / Yunkang Sui, Xirong Peng
Autore Sui Yunkang
Pubbl/distr/stampa Kidlington, England : , : Butterworth-Heinemann, , 2018
Descrizione fisica 1 online resource (733 pages) : illustrations
Disciplina 624.17015118
Soggetto topico Continuum mechanics
ISBN 0-12-812656-6
0-12-812655-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583475303321
Sui Yunkang  
Kidlington, England : , : Butterworth-Heinemann, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
Autore Chinesta Francisco
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (255 p.)
Disciplina 624.1/7015118
624.17015118
Altri autori (Persone) ChinestaFrancisco
Collana ISTE
Soggetto topico Materials - Mechanical properties - Mathematical models
Numerical analysis
Numbers, Natural
Soggetto genere / forma Electronic books.
ISBN 1-118-61690-1
1-299-31421-X
1-118-61668-5
Classificazione MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant
2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv
3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports
3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity
4.2. Indicators and estimators of error: adaptivity
Record Nr. UNINA-9910139056503321
Chinesta Francisco  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.]
Autore Chinesta Francisco
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (255 p.)
Disciplina 624.1/7015118
624.17015118
Altri autori (Persone) ChinestaFrancisco
Collana ISTE
Soggetto topico Materials - Mechanical properties - Mathematical models
Numerical analysis
Numbers, Natural
ISBN 1-118-61690-1
1-299-31421-X
1-118-61668-5
Classificazione MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant
2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv
3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports
3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity
4.2. Indicators and estimators of error: adaptivity
Record Nr. UNINA-9910830394703321
Chinesta Francisco  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui