Chaos in structural mechanics / / J. Awrejcewicz, V. A. Krysko |
Autore | Awrejcewicz J (Jan) |
Edizione | [1st ed. 2008.] |
Pubbl/distr/stampa | Berlin, Germany : , : Springer, , [2008] |
Descrizione fisica | 1 online resource (423 p.) |
Disciplina | 624.17015118 |
Collana | Springer complexity |
Soggetto topico |
Chaotic behavior in systems
Structural analysis (Engineering) - Mathematical models |
ISBN |
1-281-92068-1
9786611920685 3-540-77676-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Theory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions. |
Record Nr. | UNINA-9910143970503321 |
Awrejcewicz J (Jan) | ||
Berlin, Germany : , : Springer, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling, Solving and Application for Topology Optimization of Continuum Structures : ICM Method Based on Step Function / / Yunkang Sui, Xirong Peng |
Autore | Sui Yunkang |
Pubbl/distr/stampa | Kidlington, England : , : Butterworth-Heinemann, , 2018 |
Descrizione fisica | 1 online resource (733 pages) : illustrations |
Disciplina | 624.17015118 |
Soggetto topico | Continuum mechanics |
ISBN |
0-12-812656-6
0-12-812655-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583475303321 |
Sui Yunkang | ||
Kidlington, England : , : Butterworth-Heinemann, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.] |
Autore | Chinesta Francisco |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (255 p.) |
Disciplina |
624.1/7015118
624.17015118 |
Altri autori (Persone) | ChinestaFrancisco |
Collana | ISTE |
Soggetto topico |
Materials - Mechanical properties - Mathematical models
Numerical analysis Numbers, Natural |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-61690-1
1-299-31421-X 1-118-61668-5 |
Classificazione | MAT003000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant 2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv 3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports 3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity 4.2. Indicators and estimators of error: adaptivity |
Record Nr. | UNINA-9910139056503321 |
Chinesta Francisco | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Natural element method for the simulation of structures and processes [[electronic resource] /] / Francisco Chinesta ... [et al.] |
Autore | Chinesta Francisco |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (255 p.) |
Disciplina |
624.1/7015118
624.17015118 |
Altri autori (Persone) | ChinestaFrancisco |
Collana | ISTE |
Soggetto topico |
Materials - Mechanical properties - Mathematical models
Numerical analysis Numbers, Natural |
ISBN |
1-118-61690-1
1-299-31421-X 1-118-61668-5 |
Classificazione | MAT003000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Natural Element Method for the Simulation of Structures and Processes; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. SPH method; 1.2. RKPM method; 1.2.1. Conditions of reproduction; 1.2.2. Correction of the kernel; 1.2.3. Discrete form of the approximation; 1.3. MLS based approximations; 1.4. Final note; Chapter 2. Basics of the Natural Element Method; 2.1. Introduction; 2.2. Natural neighbor Galerkin methods; 2.2.1. Interpolation of natural neighbors; 2.2.2. Discretization
2.2.3. Properties of the interpolant based on natural neighbors2.3. Exact imposition of the essential boundary conditions; 2.3.1. Introduction to alpha shapes; 2.3.2. CNEM approaches; 2.4. Mixed approximations of natural neighbor type; 2.4.1. Considering the restriction of incompressibility; 2.4.2. Mixed approximations in the Galerkin method; 2.4.3. Natural neighbor partition of unity; 2.4.3.1. Partition of unity method; 2.4.3.2. Enrichment of the natural neighbor interpolants; 2.5. High order natural neighbor interpolants; 2.5.1. Hiyoshi-Sugihara interpolant 2.5.2. The De Boor algorithm for B-splines2.5.3. B-spline surfaces and natural neighboring; 2.5.3.1. Some definitions; 2.5.3.2. Surface properties; 2.5.3.3. The case of repeated nodes; Chapter 3. Numerical Aspects; 3.1. Searching for natural neighbors; 3.2. Calculation of NEM shape functions of the Sibson type; 3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram(CVD); 3.2.1.1. Look for a tetrahedron which contains point x; 3.2.1.2. Note concerning the problem of flat tetrahedrons; 3.2.2. Stage-2: calculation of the volume measurement common to ćx and cv 3.2.2.1. By the recursive Lasserre algorithm3.2.2.2. By means of a complementary volume; 3.2.2.3. By topological approach based on the CVD; 3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization(CDT); 3.2.2.5. Using the Watson algorithm; 3.2.3. Comparative test of the various algorithms; 3.3. Numerical integration; 3.3.1. Decomposition of shape function supports; 3.3.2. Stabilized nodal integration; 3.3.3. Discussion in connection with various quadratures; 3.3.3.1. 2D patch test with a technique of decomposition of shape function supports 3.3.3.2. 2D patch test with stabilized nodal integration3.3.3.3. 3D patch tests; 3.4. NEM on an octree structure; 3.4.1. Structure of the data; 3.4.1.1. Description of the geometry; 3.4.1.2. Interpolation on a quadtree; 3.4.1.3. Numerical integration; 3.4.2. Application of the boundary conditions - interface conditions; 3.4.2.1. Dirichlet-type boundary conditions: use of R-functions; 3.4.2.2. Neumann-type boundary conditions; 3.4.2.3. Partition of unity method; Chapter 4. Applications in the Mechanics of Structures and Processes; 4.1. Two- and three-dimensional elasticity 4.2. Indicators and estimators of error: adaptivity |
Record Nr. | UNINA-9910830394703321 |
Chinesta Francisco | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|