top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Analytics in Mining Engineering : Leverage Advanced Analytics in Mining Industry to Make Better Business Decisions / / edited by Ali Soofastaei
Advanced Analytics in Mining Engineering : Leverage Advanced Analytics in Mining Industry to Make Better Business Decisions / / edited by Ali Soofastaei
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (XIII, 747 p. 337 illus., 215 illus. in color. :) : online resource
Disciplina 622.028
622.0285
Soggetto topico Operations research
Management science
Data mining
Industrial engineering
Production engineering
Mathematical models
Computer science
Operations Research, Management Science
Data Mining and Knowledge Discovery
Industrial and Production Engineering
Mathematical Modeling and Industrial Mathematics
Computer Science
ISBN 9783030915896
3030915891
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced analytics for mining industry.-Advanced analytics for modern mining.-Advanced analytics for ethical considerations in mining industry -- Advanced analytics for mining method selection -- Advanced analytics for valuation of mine prospects and mining projects -- Advanced analytics for mine exploration.-Advanced analytics for surface mining -- Advanced analytics for surface extraction -- Advanced analytics for surface mines planning -- Advanced analytics for dynamic programming -- Advanced analytics for drilling and blasting -- Advanced analytics for rock fragmentation -- Advanced analytics for rock blasting and explosives engineering in mining -- Advanced analytics for rock breaking -- Advanced analytics for mineral processing -- Advanced analytics for decreasing greenhouse gas emissions in surface mines -- Advanced analytics for Haul Trucks energy-efficiency improvement in surface mines -- Advanced analytics for mine materials handling -- Advanced analytics for mine materials transportation -- Advanced analytics for energy-efficiency improvement in mine-railway operation -- Advanced analytics for hard rock violent failure in underground excavations -- Advanced analytics for heat stress management in underground mines -- Advanced analytics for autonomous underground mining -- Advanced analytics for spatial variability of rock mass properties in underground mines.
Record Nr. UNINA-9910548170803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Artificial Intelligence in Tunnelling and Underground Space Technology / / by Danial Jahed Armaghani, Aydin Azizi
Applications of Artificial Intelligence in Tunnelling and Underground Space Technology / / by Danial Jahed Armaghani, Aydin Azizi
Autore Armaghani Danial Jahed
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (IX, 70 p. 16 illus., 15 illus. in color.)
Disciplina 622.028
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Engineering geology
Statistical Physics
Geotechnical engineering
Mathematical statistics
Manufactures
Engineering mathematics
Geoengineering
Geotechnical Engineering and Applied Earth Sciences
Mathematical Statistics
Machines, Tools, Processes
Engineering Mathematics
ISBN 981-16-1034-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance -- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem -- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.
Record Nr. UNINA-9910483423303321
Armaghani Danial Jahed  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mining equipment reliability, maintainability and safety / B. S. Dhillon
Mining equipment reliability, maintainability and safety / B. S. Dhillon
Autore Dhillon, Balbir S.
Pubbl/distr/stampa London : Springer, 2010
Descrizione fisica XVII, 201 p. ; 24 cm
Disciplina 622.028
Collana Springer series in reliability engineering
Soggetto non controllato Macchine - Sicurezza - Affidabilità
ISBN 978-1-84996-770-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990010092760403321
Dhillon, Balbir S.  
London : Springer, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui