Evolutionary Methods Based Modeling and Analysis of Solar Thermal Systems : A Case Studies Approach / / edited by Biplab Das, Jagadish
| Evolutionary Methods Based Modeling and Analysis of Solar Thermal Systems : A Case Studies Approach / / edited by Biplab Das, Jagadish |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (143 pages) |
| Disciplina | 621.472 |
| Collana | Mechanical Engineering Series |
| Soggetto topico |
Solar energy
Renewable energy sources Electric power-plants Building information modeling Mathematical models Solar Thermal Energy Renewable Energy Power Stations Building Information Modeling Mathematical Modeling and Industrial Mathematics |
| ISBN |
9783031276354
9783031276347 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Modeling and optimization of energetic and exergetic performance of solar air collector -- Expert system based thermal performance analysis of corrugated absorber plate based solar air collector -- Investigation of thermal performance of SAC variables using fuzzy logic-based expert system -- Sustainability assessment of solar air collector using deep learning. |
| Record Nr. | UNINA-9910720076103321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Performance and durability assessment [e-book] : optical materials for solar thermal systems / edited by Michael Köhl ... [et al.]
| Performance and durability assessment [e-book] : optical materials for solar thermal systems / edited by Michael Köhl ... [et al.] |
| Pubbl/distr/stampa | Amsterdam ; Boston : Elsevier, 2004 |
| Descrizione fisica | xv, 395 p. : ill. ; 25 cm |
| Disciplina | 621.472 |
| Altri autori (Persone) | Köhl, Michael |
| Soggetto topico |
Solar thermal energy
Solar collectors Optical materials |
| Soggetto genere / forma | Electronic books. |
| ISBN |
9780080444017
0080444016 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-Introduction to the performance and durability assessment of optical materials for solar thermal systems -- -Materials performance and system performance -- -Environmental stress conditions -- -Durability assessment and service lifetime prediction -- -Methods for reducing environmental stress in solar collectors -- -Modeling of microclimates, ventilation rate testing procedures, and case studies on polymeric glazings
PART 1: INTRODUCTION -- Introduction to the performance and durability assessment of optical materials for solar thermal systems / B. Carlsson ... [et al.] -- PART 2: MATERIALS PERFORMANCE AND SYSTEM PERFORMANCE -- Opticla properties and measurements / A. Roos -- Performance models of solar collectors and systems / U. Frei -- System performance and testing / U. Frei, H. Oversloot -- Performance requirements and criteria / M. Köhl -- Performance indicators / M. Köhl, G. Jorgensen -- PART 3: ENVIRONMENTAL STRESS CONDITIONS -- Environmental stress conditions / M. Heck, M. Kohl -- Measurements of environmental stress conditions and evaluation for service life prediction / S. Brunold ... [et al.] -- Evaluation of the stress conditions / M. Heck, M. Köhl -- Correlation between microclimate and macroclimate / O. Holck ... [et al.] -- PART 4: DURABILITY ASSESSMENT AND SERVICE LIFETIME PREDICTION -- General methodology ; Initial risk analysis of potential failure modes ; Qualification testing / B. Carlsson -- Accelerated indoor testing / S. Brunold ... [et al.] -- Service life prediction from results of accelerated aging / B. Carlsson -- Nonmechanistic phenomenological treatment of glazings and reflectors / G. Jorgensen -- Outdoor exposure testing / G. Jorgensen -- Analytical techniques for studying solar materials degradation processes / K. Möller -- PART 5: METHODS FOR REDUCING ENVIRONMENTAL STRESS IN SOLAR COLLECTORS -- Rain tightness / O. Holck, S. Svendsen -- Optimization of the ventilation rate in flat-plate collectors / M. Heck ... [et al.] -- Guidelines for limiting environmental stress factors in glazed, ventilated solar collectors / O. Holck, S. Svendsen -- Modeling of microclimates / O. Holck, S. Svendsen -- Ventilation rate testing procedure / O. Holck -- PART 6: CASE STUDIES ON POLYMERIC GLAZING -- Screening tests of candidate polymeric glazings / G. Jorgensen -- Case study on polymeric glazings / G. Jorgensen ... [et al.] |
| Record Nr. | UNISALENTO-991003232009707536 |
| Amsterdam ; Boston : Elsevier, 2004 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The performance of concentrated solar power (CSP) systems : analysis, measurement and assessment / / edited by Peter Heller
| The performance of concentrated solar power (CSP) systems : analysis, measurement and assessment / / edited by Peter Heller |
| Autore | Heller Peter (Aerospace engineer) |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Cambridge, Massachusetts : , : Woodhead Publishing, an imprint of Elsevier, , [2017] |
| Descrizione fisica | 1 online resource (vi, 290 pages) : illustrations (chiefly color) |
| Disciplina | 621.472 |
| Collana | Woodhead Publishing Series in Energy |
| Soggetto topico |
Solar energy - Research
Solar collectors |
| ISBN | 0-08-100447-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction to CSP systems and performance / P. Heller -- Principles of CSP performance assessment / N. Janotte, S. Wilbert, F. Sallaberry, M. Schroedter-Homscheidt, L. Ramirez -- Mirrors / A. Fernandex-Garcia, F. Sutter, J. Fernadndex-Reche, E. Lupfert -- Receivers / J. Pernpeintner -- System performance measurements / U. Herrmann, D. Kearney, M. Roger, C. Prahl -- Assessment of durability and accelerated aging methodology / R. Sutter, A. Ferandex-Garcia, J. Wette, F. Wiesinger -- New methods and instruments for performance and durability assessment / M. Roger, C. Prahl, J. Pernpeintner, F. Sutter -- Methods to provide meteorological forecasts for optimum CSP systems operations / M. Schroedter-Homscheidt, S. Wilbert. |
| Record Nr. | UNINA-9910583010203321 |
Heller Peter (Aerospace engineer)
|
||
| Cambridge, Massachusetts : , : Woodhead Publishing, an imprint of Elsevier, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Photovoltaic conversion of concentrated sunlight / V. M. Andreev, V. A. Grilikhes, V. D. Rumyantsev
| Photovoltaic conversion of concentrated sunlight / V. M. Andreev, V. A. Grilikhes, V. D. Rumyantsev |
| Autore | Andreev, Viacheslav Mikhailovich |
| Pubbl/distr/stampa | Chichester [etc.], : Wiley, c1997 |
| Descrizione fisica | XIV, 294 p. : ill. ; 25 cm. |
| Disciplina |
621.47
621.472 |
| Altri autori (Persone) |
Grilikhes, Vladimir Aleksandrovich
Rumyantsev, Valerii Dmitrievich |
| Soggetto topico |
Sole - Energia - Utilizzazione
Pannelli solari |
| ISBN | 0471967653 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-MIL0349594 |
Andreev, Viacheslav Mikhailovich
|
||
| Chichester [etc.], : Wiley, c1997 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Solar Energy Concentrators : Essentials and Applications
| Solar Energy Concentrators : Essentials and Applications |
| Autore | Altalhi Tariq |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 621.472 |
| Altri autori (Persone) | LuqmanMohammad |
| Soggetto topico |
Solar concentrators
Solar energy |
| ISBN |
9781394204533
1394204531 9781394204526 1394204523 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Basics of Solar Energy Concentrators -- 1.1 Introduction -- 1.2 Solar Tracking Systems (STS) -- 1.2.1 Types of Solar Trackers Based on Techniques -- 1.2.2 Passive Solar Tracker -- 1.2.3 Active Solar Tracker Active -- 1.2.3.1 The Single Axis of the Solar Tracker -- 1.2.3.2 Dual-Axis System Solar Tracker -- 1.2.4 Chronological Solar Tracker -- 1.3 Azimuth-Elevation Sun-Tracker -- 1.3.1 Steps of Evaluation of the Azimuth Angle -- 1.3.2 Sun-Tracking Angles -- 1.3.3 Coordinate Transformation -- 1.3.4 The Incident Sunray and Ray/Plane Algorithm -- 1.3.5 Levelized Cost of Electricity (LCOE) -- 1.3.6 Layout Configuration -- 1.3.7 Annual Energy Generation -- 1.4 Solar Radiation Models (SR Model) -- 1.4.1 Global, Direct, Diffuse Model SR -- 1.4.1.1 Ground-Albedo -- 1.4.2 Isotropic Models -- 1.4.3 Anisotropic Models -- 1.4.4 Liu and Jordan Model (LJ) -- 1.4.5 Koronakis Model (K.O.) -- 1.4.6 Hay and Davies Model (HD) -- 1.4.7 Hay and Davies, Klucher, and Reindl Models (HDKR) -- 1.5 The Axis of Symmetry by the Concentrator's Focus on the Radiation Receiver -- 1.5.1 Relationship Between Coordinates of Ray Incidence Points on the Reflecting Surface and the Radiation Receiver -- 1.5.2 For the Upper Semi-Half, the Distribution Ratio of Concentration -- 1.5.3 For the Lower Semi-Half, the Distribution Ratio of the Concentrator -- 1.5.4 Optical Efficiency (çdis) -- 1.5.5 Analysis of Concentrator Design -- 1.6 Computing the Efficiency of Electricity and Heat by Using Different Models -- 1.6.1 Planar Solar Energy Systems -- 1.6.2 Biaxial Models -- 1.6.2.1 Drawback of the Model -- 1.6.3 Annual Direct Irradiation -- 1.7 Conclusion and Outlook -- References -- Chapter 2 Solar Energy Concentrator-Based Theories -- 2.1 Introduction -- 2.1.1 Photovoltaic Energy Conversion.
2.1.2 Solar Energy Concentrator (SEC) -- 2.2 Solar Energy Concentrator-Based Theory -- Conclusion -- Acknowledgement -- References -- Chapter 3 Principles of Solar Energy Concentrators -- 3.1 Solar Energy Concentrator -- 3.1.1 Solar Energy Across the Entire Electromagnetic Spectrum -- 3.2 Components of Solar Concentrators -- 3.2.1 Primary Concentrators -- 3.2.2 Secondary Concentrators -- 3.2.3 Receiving Energy Collectors -- 3.3 Properties of Solar Concentrator Material -- 3.4 Working Principle of Solar Energy Concentrators -- 3.5 Types of Solar Energy Concentrators -- 3.5.1 Parabolic Concentrators -- 3.5.1.1 Parabolic Trough Concentrators -- 3.5.1.2 Parabolic Dish Concentrators -- 3.5.2 Hyperboloid Solar Concentrators -- 3.5.3 Fresnel Lens Concentrators -- 3.5.3.1 Fresnel Lens Imaging Solar Concentrators -- 3.5.3.2 Non-Imaging Solar Concentrators with Fresnel Lenses -- 3.5.4 Compound Parabolic Concentrators (CPCs) -- 3.5.5 Dielectric Totally Internally Reflecting Concentrators (DTIRCs) -- 3.5.6 Flat High-Concentrated Devices -- 3.5.7 Quantum Dot Concentrators (QDCs) -- 3.6 Absorption Coefficients for Selected Carrier Materials -- 3.7 Thermodynamic Limits -- 3.8 Properties of Quantum Dots -- 3.9 Optical Limits of Quantum Dot Concentrators (QDCs) -- 3.9.1 Optical Absorption and Transmission -- 3.9.2 Electrical Power Measurement -- 3.10 Optical Limits of LSCs (Luminescent Solar Concentrators) -- Conclusion -- References -- Chapter 4 Limitations of Solar Concentrators -- 4.1 Solar Concentrator -- 4.2 Luminescent Solar Concentrators -- 4.2.1 Operation of LCs -- 4.3 Ideal Concentrator -- 4.4 Limitation Factors -- 4.5 Photovoltaic Efficiency -- 4.5.1 Construction and Operations -- 4.5.2 Efficiency -- 4.6 Band Gap -- 4.7 Reabsorption Loss -- 4.8 Temperature -- 4.9 Thermal Properties -- 4.10 Concentration Ratio -- 4.11 Acceptance Angle -- 4.12 Economic Aspect. 4.13 Scaling of Solar Concentrators -- 4.14 Future Perspectives -- 4.15 Conclusion -- References -- Chapter 5 An Array of Aspects in the Feasibility of Different Concentrated Solar Power Technologies -- 5.1 Introduction -- 5.2 AHP Technique -- 5.3 Results and Discussion -- 5.4 Conclusions -- References -- Chapter 6 Solar Energy Concentrator Research: Past and Present -- 6.1 Introduction -- 6.2 History -- 6.3 Types of Solar Energy Concentrators -- 6.3.1 Parabolic Trough Concentrators -- 6.3.2 Dish Concentrators -- 6.3.3 Heliostat Solar Concentrators and Central Receiver -- 6.3.4 Fresnel Lens Concentrators -- 6.4 Conclusion -- References -- Chapter 7 Various Storage Possibilities for Concentrated Solar Power -- 7.1 Introduction -- 7.2 Fundamentals of Solar Power Concentration -- 7.3 Types of CSP Technologies -- 7.4 Energy Storage Techniques for CSP Systems -- 7.4.1 How Thermal Energy Storage Functions in CSP -- 7.4.2 Sensible Storage Materials -- 7.4.2.1 Liquid Medium -- 7.4.2.2 Solid Medium -- 7.4.2.3 Gaseous Medium -- 7.4.2.4 Nanofluids -- 7.4.3 Phase Change Materials (PCM) -- 7.4.4 Thermochemical -- 7.4.5 Thermal Battery Energy Storage -- 7.4.6 Hydrogen Energy Storage -- 7.4.7 Compressed Air and Pumped Hydro Energy Storage -- 7.4.7.1 Compressed Air Storage -- 7.4.7.2 Pumped Hydro Energy Storage -- 7.5 Summary -- References -- Chapter 8 Uranyl-Doped PMMA-Based Solar Concentrator -- 8.1 Introduction -- 8.2 Luminescent Solar Cell Concentrators -- 8.3 Kind of Polymer Used in LSCs -- 8.4 Choice of Fluorescent Material -- 8.4.1 Historical Tie-Up of Luminescent Solar Concentrators with Organic Molecules -- 8.5 Photosensitization of Uranium Salt -- 8.6 Effect of Concentration -- 8.7 Effect of Change in pH -- 8.8 Losses in Uranyl-Doped LSC -- 8.8.1 Advantage of Uranyl Doping Compared to Organic Material -- 8.9 Co-Doping of Uranyl-Based LSCs. 8.10 Competitive Rare Earth Metals Used in LSCs -- 8.10.1 Neodymium (Nd3+)-Doped Glasses -- 8.10.2 Neodymium (Nd3+) Co-Doped with Yb3+ -- 8.10.3 Co-Doping of Transition Metal Along with Neodymium (III)- and Ytterbium (III)-Doped Glasses -- 8.10.4 Rare Earth Metal Attached to Organic Ligands -- 8.10.4.1 [Eu(tfn)3(DPEPO)] -- 8.10.4.2 Eu3+-Pyridine-Based Complexes -- 8.10.5 Nb3+ and Yb3+ Incorporated in YAG or GGG -- 8.11 Alternative Applications of ISCs -- 8.11.1 Switchable "Smart" Window -- 8.11.2 Day Lighting -- 8.12 Conclusion -- Acknowledgement -- References -- Chapter 9 Deployment of Solar Energy Concentrators Across the Globe -- 9.1 Introduction -- 9.2 Solar Energy Concentrators -- 9.2.1 Benefits of Using Solar Energy Concentrators -- 9.2.2 Applications of Solar Energy Concentrators -- 9.3 Classification Based on Point or Line Concentration of Sunlight -- 9.3.1 Point Solar Concentrators -- 9.3.1.1 Heliostat Field Collectors (HFCs) -- 9.3.1.2 Parabolic Dish Collectors (PDCs) -- 9.3.2 Line Solar Concentrators -- 9.3.2.1 Linear Fresnel Solar Reflectors (LFRs) -- 9.3.2.2 Parabolic Trough Collectors (PTCs) -- 9.4 Classification Based on Optical Principle -- 9.4.1 Reflector -- 9.4.2 Refractor -- 9.4.3 Hybrid -- 9.4.4 Luminescent -- 9.5 Deployment of Solar Energy Concentrators -- 9.6 SWOT Analysis of Deployment of Solar Energy Concentrators -- 9.6.1 Strengths -- 9.6.2 Weaknesses -- 9.6.3 Opportunities -- 9.6.4 Threats -- 9.6.5 Economics of Solar Energy Concentrators -- 9.6.6 Policies and Regulations -- 9.6.7 Market Outlook of Solar Concentrators -- 9.6.8 Competitive Environment for Solar Concentrators -- 9.6.9 Market Segmentation Research for Solar Concentrators -- 9.6.9.1 Solar Power Towers -- 9.6.9.2 Based on End-User -- 9.7 Based on Application -- 9.8 Conclusion Solar Power Towers -- References. Chapter 10 Molten Salt Thermal Storage Systems for Solar Energy Concentrators -- 10.1 Introduction -- 10.2 Molten Salt as a Thermal Storage System -- 10.3 Working Operation of Molten Salt Storage Systems -- 10.4 Strategies for Concentrating Solar Power -- 10.4.1 Stationary Solar Collectors -- 10.4.2 Sun-Tracking Solar Collectors -- 10.5 CSE Technology and Molten Salt Solar Power Storage Impediments -- 10.6 Applications of CSE and Recent Development in Molten Salt -- 10.7 Conclusion -- References -- Chapter 11 Production of Synthetic Fuels Using Concentrated Solar Thermal Energy -- 11.1 Introduction -- 11.2 What is Synthetic Fuel? -- 11.3 What is Concentrated Solar Thermal Energy? -- 11.4 Solar Hydrogen Production -- 11.4.1 Approaches to Solar Hydrogen Production -- 11.4.1.1 Photocatalytic Water Splitting (PC Water Splitting) -- 11.4.1.2 Photo-Electrochemical -- 11.4.1.3 Photovoltaic-Electrochemical (PV-EC) Water Splitting -- 11.4.1.4 Solar Thermo Chemical (STC) Water Splitting -- 11.4.1.5 Photothermal Catalytic H2 Synthesis (from Fossil Fuels) -- 11.4.1.6 Photobiological (PB) H2 Production -- 11.5 Hydrogen Production by S-I Thermo-Chemical Cycle Using Solar Thermal Energy -- 11.5.1 Chemical Reactions Involved in S-I Cycle -- 11.5.2 Advantages and Disadvantages of the S-I Cycle -- 11.6 Thermodynamic Analysis of Direct Water Decomposition -- 11.7 Recent Advances for H2 Production -- 11.7.1 From Overall Photocatalytic Water Splitting Hydrogen Production -- 11.7.2 H2 Production from PEC Water Splitting -- 11.7.3 H2 Production from PV-EC Overall Water Splitting -- 11.7.4 Hydrogen (H2) Production by STC Water Splitting -- 11.7.5 Development of New STC Cycles -- 11.7.6 Solar Thermal Technology at Higher Temperature -- 11.7.7 Nanomaterials -- 11.7.8 Advanced Reactor Design. 11.8 Methanol Production Principle by H2 Produced with Concentrated Solar Thermal Energy. |
| Record Nr. | UNINA-9911020095203321 |
Altalhi Tariq
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||