| Autore |
Ding Yu (Electrical and Computer Engineer)
|
| Edizione | [1st ed.] |
| Pubbl/distr/stampa |
Boca Raton : , : CRC Press, , [2020]
|
| Descrizione fisica |
1 online resource (425 pages)
|
| Disciplina |
621.45
|
| Soggetto topico |
Wind power - Data processing
|
| ISBN |
1-5231-3446-1
0-429-49097-6
0-429-95650-9
0-429-95651-7
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1 WIND ENERGY BACKGROUND -- 1.2 ORGANIZATION OF THIS BOOK -- 1.2.1 Who Should Use This Book -- 1.2.2 Note for Instructors -- 1.2.3 Datasets Used in the Book -- Part I: Wind Field Analysis -- Chapter 2: A Single Time Series Model -- 2.1 TIME SCALE IN SHORT- TERM FORECASTING -- 2.2 SIMPLE FORECASTING MODELS -- 2.2.1 Forecasting Based on Persistence Model -- 2.2.2 Weibull Distribution -- 2.2.3 Estimation of Parameters in Weibull Distribution -- 2.2.4 Goodness of Fit -- 2.2.5 Forecasting Based on Weibull Distribution -- 2.3 DATA TRANSFORMATION AND STANDARDIZATION -- 2.4 AUTOREGRESSIVE MOVING AVERAGE MODELS -- 2.4.1 Parameter Estimation -- 2.4.2 Decide Model Order -- 2.4.3 Model Diagnostics -- 2.4.4 Forecasting Based on ARMA Model -- 2.5 OTHER METHODS -- 2.5.1 Kalman Filter -- 2.5.2 Support Vector Machine -- 2.5.3 Artificial Neural Network -- 2.6 PERFORMANCE METRICS -- 2.7 COMPARING WIND FORECASTING METHODS -- Chapter 3: Spatio temporal Models -- 3.1 COVARIANCE FUNCTIONS AND KRIGING -- 3.1.1 Properties of Covariance Functions -- 3.1.2 Power Exponential Covariance Function -- 3.1.3 Kriging -- 3.2 SPATIO-TEMPORAL AUTOREGRESSIVE MODELS -- 3.2.1 Gaussian Spatio-temporal Autoregressive Model -- 3.2.2 Informative Neighborhood -- 3.2.3 Forecasting and Comparison -- 3.3 SPATIO-TEMPORAL ASYMMETRY AND SEPARABILITY -- 3.3.1 Definition and Quantification -- 3.3.2 Asymmetry of Local Wind Field -- 3.3.3 Asymmetry Quantification -- 3.3.4 Asymmetry and Wake Effect -- 3.4 ASYMMETRIC SPATIO-TEMPORAL MODELS -- 3.4.1 Asymmetric Non-separable Spatio-temporal Model -- 3.4.2 Separable Spatio-temporal Models -- 3.4.3 Forecasting Using Spatio-temporal Model -- 3.4.4 Hybrid of Asymmetric Model and SVM -- 3.5 CASE STUDY.
Chapter 4: Regime-switching Methods for Forecasting -- 4.1 REGIME-SWITCHING AUTOREGRESSIVE MODEL -- 4.1.1 Physically Motivated Regime Definition -- 4.1.2 Data-driven Regime Determination -- 4.1.3 Smooth Transition between Regimes -- 4.1.4 Markov Switching between Regimes -- 4.2 REGIME-SWITCHING SPACE-TIME MODEL -- 4.3 CALIBRATION IN REGIME SWITCHING METHOD -- 4.3.1 Observed Regime Changes -- 4.3.2 Unobserved Regime Changes -- 4.3.3 Framework of Calibrated Regime-switching -- 4.3.4 Implementation Procedure -- 4.4 CASE STUDY -- 4.4.1 Modeling Choices and Practical Considerations -- 4.4.2 Forecasting Results -- Part II: Wind Turbine Performance Analysis -- Chapter 5: Power Curve Modeling and Analysis -- 5.1 IEC BINNING: SINGLE-DIMENSIONAL POWER CURVE -- 5.2 KERNEL-BASED MULTI-DIMENSIONAL POWER CURVE -- 5.2.1 Need for Nonparametric Modeling Approach -- 5.2.2 Kernel Regression and Kernel Density Estimation -- 5.2.3 Additive Multiplicative Kernel Model -- 5.2.4 Bandwidth Selection -- 5.3 OTHER DATA SCIENCE METHODS -- 5.3.1 k-Nearest Neighborhood Regression -- 5.3.2 Tree-based Regression -- 5.3.3 Spline-based Regression -- 5.4 CASE STUDY -- 5.4.1 Model Parameter Estimation -- 5.4.2 Important Environmental Factors Affecting Power Output -- 5.4.3 Estimation Accuracy of Different Models -- Chapter 6: Production Efficiency Analysis and Power Curve -- 6.1 THREE EFFICIENCY METRICS -- 6.1.1 Availability -- 6.1.2 Power Generation Ratio -- 6.1.3 Power Coefficient -- 6.2 COMPARISON OF EFFICIENCY METRICS -- 6.2.1 Distributions -- 6.2.2 Pairwise Differences -- 6.2.3 Correlations and Linear Relationships -- 6.2.4 Overall Insight -- 6.3 A SHAPE-CONSTRAINED POWER CURVE MODEL -- 6.3.1 Background of Production Economics -- 6.3.2 Average Performance Curve -- 6.3.3 Production Frontier Function and Effi ciency Metric -- 6.4 CASE STUDY.
Chapter 7: Quantification of Turbine Upgrade -- 7.1 PASSIVE DEVICE INSTALLATION UPGRADE -- 7.2 COVARIATE MATCHING BASED APPROACH -- 7.2.1 Hierarchical Subgrouping -- 7.2.2 One-to-One Matching -- 7.2.3 Diagnostics -- 7.2.4 Paired t-tests and Upgrade Quantification -- 7.2.5 Sensitivity Analysis -- 7.3 POWER CURVE-BASED APPROACH -- 7.3.1 The Kernel Plus Method -- 7.3.2 Kernel Plus Quantification Procedure -- 7.3.3 Upgrade Detection -- 7.3.4 Upgrade Quantification -- 7.4 AN ACADEMIA-INDUSTRY CASE STUDY -- 7.4.1 The Power-vs-Power Method -- 7.4.2 Joint Case Study -- 7.4.3 Discussion -- 7.5 COMPLEXITIES IN UPGRADE QUANTIFICATION -- Chapter 8: Wake Effect Analysis -- 8.1 CHARACTERISTICS OF WAKE EFFECT -- 8.2 JENSEN'S MODEL -- 8.3 A DATA BINNING APPROACH -- 8.4 SPLINE-BASED SINGLE-WAKE MODEL -- 8.4.1 Baseline Power Production Model -- 8.4.2 Power Diff erence Model for Two Turbines -- 8.4.3 Spline Model with Non-negativity Constraint -- 8.5 GAUSSIAN MARKOV RANDOM FIELD MODEL -- 8.6 CASE STUDY -- 8.6.1 Performance Comparison of Wake Models -- 8.6.2 Analysis of Turbine Wake Effect -- Part III: Wind Turbine Reliability Management -- Chapter 9: Overview of Wind Turbine Maintenance Opti- mization -- 9.1 COST- EFFECTIVE MAINTENANCE -- 9.2 UNIQUE CHALLENGES IN TURBINE MAINTENANCE -- 9.3 COMMON PRACTICES -- 9.3.1 Failure Statistics-Based Approaches -- 9.3.2 Physical Load-Based Reliability Analysis -- 9.3.3 Condition-Based Monitoring or Maintenance -- 9.4 DYNAMIC TURBINE MAINTENANCE OPTIMIZATION -- 9.4.1 Partially Observable Markov Decision Process -- 9.4.2 Maintenance Optimization Solutions -- 9.4.3 Integration of Optimization and Simulation -- 9.5 DISCUSSION -- Chapter 10: Extreme Load Analysis -- 10.1 FORMULATION FOR EXTREME LOAD ANALYSIS -- 10.2 GENERALIZED EXTREME VALUE DISTRIBUTIONS -- 10.3 BINNING METHOD FOR NONSTATIONARY GEV DISTRIBUTION.
10.4 BAYESIAN SPLINE-BASED GEV MODEL -- 10.4.1 Conditional Load Model -- 10.4.2 Posterior Distribution of Parameters -- 10.4.3 Wind Characteristics Model -- 10.4.4 Posterior Predictive Distribution -- 10.5 ALGORITHMS USED IN BAYESIAN INFERENCE -- 10.6 CASE STUDY -- 10.6.1 Selection of Wind Speed Model -- 10.6.2 Pointwise Credible Intervals -- 10.6.3 Binning versus Spline Methods -- 10.6.4 Estimation of Extreme Load -- 10.6.5 Simulation of Extreme Load -- Chapter 11: Computer Simulator-Based Load Analysis -- 11.1 TURBINE LOAD COMPUTER SIMULATION -- 11.1.1 NREL Simulators -- 11.1.2 Deterministic and Stochastic Simulators -- 11.1.3 Simulator versus Emulator -- 11.2 IMPORTANCE SAMPLING -- 11.2.1 Random Sampling for Reliability Analysis -- 11.2.2 Importance Sampling Using Deterministic Simulator -- 11.3 IMPORTANCE SAMPLING USING STOCHASTIC SIMULATORS -- 11.3.1 Stochastic Importance Sampling Method 1 -- 11.3.2 Stochastic Importance Sampling Method 2 -- 11.3.3 Benchmark Importance Sampling Method -- 11.4 IMPLEMENTING STOCHASTIC IMPORTANCE SAMPLING -- 11.4.1 Modeling the Conditional POE -- 11.4.2 Sampling from Importance Sampling Densities -- 11.4.3 The Algorithm -- 11.5 CASE STUDY -- 11.5.1 Numerical Analysis -- 11.5.2 NREL Simulator Analysis -- Chapter 12: Anomaly Detection and Fault Diagnosis -- 12.1 BASICS OF ANOMALY DETECTION -- 12.1.1 Types of Anomalies -- 12.1.2 Categories of Anomaly Detection Approaches -- 12.1.3 Performance Metrics and Decision Process -- 12.2 BASICS OF FAULT DIAGNOSIS -- 12.2.1 Tree-Based Diagnosis -- 12.2.2 Signature-Based Diagnosis -- 12.3 SIMILARITY METRICS -- 12.3.1 Norm and Distance Metrics -- 12.3.2 Inner Product and Angle-Based Metrics -- 12.3.3 Statistical Distance -- 12.3.4 Geodesic Distance -- 12.4 DISTANCE-BASED METHODS -- 12.4.1 Nearest Neighborhood-based Method -- 12.4.2 Local Outlier Factor.
12.4.3 Connectivity-based Outlier Factor -- 12.4.4 Subspace Outlying Degree -- 12.5 GEODESIC DISTANCE BASED METHOD -- 12.5.1 Graph Model of Data -- 12.5.2 MST Score -- 12.5.3 Determine Neighborhood Size -- 12.6 CASE STUDY -- 12.6.1 Benchmark Cases -- 12.6.2 Hydropower Plant Case -- Bibliography -- Index.
|
| Record Nr. | UNINA-9910805596303321 |