top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Critical component wear in heavy duty engines [[electronic resource] /] / P.A. Lakshminarayanan, Nagaraj S. Nayak
Critical component wear in heavy duty engines [[electronic resource] /] / P.A. Lakshminarayanan, Nagaraj S. Nayak
Autore Lakshminarayanan P. A
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.43028/8
Altri autori (Persone) NayakNagaraj S
Soggetto topico Internal combustion engines
Machine parts - Failures
Mechanical wear
ISBN 0-470-82885-4
1-283-27366-7
9786613273666
0-470-82884-6
0-470-82883-8
Classificazione TEC046000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CRITICAL COMPONENT WEAR IN HEAVY DUTY ENGINES; Contents; List of Contributors; Preface; Acknowledgements; PART I: OVERTURE; 1 Wear in the Heavy Duty Engine; 1.1 Introduction; 1.2 Engine Life; 1.3 Wear in Engines; 1.3.1 Natural Aging; 1.4 General Wear Model; 1.5 Wear of Engine Bearings; 1.6 Wear of Piston Rings and Liners; 1.7 Wear of Valves and Valve Guides; 1.8 Reduction in Wear Life of Critical Parts Due to Contaminants in Oil; 1.8.1 Oil Analysis; 1.9 Oils for New Generation Engines with Longer Drain Intervals; 1.9.1 Engine Oil Developments and Trends; 1.9.2 Shift in Engine Oil Technology
1.10 Filters1.10.1 Air Filter; 1.10.2 Oil Filter; 1.10.3 Water Filter; 1.10.4 Fuel Filter; 1.11 Types of Wear of Critical Parts in a Highly Loaded Diesel Engine; 1.11.1 Adhesive Wear; 1.11.2 Abrasive Wear; 1.11.3 Fretting Wear; 1.11.4 Corrosive Wear; References; 2 Engine Size and Life; 2.1 Introduction; 2.2 Engine Life; 2.3 Factors on Which Life is Dependent; 2.4 Friction Force and Power; 2.4.1 Mechanical Efficiency; 2.4.2 Friction; 2.5 Similarity Studies; 2.5.1 Characteristic Size of an Engine; 2.5.2 Velocity; 2.5.3 Oil Film Thickness; 2.5.4 Velocity Gradient; 2.5.5 Friction Force or Power
2.5.6 Indicated Power and Efficiency2.6 Archard's Law of Wear; 2.7 Wear Life of Engines; 2.7.1 Wear Life; 2.7.2 Nondimensional Wear Depth Achieved During Lifetime; 2.8 Summary; Appendix 2.A: Engine Parameters, Mechanical Efficiency and Life; Appendix 2.B: Hardness and Fatigue Limits of Different Copper-Lead-Tin (Cu-Pb-Sn) Bearings; Appendix 2.C: Hardness and Fatigue Limits of Different Aluminium-Tin (Al-Sn) Bearings; References; PART II VALVE TRAIN COMPONENTS; 3 Inlet Valve Seat Wear in High bmep Diesel Engines; 3.1 Introduction; 3.2 Valve Seat Wear
3.2.1 Design Aspects to Reduce Valve Seat Wear Life3.3 Shear Strain and Wear due to Relative Displacement; 3.4 Wear Model; 3.4.1 Wear Rate; 3.5 Finite Element Analysis; 3.6 Experiments, Results and Discussions; 3.6.1 Valve and Seat Insert of Existing Design; 3.6.2 Improved Valve and Seat Insert; 3.7 Summary; 3.8 Design Rule for Inlet Valve Seat Wear in High bmep Engines; References; 4 Wear of the Cam Follower and Rocker Toe; 4.1 Introduction; 4.2 Wear of Cam Follower Surfaces; 4.2.1 Wear Mechanism of the Cam Follower; 4.3 Typical Modes of; 4.4 Experiments on Cam Follower Wear
4.4.1 Follower Measurement4.5 Dynamics of the Valve Train System of the Pushrod Type; 4.5.1 Elastohydrodynamic and Transition of Boundary Lubrication; 4.5.2 Cam and Follower Dynamics; 4.6 Wear Model; 4.6.1 Wear Coefficient; 4.6.2 Valve Train Dynamics and Stress on the Follower; 4.6.3 Wear Depth; 4.7 Parametric Study; 4.7.1 Engine Speed; 4.7.2 Oil Film Thickness; 4.8 Wear of the Cast Iron Rocker Toe; 4.9 Summary; References; PART III LINER, PISTON AND PISTON RINGS; 5 Liner Wear: Wear of Roughness Peaks in Sparse Contact; 5.1 Introduction; 5.2 Surface Texture of Liners and Rings
5.2.1 Surface Finish
Record Nr. UNINA-9910139594803321
Lakshminarayanan P. A  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Critical component wear in heavy duty engines / / P.A. Lakshminarayanan, Nagaraj S. Nayak
Critical component wear in heavy duty engines / / P.A. Lakshminarayanan, Nagaraj S. Nayak
Autore Lakshminarayanan P. A
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.43028/8
Altri autori (Persone) NayakNagaraj S
Soggetto topico Internal combustion engines
Machine parts - Failures
Mechanical wear
ISBN 0-470-82885-4
1-283-27366-7
9786613273666
0-470-82884-6
0-470-82883-8
Classificazione TEC046000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CRITICAL COMPONENT WEAR IN HEAVY DUTY ENGINES; Contents; List of Contributors; Preface; Acknowledgements; PART I: OVERTURE; 1 Wear in the Heavy Duty Engine; 1.1 Introduction; 1.2 Engine Life; 1.3 Wear in Engines; 1.3.1 Natural Aging; 1.4 General Wear Model; 1.5 Wear of Engine Bearings; 1.6 Wear of Piston Rings and Liners; 1.7 Wear of Valves and Valve Guides; 1.8 Reduction in Wear Life of Critical Parts Due to Contaminants in Oil; 1.8.1 Oil Analysis; 1.9 Oils for New Generation Engines with Longer Drain Intervals; 1.9.1 Engine Oil Developments and Trends; 1.9.2 Shift in Engine Oil Technology
1.10 Filters1.10.1 Air Filter; 1.10.2 Oil Filter; 1.10.3 Water Filter; 1.10.4 Fuel Filter; 1.11 Types of Wear of Critical Parts in a Highly Loaded Diesel Engine; 1.11.1 Adhesive Wear; 1.11.2 Abrasive Wear; 1.11.3 Fretting Wear; 1.11.4 Corrosive Wear; References; 2 Engine Size and Life; 2.1 Introduction; 2.2 Engine Life; 2.3 Factors on Which Life is Dependent; 2.4 Friction Force and Power; 2.4.1 Mechanical Efficiency; 2.4.2 Friction; 2.5 Similarity Studies; 2.5.1 Characteristic Size of an Engine; 2.5.2 Velocity; 2.5.3 Oil Film Thickness; 2.5.4 Velocity Gradient; 2.5.5 Friction Force or Power
2.5.6 Indicated Power and Efficiency2.6 Archard's Law of Wear; 2.7 Wear Life of Engines; 2.7.1 Wear Life; 2.7.2 Nondimensional Wear Depth Achieved During Lifetime; 2.8 Summary; Appendix 2.A: Engine Parameters, Mechanical Efficiency and Life; Appendix 2.B: Hardness and Fatigue Limits of Different Copper-Lead-Tin (Cu-Pb-Sn) Bearings; Appendix 2.C: Hardness and Fatigue Limits of Different Aluminium-Tin (Al-Sn) Bearings; References; PART II VALVE TRAIN COMPONENTS; 3 Inlet Valve Seat Wear in High bmep Diesel Engines; 3.1 Introduction; 3.2 Valve Seat Wear
3.2.1 Design Aspects to Reduce Valve Seat Wear Life3.3 Shear Strain and Wear due to Relative Displacement; 3.4 Wear Model; 3.4.1 Wear Rate; 3.5 Finite Element Analysis; 3.6 Experiments, Results and Discussions; 3.6.1 Valve and Seat Insert of Existing Design; 3.6.2 Improved Valve and Seat Insert; 3.7 Summary; 3.8 Design Rule for Inlet Valve Seat Wear in High bmep Engines; References; 4 Wear of the Cam Follower and Rocker Toe; 4.1 Introduction; 4.2 Wear of Cam Follower Surfaces; 4.2.1 Wear Mechanism of the Cam Follower; 4.3 Typical Modes of; 4.4 Experiments on Cam Follower Wear
4.4.1 Follower Measurement4.5 Dynamics of the Valve Train System of the Pushrod Type; 4.5.1 Elastohydrodynamic and Transition of Boundary Lubrication; 4.5.2 Cam and Follower Dynamics; 4.6 Wear Model; 4.6.1 Wear Coefficient; 4.6.2 Valve Train Dynamics and Stress on the Follower; 4.6.3 Wear Depth; 4.7 Parametric Study; 4.7.1 Engine Speed; 4.7.2 Oil Film Thickness; 4.8 Wear of the Cast Iron Rocker Toe; 4.9 Summary; References; PART III LINER, PISTON AND PISTON RINGS; 5 Liner Wear: Wear of Roughness Peaks in Sparse Contact; 5.1 Introduction; 5.2 Surface Texture of Liners and Rings
5.2.1 Surface Finish
Record Nr. UNINA-9910822991303321
Lakshminarayanan P. A  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui