Convection heat transfer / / Adrian Bejan |
Autore | Box George E. P |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2013 |
Descrizione fisica | 1 online resource |
Disciplina | 621.402/25 |
Soggetto topico | Heat - Convection |
ISBN |
1-118-33282-2
1-118-33008-0 1-299-44915-8 1-5231-1013-9 1-118-67162-7 |
Classificazione |
426.3
621.40225 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- List of Symbols -- Chapter 1 Fundamental Principles -- 1.1 Mass Conservation -- 1.2 Force Balances (Momentum Equations) -- 1.3 First Law of Thermodynamics -- 1.4 Second Law of Thermodynamics -- 1.5 Rules of Scale Analysis -- 1.6 Heatlines for Visualizing Convection -- References -- Problems -- Chapter 2 Laminar Boundary Layer Flow -- 2.1 Fundamental Problem in Convective Heat Transfer -- 2.2 Concept of Boundary Layer -- 2.3 Scale Analysis -- 2.4 Integral Solutions -- 2.5 Similarity Solutions -- 2.5.1 Method -- 2.5.2 Flow Solution -- 2.5.3 Heat Transfer Solution -- 2.6 Other Wall Heating Conditions -- 2.6.1 Unheated Starting Length -- 2.6.2 Arbitrary Wall Temperature -- 2.6.3 Uniform Heat Flux -- 2.6.4 Film Temperature -- 2.7 Longitudinal Pressure Gradient: Flow Past a Wedge and Stagnation Flow -- 2.8 Flow Through the Wall: Blowing and Suction -- 2.9 Conduction Across a Solid Coating Deposited on a Wall -- 2.10 Entropy Generation Minimization in Laminar Boundary Layer Flow -- 2.11 Heatlines in Laminar Boundary Layer Flow -- 2.12 Distribution of Heat Sources on a Wall Cooled by Forced Convection -- 2.13 The Flow of Stresses -- References -- Problems -- Chapter 3 Laminar Duct Flow -- 3.1 Hydrodynamic Entrance Length -- 3.2 Fully Developed Flow -- 3.3 Hydraulic Diameter and Pressure Drop -- 3.4 Heat Transfer To Fully Developed Duct Flow -- 3.4.1 Mean Temperature -- 3.4.2 Fully Developed Temperature Profile -- 3.4.3 Uniform Wall Heat Flux -- 3.4.4 Uniform Wall Temperature -- 3.5 Heat Transfer to Developing Flow -- 3.5.1 Scale Analysis -- 3.5.2 Thermally Developing Hagen-Poiseuille Flow -- 3.5.3 Thermally and Hydraulically Developing Flow -- 3.6 Stack of Heat-Generating Plates.
3.7 Heatlines in Fully Developed Duct Flow -- 3.8 Duct Shape for Minimum Flow Resistance -- 3.9 Tree-Shaped Flow -- References -- Problems -- Chapter 4 External Natural Convection -- 4.1 Natural Convection as a Heat Engine in Motion -- 4.2 Laminar Boundary Layer Equations -- 4.3 Scale Analysis -- 4.3.1 High-Pr Fluids -- 4.3.2 Low-Pr Fluids -- 4.3.3 Observations -- 4.4 Integral Solution -- 4.4.1 High-Pr Fluids -- 4.4.2 Low-Pr Fluids -- 4.5 Similarity Solution -- 4.6 Uniform Wall Heat Flux -- 4.7 Effect of Thermal Stratification -- 4.8 Conjugate Boundary Layers -- 4.9 Vertical Channel Flow -- 4.10 Combined Natural and Forced Convection (Mixed Convection) -- 4.11 Heat Transfer Results Including the Effect of Turbulence -- 4.11.1 Vertical Walls -- 4.11.2 Inclined Walls -- 4.11.3 Horizontal Walls -- 4.11.4 Horizontal Cylinder -- 4.11.5 Sphere -- 4.11.6 Vertical Cylinder -- 4.11.7 Other Immersed Bodies -- 4.12 Stack of Vertical Heat-Generating Plates -- 4.13 Distribution of Heat Sources on a Vertical Wall -- References -- Problems -- Chapter 5 Internal Natural Convection -- 5.1 Transient Heating from the Side -- 5.1.1 Scale Analysis -- 5.1.2 Criterion for Distinct Vertical Layers -- 5.1.3 Criterion for Distinct Horizontal Jets -- 5.2 Boundary Layer Regime -- 5.3 Shallow Enclosure Limit -- 5.4 Summary of Results for Heating from the Side -- 5.4.1 Isothermal Sidewalls -- 5.4.2 Sidewalls with Uniform Heat Flux -- 5.4.3 Partially Divided Enclosures -- 5.4.4 Triangular Enclosures -- 5.5 Enclosures Heated from Below -- 5.5.1 Heat Transfer Results -- 5.5.2 Scale Theory of the Turbulent Regime -- 5.5.3 Constructal Theory of Benard Convection -- 5.6 Inclined Enclosures -- 5.7 Annular Space Between Horizontal Cylinders -- 5.8 Annular Space Between Concentric Spheres -- 5.9 Enclosures for Thermal Insulation and Mechanical Strength -- References -- Problems. Chapter 6 Transition to Turbulence -- 6.1 Empirical Transition Data -- 6.2 Scaling Laws of Transition -- 6.3 Buckling of Inviscid Streams -- 6.4 Local Reynolds Number Criterion for Transition -- 6.5 Instability of Inviscid Flow -- 6.6 Transition in Natural Convection on a Vertical Wall -- References -- Problems -- Chapter 7 Turbulent Boundary Layer Flow -- 7.1 Large-Scale Structure -- 7.2 Time-Averaged Equations -- 7.3 Boundary Layer Equations -- 7.4 Mixing Length Model -- 7.5 Velocity Distribution -- 7.6 Wall Friction in Boundary Layer Flow -- 7.7 Heat Transfer in Boundary Layer Flow -- 7.8 Theory of Heat Transfer in Turbulent Boundary Layer Flow -- 7.9 Other External Flows -- 7.9.1 Single Cylinder in Cross Flow -- 7.9.2 Sphere -- 7.9.3 Other Body Shapes -- 7.9.4 Arrays of Cylinders in Cross Flow -- 7.10 Natural Convection Along Vertical Walls -- References -- Problems -- Chapter 8 Turbulent Duct Flow -- 8.1 Velocity Distribution -- 8.2 Friction Factor and Pressure Drop -- 8.3 Heat Transfer Coefficient -- 8.4 Total Heat Transfer Rate -- 8.4.1 Isothermal Wall -- 8.4.2 Uniform Wall Heating -- 8.4.3 Time-Dependent Heat Transfer -- 8.5 More Refined Turbulence Models -- 8.6 Heatlines in Turbulent Flow Near a Wall -- 8.7 Channel Spacings for Turbulent Flow -- References -- Problems -- Chapter 9 Free Turbulent Flows -- 9.1 Free Shear Layers -- 9.1.1 Free Turbulent Flow Model -- 9.1.2 Velocity Distribution -- 9.1.3 Structure of Free Turbulent Flows -- 9.1.4 Temperature Distribution -- 9.2 Jets -- 9.2.1 Two-Dimensional Jets -- 9.2.2 Round Jets -- 9.2.3 Jet in Density-Stratified Reservoir -- 9.3 Plumes -- 9.3.1 Round Plume and the Entrainment Hypothesis -- 9.3.2 Pulsating Frequency of Pool Fires -- 9.3.3 Geometric Similarity of Free Turbulent Flows -- 9.4 Thermal Wakes Behind Concentrated Sources -- References -- Problems. Chapter 10 Convection with Change of Phase -- 10.1 Condensation -- 10.1.1 Laminar Film on a Vertical Surface -- 10.1.2 Turbulent Film on a Vertical Surface -- 10.1.3 Film Condensation in Other Configurations -- 10.1.4 Drop Condensation -- 10.2 Boiling -- 10.2.1 Pool Boiling Regimes -- 10.2.2 Nucleate Boiling and Peak Heat Flux -- 10.2.3 Film Boiling and Minimum Heat Flux -- 10.2.4 Flow Boiling -- 10.3 Contact Melting and Lubrication -- 10.3.1 Plane Surfaces with Relative Motion -- 10.3.2 Other Contact Melting Configurations -- 10.3.3 Scale Analysis and Correlation -- 10.3.4 Melting Due to Viscous Heating in the Liquid Film -- 10.4 Melting By Natural Convection -- 10.4.1 Transition from the Conduction Regime to the Convection Regime -- 10.4.2 Quasisteady Convection Regime -- 10.4.3 Horizontal Spreading of the Melt Layer -- References -- Problems -- Chapter 11 Mass Transfer -- 11.1 Properties of Mixtures -- 11.2 Mass Conservation -- 11.3 Mass Diffusivities -- 11.4 Boundary Conditions -- 11.5 Laminar Forced Convection -- 11.6 Impermeable Surface Model -- 11.7 Other External Forced Convection Configurations -- 11.8 Internal Forced Convection -- 11.9 Natural Convection -- 11.9.1 Mass-Transfer-Driven Flow -- 11.9.2 Heat-Transfer-Driven Flow -- 11.10 Turbulent Flow -- 11.10.1 Time-Averaged Concentration Equation -- 11.10.2 Forced Convection Results -- 11.10.3 Contaminant Removal from a Ventilated Enclosure -- 11.11 Massfunction and Masslines -- 11.12 Effect of Chemical Reaction -- References -- Problems -- Chapter 12 Convection in Porous Media -- 12.1 Mass Conservation -- 12.2 Darcy Flow Model and the Forchheimer Modification -- 12.3 First Law of Thermodynamics -- 12.4 Second Law of Thermodynamics -- 12.5 Forced Convection -- 12.5.1 Boundary Layers -- 12.5.2 Concentrated Heat Sources -- 12.5.3 Sphere and Cylinder in Cross Flow. 12.5.4 Channel Filled with Porous Medium -- 12.6 Natural Convection Boundary Layers -- 12.6.1 Boundary Layer Equations: Vertical Wall -- 12.6.2 Uniform Wall Temperature -- 12.6.3 Uniform Wall Heat Flux -- 12.6.4 Spacings for Channels Filled with Porous Structures -- 12.6.5 Conjugate Boundary Layers -- 12.6.6 Thermal Stratification -- 12.6.7 Sphere and Horizontal Cylinder -- 12.6.8 Horizontal Walls -- 12.6.9 Concentrated Heat Sources -- 12.7 Enclosed Porous Media Heated from the Side -- 12.7.1 Four Heat Transfer Regimes -- 12.7.2 Convection Results -- 12.8 Penetrative Convection -- 12.8.1 Lateral Penetration -- 12.8.2 Vertical Penetration -- 12.9 Enclosed Porous Media Heated from Below -- 12.9.1 Onset of Convection -- 12.9.2 Darcy Flow -- 12.9.3 Forchheimer Flow -- 12.10 Multiple Flow Scales Distributed Nonuniformly -- 12.10.1 Heat Transfer -- 12.10.2 Fluid Friction -- 12.10.3 Heat Transfer Rate Density: The Smallest Scale for Convection -- 12.11 Natural Porous Media: Alternating Trees -- References -- Problems -- Appendixes -- A Constants and Conversion Factors -- B Properties of Solids -- C Properties of Liquids -- D Properties of Gases -- E Mathematical Formulas -- Author Index -- Subject Index. |
Record Nr. | UNINA-9910822544203321 |
Box George E. P | ||
Hoboken, N.J., : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convective heat transfer [[electronic resource] ] : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910139520103321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convective heat transfer [[electronic resource] ] : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910830787003321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convective heat transfer : solved problems / / Michel Favre-Marinet, Sedat Tardu |
Autore | Favre-Marinet Michel <1947-> |
Pubbl/distr/stampa | Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 |
Descrizione fisica | 1 online resource (393 p.) |
Disciplina |
536.25
621.402/25 |
Altri autori (Persone) | TarduSedat <1959-> |
Collana | ISTE |
Soggetto topico |
Heat - Convection
Heat - Transmission |
ISBN |
1-118-61900-5
1-282-68414-0 9786612684142 0-470-61189-8 0-470-61043-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Convective Heat Transfer; Table of Contents; Foreword; Preface; Chapter 1. Fundamental Equations, Dimensionless Numbers; 1.1. Fundamental equations; 1.1.1. Local equations; 1.1.2. Integral conservation equations; 1.1.3. Boundary conditions; 1.1.4. Heat-transfer coefficient; 1.2. Dimensionless numbers; 1.3. Flows with variable physical properties: heat transfer in a laminar Couette flow; 1.3.1. Description of the problem; 1.3.2. Guidelines; 1.3.3. Solution; 1.4. Flows with dissipation; 1.4.1. Description of the problem; 1.4.2. Guidelines; 1.4.3. Solution; 1.5. Cooling of a sphere by a gas flow
1.5.1. Description of the problem1.5.2. Guidelines; 1.5.3. Solution; Chapter 2. Laminar Fully Developed Forced Convection in Ducts; 2.1. Hydrodynamics; 2.1.1. Characteristic parameters; 2.1.2. Flow regions; 2.2. Heat transfer; 2.2.1. Thermal boundary conditions; 2.2.2. Bulk temperature; 2.2.3. Heat-transfer coefficient; 2.2.4. Fully developed thermal region; 2.3. Heat transfer in a parallel-plate channel with uniform wall heat flux; 2.3.1. Description of the problem; 2.3.2. Guidelines; 2.3.3. Solution 2.4. Flow in a plane channel insulated on one side and heated at uniform temperature on the opposite side2.4.1. Description of the problem; 2.4.2. Guidelines; 2.4.3. Solution; Chapter 3. Forced Convection in Boundary Layer Flows; 3.1. Hydrodynamics; 3.1.1. Prandtl equations; 3.1.2. Classic results; 3.2. Heat transfer; 3.2.1. Equations of the thermal boundary layer; 3.2.2. Scale analysis; 3.2.3. Similarity temperature profiles; 3.3. Integral method; 3.3.1. Integral equations; 3.3.2. Principle of resolution using the integral method; 3.4. Heated jet nozzle; 3.4.1. Description of the problem 3.4.2. Solution3.5. Asymptotic behavior of thermal boundary layers; 3.5.1. Description of the problem; 3.5.2. Guidelines; 3.5.3. Solution; 3.6. Protection of a wall by a film of insulating material; 3.6.1. Description of the problem; 3.6.2. Guidelines; 3.6.3. Solution; 3.7. Cooling of a moving sheet; 3.7.1. Description of the problem; 3.7.2. Guidelines; 3.7.3. Solution; 3.8. Heat transfer near a rotating disk; 3.8.1. Description of the problem; 3.8.2. Guidelines; 3.8.3. Solution; 3.9. Thermal loss in a duct; 3.9.1. Description of the problem; 3.9.2. Guidelines; 3.9.3. Solution 3.10. Temperature profile for heat transfer with blowing3.10.1. Description of the problem; 3.10.2. Solution; Chapter 4. Forced Convection Around Obstacles; 4.1. Description of the flow; 4.2. Local heat-transfer coefficient for a circular cylinder; 4.3. Average heat-transfer coefficient for a circular cylinder; 4.4. Other obstacles; 4.5. Heat transfer for a rectangular plate in cross-flow; 4.5.1. Description of the problem; 4.5.2. Solution; 4.6. Heat transfer in a stagnation plane flow. Uniform temperature heating; 4.6.1. Description of the problem; 4.6.2. Guidelines; 4.6.3. Solution 4.7. Heat transfer in a stagnation plane flow. Step-wise heating at uniform flux |
Record Nr. | UNINA-9910877306903321 |
Favre-Marinet Michel <1947-> | ||
Hoboken, NJ, : ISTE/John Wiley and Sons, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|