top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Digital Image Processing
Digital Image Processing
Pubbl/distr/stampa [Place of publication not identified], : IEEE Computer Society Press, 2009
Disciplina 621.39/94
Soggetto topico Image processing
Engineering & Applied Sciences
Applied Physics
ISBN 1-5090-7559-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996218399903316
[Place of publication not identified], : IEEE Computer Society Press, 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Digital Image Processing
Digital Image Processing
Pubbl/distr/stampa [Place of publication not identified], : IEEE Computer Society Press, 2009
Disciplina 621.39/94
Soggetto topico Image processing
Engineering & Applied Sciences
Applied Physics
ISBN 9781509075591
1509075593
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910140019603321
[Place of publication not identified], : IEEE Computer Society Press, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral data processing : algorithm design and analysis / / Chein-I Chang
Hyperspectral data processing : algorithm design and analysis / / Chein-I Chang
Autore Chang Chein-I
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, 2013
Descrizione fisica 1 online resource (1165 p.)
Disciplina 621.39/94
Altri autori (Persone) ChangChein-I
Soggetto topico Image processing - Digital techniques
Spectroscopic imaging
Signal processing
ISBN 9781118269787
1118269780
9781118269770
1118269772
9781299241862
1299241867
9781118269756
1118269756
Classificazione TEC015000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HYPERSPECTRAL DATA PROCESSING: Algorithm Design and Analysis; CONTENTS; PREFACE; 1 OVERVIEW AND INTRODUCTION; 1.1 Overview; 1.2 Issues of Multispectral and Hyperspectral Imageries; 1.3 Divergence of Hyperspectral Imagery from Multispectral Imagery; 1.3.1 Misconception: Hyperspectral Imaging is a Natural Extension of Multispectral Imaging; 1.3.2 Pigeon-Hole Principle: Natural Interpretation of Hyperspectral Imaging; 1.4 Scope of This Book; 1.5 Book's Organization; 1.5.1 Part I: Preliminaries; 1.5.2 Part II: Endmember Extraction; 1.5.3 Part III: Supervised Linear Hyperspectral Mixture Analysis
1.5.4 Part IV: Unsupervised Hyperspectral Analysis 1.5.5 Part V: Hyperspectral Information Compression; 1.5.6 Part VI: Hyperspectral Signal Coding; 1.5.7 Part VII: Hyperspectral Signal Feature Characterization; 1.5.8 Applications; 1.5.8.1 Chapter 30: Applications of Target Detection; 1.5.8.2 Chapter 31: Nonlinear Dimensionality Expansion to Multispectral Imagery; 1.5.8.3 Chapter 32: Multispectral Magnetic Resonance Imaging; 1.6 Laboratory Data to be Used in This Book; 1.6.1 Laboratory Data; 1.6.2 Cuprite Data; 1.6.3 NIST/EPA Gas-Phase Infrared Database
1.7 Real Hyperspectral Images to be Used in this Book 1.7.1 AVIRIS Data; 1.7.1.1 Cuprite Data; 1.7.1.2 Purdue's Indiana Indian Pine Test Site; 1.7.2 HYDICE Data; 1.8 Notations and Terminologies to be Used in this Book; I: PRELIMINARIES; 2 FUNDAMENTALS OF SUBSAMPLE AND MIXED SAMPLE ANALYSES; 2.1 Introduction; 2.2 Subsample Analysis; 2.2.1 Pure-Sample Target Detection; 2.2.2 Subsample Target Detection; 2.2.2.1 Adaptive Matched Detector (AMD); 2.2.2.2 Adaptive Subspace Detector (ASD); 2.2.3 Subsample Target Detection: Constrained Energy Minimization (CEM); 2.3 Mixed Sample Analysis
2.3.1 Classification with Hard Decisions 2.3.1.1 Fisher's Linear Discriminant Analysis (FLDA); 2.3.1.2 Support Vector Machines (SVM); 2.3.2 Classification with Soft Decisions; 2.3.2.1 Orthogonal Subspace Projection (OSP); 2.3.2.2 Target-Constrained Interference-Minimized Filter (TCIMF); 2.4 Kernel-Based Classification; 2.4.1 Kernel Trick Used in Kernel-Based Methods; 2.4.2 Kernel-Based Fisher's Linear Discriminant Analysis (KFLDA); 2.4.3 Kernel Support Vector Machine (K-SVM); 2.5 Conclusions; 3 THREE-DIMENSIONAL RECEIVER OPERATING CHARACTERISTICS (3D ROC) ANALYSIS; 3.1 Introduction
3.2 Neyman-Pearson Detection Problem Formulation 3.3 ROC Analysis; 3.4 3D ROC Analysis; 3.5 Real Data-Based ROC Analysis; 3.5.1 How to Generate ROC Curves from Real Data; 3.5.2 How to Generate Gaussian-Fitted ROC Curves; 3.5.3 How to Generate 3D ROC Curves; 3.5.4 How to Generate 3D ROC Curves for Multiple Signal Detection and Classification; 3.6 Examples; 3.6.1 Hyperspectral Imaging; 3.6.1.1 Hyperspectral Target Detection; 3.6.1.2 Linear Hyperspectral Mixture Analysis; 3.6.2 Magnetic Resonance (MR) Breast Imaging; 3.6.2.1 Breast Tumor Detection; 3.6.2.2 Brain Tissue Classification
3.6.3 Chemical/Biological Agent Detection
Record Nr. UNINA-9910141611003321
Chang Chein-I  
Hoboken, N.J., : Wiley-Interscience, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Object detection and recognition in digital images [[electronic resource] ] : theory and practice / / Bogusław Cyganek
Object detection and recognition in digital images [[electronic resource] ] : theory and practice / / Bogusław Cyganek
Autore Cyganek Bogusław
Pubbl/distr/stampa Chichester, West Sussex, U.K., : John Wiley & Sons, Inc., 2013
Descrizione fisica 1 online resource (552 p.)
Disciplina 621.39/94
Soggetto topico Pattern recognition systems
Image processing - Digital techniques
Computer vision
ISBN 1-118-61836-X
1-118-61838-6
1-118-61837-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES; Contents; Preface; Acknowledgements; Notations and Abbreviations; 1 Introduction; 1.1 A Sample of Computer Vision; 1.2 Overview of Book Contents; References; 2 Tensor Methods in Computer Vision; 2.1 Abstract; 2.2 Tensor - A Mathematical Object; 2.2.1 Main Properties of Linear Spaces; 2.2.2 Concept of a Tensor; 2.3 Tensor - A Data Object; 2.4 Basic Properties of Tensors; 2.4.1 Notation of Tensor Indices and Components; 2.4.2 Tensor Products; 2.5 Tensor Distance Measures; 2.5.1 Overview of Tensor Distances
2.5.1.1 Computation of Matrix Exponent and Logarithm Functions2.5.2 Euclidean Image Distance and Standardizing Transform; 2.6 Filtering of Tensor Fields; 2.6.1 Order Statistic Filtering of Tensor Data; 2.6.2 Anisotropic Diffusion Filtering; 2.6.3 IMPLEMENTATION of Diffusion Processes; 2.7 Looking into Images with the Structural Tensor; 2.7.1 Structural Tensor in Two-Dimensional Image Space; 2.7.2 Spatio-Temporal Structural Tensor; 2.7.3 Multichannel and Scale-Space Structural Tensor; 2.7.4 Extended Structural Tensor; 2.7.4.1 IMPLEMENTATION of the Linear and Nonlinear Structural Tensor
2.8 Object Representation with Tensor of Inertia and Moments2.8.1 IMPLEMENTATION of Moments and their Invariants; 2.9 Eigendecomposition and Representation of Tensors; 2.10 Tensor Invariants; 2.11 Geometry of Multiple Views: The Multifocal Tensor; 2.12 Multilinear Tensor Methods; 2.12.1 Basic Concepts of Multilinear Algebra; 2.12.1.1 Tensor Flattening; 2.12.1.2 IMPLEMENTATION Tensor Representation; 2.12.1.3 The k-mode Product of a Tensor and a Matrix; 2.12.1.4 Ranks of a Tensor; 2.12.1.5 IMPLEMENTATION of Basic Operations on Tensors; 2.12.2 Higher-Order Singular Value Decomposition (HOSVD)
2.12.3 Computation of the HOSVD2.12.3.1 Implementation of the HOSVD Decomposition; 2.12.4 HOSVD Induced Bases; 2.12.5 Tensor Best Rank-1 Approximation; 2.12.6 Rank-1 Decomposition of Tensors; 2.12.7 Best Rank-(R1, R2, . . . , RP) Approximation; 2.12.8 Computation of the Best Rank-(R1, R2, . . . , RP) Approximations; 2.12.8.1 IMPLEMENTATION - Rank Tensor Decompositions; 2.12.8.2 CASE STUDY - Data Dimensionality Reduction; 2.12.9 Subspace Data Representation; 2.12.10 Nonnegative Matrix Factorization; 2.12.11 Computation of the Nonnegative Matrix Factorization
2.12.12 Image Representation with NMF2.12.13 Implementation of the Nonnegative Matrix Factorization; 2.12.14 Nonnegative Tensor Factorization; 2.12.15 Multilinear Methods of Object Recognition; 2.13 Closure; 2.13.1 Chapter Summary; 2.13.2 Further Reading; 2.13.3 Problems and Exercises; References; 3 Classification Methods and Algorithms; 3.1 Abstract; 3.2 Classification Framework; 3.2.1 IMPLEMENTATION Computer Representation of Features; 3.3 Subspace Methods for Object Recognition; 3.3.1 Principal Component Analysis; 3.3.1.1 Computation of the PCA
3.3.1.2 PCA for Multi-Channel Image Processing
Record Nr. UNINA-9910141726103321
Cyganek Bogusław  
Chichester, West Sussex, U.K., : John Wiley & Sons, Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Object detection and recognition in digital images : theory and practice / / Bogusław Cyganek
Object detection and recognition in digital images : theory and practice / / Bogusław Cyganek
Autore Cyganek Bogusław
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : John Wiley & Sons, Inc., 2013
Descrizione fisica 1 online resource (552 p.)
Disciplina 621.39/94
Soggetto topico Pattern recognition systems
Image processing - Digital techniques
Computer vision
ISBN 9781118618363
111861836X
9781118618387
1118618386
9781118618370
1118618378
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES; Contents; Preface; Acknowledgements; Notations and Abbreviations; 1 Introduction; 1.1 A Sample of Computer Vision; 1.2 Overview of Book Contents; References; 2 Tensor Methods in Computer Vision; 2.1 Abstract; 2.2 Tensor - A Mathematical Object; 2.2.1 Main Properties of Linear Spaces; 2.2.2 Concept of a Tensor; 2.3 Tensor - A Data Object; 2.4 Basic Properties of Tensors; 2.4.1 Notation of Tensor Indices and Components; 2.4.2 Tensor Products; 2.5 Tensor Distance Measures; 2.5.1 Overview of Tensor Distances
2.5.1.1 Computation of Matrix Exponent and Logarithm Functions2.5.2 Euclidean Image Distance and Standardizing Transform; 2.6 Filtering of Tensor Fields; 2.6.1 Order Statistic Filtering of Tensor Data; 2.6.2 Anisotropic Diffusion Filtering; 2.6.3 IMPLEMENTATION of Diffusion Processes; 2.7 Looking into Images with the Structural Tensor; 2.7.1 Structural Tensor in Two-Dimensional Image Space; 2.7.2 Spatio-Temporal Structural Tensor; 2.7.3 Multichannel and Scale-Space Structural Tensor; 2.7.4 Extended Structural Tensor; 2.7.4.1 IMPLEMENTATION of the Linear and Nonlinear Structural Tensor
2.8 Object Representation with Tensor of Inertia and Moments2.8.1 IMPLEMENTATION of Moments and their Invariants; 2.9 Eigendecomposition and Representation of Tensors; 2.10 Tensor Invariants; 2.11 Geometry of Multiple Views: The Multifocal Tensor; 2.12 Multilinear Tensor Methods; 2.12.1 Basic Concepts of Multilinear Algebra; 2.12.1.1 Tensor Flattening; 2.12.1.2 IMPLEMENTATION Tensor Representation; 2.12.1.3 The k-mode Product of a Tensor and a Matrix; 2.12.1.4 Ranks of a Tensor; 2.12.1.5 IMPLEMENTATION of Basic Operations on Tensors; 2.12.2 Higher-Order Singular Value Decomposition (HOSVD)
2.12.3 Computation of the HOSVD2.12.3.1 Implementation of the HOSVD Decomposition; 2.12.4 HOSVD Induced Bases; 2.12.5 Tensor Best Rank-1 Approximation; 2.12.6 Rank-1 Decomposition of Tensors; 2.12.7 Best Rank-(R1, R2, . . . , RP) Approximation; 2.12.8 Computation of the Best Rank-(R1, R2, . . . , RP) Approximations; 2.12.8.1 IMPLEMENTATION - Rank Tensor Decompositions; 2.12.8.2 CASE STUDY - Data Dimensionality Reduction; 2.12.9 Subspace Data Representation; 2.12.10 Nonnegative Matrix Factorization; 2.12.11 Computation of the Nonnegative Matrix Factorization
2.12.12 Image Representation with NMF2.12.13 Implementation of the Nonnegative Matrix Factorization; 2.12.14 Nonnegative Tensor Factorization; 2.12.15 Multilinear Methods of Object Recognition; 2.13 Closure; 2.13.1 Chapter Summary; 2.13.2 Further Reading; 2.13.3 Problems and Exercises; References; 3 Classification Methods and Algorithms; 3.1 Abstract; 3.2 Classification Framework; 3.2.1 IMPLEMENTATION Computer Representation of Features; 3.3 Subspace Methods for Object Recognition; 3.3.1 Principal Component Analysis; 3.3.1.1 Computation of the PCA
3.3.1.2 PCA for Multi-Channel Image Processing
Record Nr. UNINA-9910815468903321
Cyganek Bogusław  
Chichester, West Sussex, U.K., : John Wiley & Sons, Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...