top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Descrizione fisica 1 online resource (366 p.)
Disciplina 006.7
621.38833
Altri autori (Persone) SchreerOliver
KauffPeter
SikoraThomas
Soggetto topico Telematics
Three-dimensional imaging
Videoconferencing
Virtual reality
Soggetto genere / forma Electronic books.
ISBN 1-280-24277-9
9786610242771
0-470-02273-6
0-470-02272-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Videocommunication; Contents; List of Contributors; Symbols; Abbreviations; Introduction; Section I Applications of 3D Videocommunication; 1 History of Telepresence; 1.1 Introduction; 1.2 The Art of Immersion: Barker's Panoramas; 1.3 Cinerama and Sensorama; 1.4 Virtual Environments; 1.5 Teleoperation and Telerobotics; 1.6 Telecommunications; 1.7 Conclusion; References; 2 3D TV Broadcasting; 2.1 Introduction; 2.2 History of 3D TV Research; 2.3 A Modern Approach to 3D TV; 2.3.1 A Comparison with a Stereoscopic Video Chain; 2.4 Stereoscopic View Synthesis; 2.4.1 3D Image Warping
2.4.2 A 'Virtual' Stereo Camera2.4.3 The Disocclusion Problem; 2.5 Coding of 3D Imagery; 2.5.1 Human Factor Experiments; 2.6 Conclusions; Acknowledgements; References; 3 3D in Content Creation and Post-production; 3.1 Introduction; 3.2 Current Techniques for Integrating Real and Virtual Scene Content; 3.3 Generation of 3D Models of Dynamic Scenes; 3.4 Implementation of a Bidirectional Interface Between Real and Virtual Scenes; 3.4.1 Head Tracking; 3.4.2 View-dependent Rendering; 3.4.3 Mask Generation; 3.4.4 Texturing; 3.4.5 Collision Detection; 3.5 Conclusions; References
4 Free Viewpoint Systems4.1 General Overview of Free Viewpoint Systems; 4.2 Image Domain System; 4.2.1 EyeVision; 4.2.2 3D-TV; 4.2.3 Free Viewpoint Play; 4.3 Ray-space System; 4.3.1 FTV (Free Viewpoint TV); 4.3.2 Bird's-eye View System; 4.3.3 Light Field Video Camera System; 4.4 Surface Light Field System; 4.5 Model-based System; 4.5.1 3D Room; 4.5.2 3D Video; 4.5.3 Multi-texturing; 4.6 Integral Photography System; 4.6.1 NHK System; 4.6.2 1D-II 3D Display System; 4.7 Summary; References; 5 Immersive Videoconferencing; 5.1 Introduction; 5.2 The Meaning of Telepresence in Videoconferencing
5.3 Multi-party Communication Using the Shared Table Concept5.4 Experimental Systems for Immersive Videoconferencing; 5.5 Perspective and Trends; Acknowledgements; References; Section II 3D Data Representation and Processing; 6 Fundamentals of Multiple-view Geometry; 6.1 Introduction; 6.2 Pinhole Camera Geometry; 6.3 Two-view Geometry; 6.3.1 Introduction; 6.3.2 Epipolar Geometry; 6.3.3 Rectification; 6.3.4 3D Reconstruction; 6.4 N-view Geometry; 6.4.1 Trifocal Geometry; 6.4.2 The Trifocal Tensor; 6.4.3 Multiple-view Constraints; 6.4.4 Uncalibrated Reconstruction from N views
6.4.5 Autocalibration6.5 Summary; References; 7 Stereo Analysis; 7.1 Stereo Analysis Using Two Cameras; 7.1.1 Standard Area-based Stereo Analysis; 7.1.2 Fast Real-time Approaches; 7.1.3 Post-processing; 7.2 Disparity From Three or More Cameras; 7.2.1 Two-camera versus Three-camera Disparity; 7.2.2 Correspondence Search with Three Views; 7.2.3 Post-processing; 7.3 Conclusion; References; 8 Reconstruction of Volumetric 3D Models; 8.1 Introduction; 8.2 Shape-from-Silhouette; 8.2.1 Rendering of Volumetric Models; 8.2.2 Octree Representation of Voxel Volumes
8.2.3 Camera Calibration from Silhouettes
Record Nr. UNINA-9910143745003321
Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Descrizione fisica 1 online resource (366 p.)
Disciplina 006.7
621.38833
Altri autori (Persone) SchreerOliver
KauffPeter
SikoraThomas
Soggetto topico Telematics
Three-dimensional imaging
Videoconferencing
Virtual reality
ISBN 1-280-24277-9
9786610242771
0-470-02273-6
0-470-02272-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Videocommunication; Contents; List of Contributors; Symbols; Abbreviations; Introduction; Section I Applications of 3D Videocommunication; 1 History of Telepresence; 1.1 Introduction; 1.2 The Art of Immersion: Barker's Panoramas; 1.3 Cinerama and Sensorama; 1.4 Virtual Environments; 1.5 Teleoperation and Telerobotics; 1.6 Telecommunications; 1.7 Conclusion; References; 2 3D TV Broadcasting; 2.1 Introduction; 2.2 History of 3D TV Research; 2.3 A Modern Approach to 3D TV; 2.3.1 A Comparison with a Stereoscopic Video Chain; 2.4 Stereoscopic View Synthesis; 2.4.1 3D Image Warping
2.4.2 A 'Virtual' Stereo Camera2.4.3 The Disocclusion Problem; 2.5 Coding of 3D Imagery; 2.5.1 Human Factor Experiments; 2.6 Conclusions; Acknowledgements; References; 3 3D in Content Creation and Post-production; 3.1 Introduction; 3.2 Current Techniques for Integrating Real and Virtual Scene Content; 3.3 Generation of 3D Models of Dynamic Scenes; 3.4 Implementation of a Bidirectional Interface Between Real and Virtual Scenes; 3.4.1 Head Tracking; 3.4.2 View-dependent Rendering; 3.4.3 Mask Generation; 3.4.4 Texturing; 3.4.5 Collision Detection; 3.5 Conclusions; References
4 Free Viewpoint Systems4.1 General Overview of Free Viewpoint Systems; 4.2 Image Domain System; 4.2.1 EyeVision; 4.2.2 3D-TV; 4.2.3 Free Viewpoint Play; 4.3 Ray-space System; 4.3.1 FTV (Free Viewpoint TV); 4.3.2 Bird's-eye View System; 4.3.3 Light Field Video Camera System; 4.4 Surface Light Field System; 4.5 Model-based System; 4.5.1 3D Room; 4.5.2 3D Video; 4.5.3 Multi-texturing; 4.6 Integral Photography System; 4.6.1 NHK System; 4.6.2 1D-II 3D Display System; 4.7 Summary; References; 5 Immersive Videoconferencing; 5.1 Introduction; 5.2 The Meaning of Telepresence in Videoconferencing
5.3 Multi-party Communication Using the Shared Table Concept5.4 Experimental Systems for Immersive Videoconferencing; 5.5 Perspective and Trends; Acknowledgements; References; Section II 3D Data Representation and Processing; 6 Fundamentals of Multiple-view Geometry; 6.1 Introduction; 6.2 Pinhole Camera Geometry; 6.3 Two-view Geometry; 6.3.1 Introduction; 6.3.2 Epipolar Geometry; 6.3.3 Rectification; 6.3.4 3D Reconstruction; 6.4 N-view Geometry; 6.4.1 Trifocal Geometry; 6.4.2 The Trifocal Tensor; 6.4.3 Multiple-view Constraints; 6.4.4 Uncalibrated Reconstruction from N views
6.4.5 Autocalibration6.5 Summary; References; 7 Stereo Analysis; 7.1 Stereo Analysis Using Two Cameras; 7.1.1 Standard Area-based Stereo Analysis; 7.1.2 Fast Real-time Approaches; 7.1.3 Post-processing; 7.2 Disparity From Three or More Cameras; 7.2.1 Two-camera versus Three-camera Disparity; 7.2.2 Correspondence Search with Three Views; 7.2.3 Post-processing; 7.3 Conclusion; References; 8 Reconstruction of Volumetric 3D Models; 8.1 Introduction; 8.2 Shape-from-Silhouette; 8.2.1 Rendering of Volumetric Models; 8.2.2 Octree Representation of Voxel Volumes
8.2.3 Camera Calibration from Silhouettes
Record Nr. UNINA-9910829830403321
Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
3D videocommunication [[electronic resource] ] : algorithms, concepts, and real-time systems in human centred communication / / edited by Oliver Schreer, Peter Kauff, Thomas Sikora
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Descrizione fisica 1 online resource (366 p.)
Disciplina 006.7
621.38833
Altri autori (Persone) SchreerOliver
KauffPeter
SikoraThomas
Soggetto topico Telematics
Three-dimensional imaging
Videoconferencing
Virtual reality
ISBN 1-280-24277-9
9786610242771
0-470-02273-6
0-470-02272-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Videocommunication; Contents; List of Contributors; Symbols; Abbreviations; Introduction; Section I Applications of 3D Videocommunication; 1 History of Telepresence; 1.1 Introduction; 1.2 The Art of Immersion: Barker's Panoramas; 1.3 Cinerama and Sensorama; 1.4 Virtual Environments; 1.5 Teleoperation and Telerobotics; 1.6 Telecommunications; 1.7 Conclusion; References; 2 3D TV Broadcasting; 2.1 Introduction; 2.2 History of 3D TV Research; 2.3 A Modern Approach to 3D TV; 2.3.1 A Comparison with a Stereoscopic Video Chain; 2.4 Stereoscopic View Synthesis; 2.4.1 3D Image Warping
2.4.2 A 'Virtual' Stereo Camera2.4.3 The Disocclusion Problem; 2.5 Coding of 3D Imagery; 2.5.1 Human Factor Experiments; 2.6 Conclusions; Acknowledgements; References; 3 3D in Content Creation and Post-production; 3.1 Introduction; 3.2 Current Techniques for Integrating Real and Virtual Scene Content; 3.3 Generation of 3D Models of Dynamic Scenes; 3.4 Implementation of a Bidirectional Interface Between Real and Virtual Scenes; 3.4.1 Head Tracking; 3.4.2 View-dependent Rendering; 3.4.3 Mask Generation; 3.4.4 Texturing; 3.4.5 Collision Detection; 3.5 Conclusions; References
4 Free Viewpoint Systems4.1 General Overview of Free Viewpoint Systems; 4.2 Image Domain System; 4.2.1 EyeVision; 4.2.2 3D-TV; 4.2.3 Free Viewpoint Play; 4.3 Ray-space System; 4.3.1 FTV (Free Viewpoint TV); 4.3.2 Bird's-eye View System; 4.3.3 Light Field Video Camera System; 4.4 Surface Light Field System; 4.5 Model-based System; 4.5.1 3D Room; 4.5.2 3D Video; 4.5.3 Multi-texturing; 4.6 Integral Photography System; 4.6.1 NHK System; 4.6.2 1D-II 3D Display System; 4.7 Summary; References; 5 Immersive Videoconferencing; 5.1 Introduction; 5.2 The Meaning of Telepresence in Videoconferencing
5.3 Multi-party Communication Using the Shared Table Concept5.4 Experimental Systems for Immersive Videoconferencing; 5.5 Perspective and Trends; Acknowledgements; References; Section II 3D Data Representation and Processing; 6 Fundamentals of Multiple-view Geometry; 6.1 Introduction; 6.2 Pinhole Camera Geometry; 6.3 Two-view Geometry; 6.3.1 Introduction; 6.3.2 Epipolar Geometry; 6.3.3 Rectification; 6.3.4 3D Reconstruction; 6.4 N-view Geometry; 6.4.1 Trifocal Geometry; 6.4.2 The Trifocal Tensor; 6.4.3 Multiple-view Constraints; 6.4.4 Uncalibrated Reconstruction from N views
6.4.5 Autocalibration6.5 Summary; References; 7 Stereo Analysis; 7.1 Stereo Analysis Using Two Cameras; 7.1.1 Standard Area-based Stereo Analysis; 7.1.2 Fast Real-time Approaches; 7.1.3 Post-processing; 7.2 Disparity From Three or More Cameras; 7.2.1 Two-camera versus Three-camera Disparity; 7.2.2 Correspondence Search with Three Views; 7.2.3 Post-processing; 7.3 Conclusion; References; 8 Reconstruction of Volumetric 3D Models; 8.1 Introduction; 8.2 Shape-from-Silhouette; 8.2.1 Rendering of Volumetric Models; 8.2.2 Octree Representation of Voxel Volumes
8.2.3 Camera Calibration from Silhouettes
Record Nr. UNINA-9910841678503321
Chichester, England ; ; Hoboken, NJ, : Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications and Usability of Interactive TV [[electronic resource] ] : 7th Iberoamerican Conference, jAUTI 2018, Bernal, Argentina, October 16–18, 2018, Revised Selected Papers / / edited by María José Abásolo, Telmo Silva, Nestor D. González
Applications and Usability of Interactive TV [[electronic resource] ] : 7th Iberoamerican Conference, jAUTI 2018, Bernal, Argentina, October 16–18, 2018, Revised Selected Papers / / edited by María José Abásolo, Telmo Silva, Nestor D. González
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 189 p. 83 illus., 72 illus. in color.)
Disciplina 621.38833
Collana Communications in Computer and Information Science
Soggetto topico Computer organization
User interfaces (Computer systems)
Application software
Computer Systems Organization and Communication Networks
User Interfaces and Human Computer Interaction
Information Systems Applications (incl. Internet)
ISBN 3-030-23862-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contexts of application of the IDTV -- Design and Implementation Techniques of IDTV Content and Services -- Interaction Techniques, Technologies and Accesibility of IDTV Services -- Testing and User Experience of IDTV Services.
Record Nr. UNINA-9910349293903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Autore Winkler Stefan
Pubbl/distr/stampa Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Descrizione fisica 1 online resource (191 p.)
Disciplina 006.6/96
006.696
621.38833
Soggetto topico Digital video
Image processing - Digital techniques
Imaging systems - Image quality
Soggetto genere / forma Electronic books.
ISBN 1-118-69126-1
0-470-02406-2
1-280-26882-4
9786610268825
0-470-02405-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Digital Video Quality; Contents; About the Author; Acknowledgements; Acronyms; 1 Introduction; 1.1 Motivation; 1.2 Outline; 2 Vision; 2.1 Eye; 2.1.1 Physical Principles; 2.1.2 Optics of the Eye; 2.1.3 Optical Quality; 2.1.4 Eye Movements; 2.2 Retina; 2.2.1 Photoreceptors; 2.2.2 Retinal Neurons; 2.3 Visual Pathways; 2.3.1 Lateral Geniculate Nucleus; 2.3.2 Visual Cortex; 2.4 Sensitivity to Light; 2.4.1 Light Adaptation; 2.4.2 Contrast Sensitivity; 2.5 Color Perception; 2.5.1 Color Matching; 2.5.2 Opponent Colors; 2.6 Masking and Adaptation; 2.6.1 Spatial Masking; 2.6.2 Temporal Masking
2.6.3 Pattern Adaptation2.7 Multi-channel Organization; 2.7.1 Spatial Mechanisms; 2.7.2 Temporal Mechanisms; 2.8 Summary; 3 Video Quality; 3.1 Video Coding and Compression; 3.1.1 Color Coding; 3.1.2 Interlacing; 3.1.3 Compression Methods; 3.1.4 Standards; 3.2 Artifacts; 3.2.1 Compression Artifacts; 3.2.2 Transmission Errors; 3.2.3 Other Impairments; 3.3 Visual Quality; 3.3.1 Viewing Distance; 3.3.2 Subjective Quality Factors; 3.3.3 Testing Procedures; 3.4 Quality Metrics; 3.4.1 Pixel-based Metrics; 3.4.2 Single-channel Models; 3.4.3 Multi-channel Models; 3.4.4 Specialized Metrics
3.5 Metric Evaluation3.5.1 Performance Attributes; 3.5.2 Metric Comparisons; 3.5.3 Video Quality Experts Group; 3.5.4 Limits of Prediction Performance; 3.6 Summary; 4 Models and Metrics; 4.1 Isotropic Contrast; 4.1.1 Contrast Definitions; 4.1.2 In-phase and Quadrature Mechanisms; 4.1.3 Isotropic Local Contrast; 4.1.4 Filter Design; 4.2 Perceptual Distortion Metric; 4.2.1 Metric Design; 4.2.2 Color Space Conversion; 4.2.3 Perceptual Decomposition; 4.2.4 Contrast Gain Control; 4.2.5 Detection and Pooling; 4.2.6 Parameter Fitting; 4.2.7 Demonstration; 4.3 Summary; 5 Metric Evaluation
5.1 Still Images5.1.1 Test Images; 5.1.2 Subjective Experiments; 5.1.3 Prediction Performance; 5.2 Video; 5.2.1 Test Sequences; 5.2.2 Subjective Experiments; 5.2.3 Prediction Performance; 5.2.4 Discussion; 5.3 Component Analysis; 5.3.1 Dissecting the PDM; 5.3.2 Color Space; 5.3.3 Decomposition Filters; 5.3.4 Pooling Algorithm; 5.4 Summary; 6 Metric Extensions; 6.1 Blocking Artifacts; 6.1.1 Perceptual Blocking Distortion Metric; 6.1.2 Test Sequences; 6.1.3 Subjective Experiments; 6.1.4 Prediction Performance; 6.2 Object Segmentation; 6.2.1 Test Sequences; 6.2.2 Prediction Performance
6.3 Image Appeal6.3.1 Background; 6.3.2 Quantifying Image Appeal; 6.3.3 Results with VQEG Data; 6.3.4 Test Sequences; 6.3.5 Subjective Experiments; 6.3.6 PDM Prediction Performance; 6.3.7 Performance with Image Appeal Attributes; 6.4 Summary; 7 Closing Remarks; 7.1 Summary; 7.2 Perspectives; Appendix: Color Space Conversions; References; Index
Record Nr. UNINA-9910143580603321
Winkler Stefan  
Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Autore Winkler Stefan
Pubbl/distr/stampa Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Descrizione fisica 1 online resource (191 p.)
Disciplina 006.6/96
006.696
621.38833
Soggetto topico Digital video
Image processing - Digital techniques
Imaging systems - Image quality
ISBN 1-118-69126-1
0-470-02406-2
1-280-26882-4
9786610268825
0-470-02405-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Digital Video Quality; Contents; About the Author; Acknowledgements; Acronyms; 1 Introduction; 1.1 Motivation; 1.2 Outline; 2 Vision; 2.1 Eye; 2.1.1 Physical Principles; 2.1.2 Optics of the Eye; 2.1.3 Optical Quality; 2.1.4 Eye Movements; 2.2 Retina; 2.2.1 Photoreceptors; 2.2.2 Retinal Neurons; 2.3 Visual Pathways; 2.3.1 Lateral Geniculate Nucleus; 2.3.2 Visual Cortex; 2.4 Sensitivity to Light; 2.4.1 Light Adaptation; 2.4.2 Contrast Sensitivity; 2.5 Color Perception; 2.5.1 Color Matching; 2.5.2 Opponent Colors; 2.6 Masking and Adaptation; 2.6.1 Spatial Masking; 2.6.2 Temporal Masking
2.6.3 Pattern Adaptation2.7 Multi-channel Organization; 2.7.1 Spatial Mechanisms; 2.7.2 Temporal Mechanisms; 2.8 Summary; 3 Video Quality; 3.1 Video Coding and Compression; 3.1.1 Color Coding; 3.1.2 Interlacing; 3.1.3 Compression Methods; 3.1.4 Standards; 3.2 Artifacts; 3.2.1 Compression Artifacts; 3.2.2 Transmission Errors; 3.2.3 Other Impairments; 3.3 Visual Quality; 3.3.1 Viewing Distance; 3.3.2 Subjective Quality Factors; 3.3.3 Testing Procedures; 3.4 Quality Metrics; 3.4.1 Pixel-based Metrics; 3.4.2 Single-channel Models; 3.4.3 Multi-channel Models; 3.4.4 Specialized Metrics
3.5 Metric Evaluation3.5.1 Performance Attributes; 3.5.2 Metric Comparisons; 3.5.3 Video Quality Experts Group; 3.5.4 Limits of Prediction Performance; 3.6 Summary; 4 Models and Metrics; 4.1 Isotropic Contrast; 4.1.1 Contrast Definitions; 4.1.2 In-phase and Quadrature Mechanisms; 4.1.3 Isotropic Local Contrast; 4.1.4 Filter Design; 4.2 Perceptual Distortion Metric; 4.2.1 Metric Design; 4.2.2 Color Space Conversion; 4.2.3 Perceptual Decomposition; 4.2.4 Contrast Gain Control; 4.2.5 Detection and Pooling; 4.2.6 Parameter Fitting; 4.2.7 Demonstration; 4.3 Summary; 5 Metric Evaluation
5.1 Still Images5.1.1 Test Images; 5.1.2 Subjective Experiments; 5.1.3 Prediction Performance; 5.2 Video; 5.2.1 Test Sequences; 5.2.2 Subjective Experiments; 5.2.3 Prediction Performance; 5.2.4 Discussion; 5.3 Component Analysis; 5.3.1 Dissecting the PDM; 5.3.2 Color Space; 5.3.3 Decomposition Filters; 5.3.4 Pooling Algorithm; 5.4 Summary; 6 Metric Extensions; 6.1 Blocking Artifacts; 6.1.1 Perceptual Blocking Distortion Metric; 6.1.2 Test Sequences; 6.1.3 Subjective Experiments; 6.1.4 Prediction Performance; 6.2 Object Segmentation; 6.2.1 Test Sequences; 6.2.2 Prediction Performance
6.3 Image Appeal6.3.1 Background; 6.3.2 Quantifying Image Appeal; 6.3.3 Results with VQEG Data; 6.3.4 Test Sequences; 6.3.5 Subjective Experiments; 6.3.6 PDM Prediction Performance; 6.3.7 Performance with Image Appeal Attributes; 6.4 Summary; 7 Closing Remarks; 7.1 Summary; 7.2 Perspectives; Appendix: Color Space Conversions; References; Index
Record Nr. UNINA-9910829836803321
Winkler Stefan  
Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Digital video quality [[electronic resource] ] : vision models and metrics / / Stefan Winkler
Autore Winkler Stefan
Pubbl/distr/stampa Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Descrizione fisica 1 online resource (191 p.)
Disciplina 006.6/96
006.696
621.38833
Soggetto topico Digital video
Image processing - Digital techniques
Imaging systems - Image quality
ISBN 1-118-69126-1
0-470-02406-2
1-280-26882-4
9786610268825
0-470-02405-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Digital Video Quality; Contents; About the Author; Acknowledgements; Acronyms; 1 Introduction; 1.1 Motivation; 1.2 Outline; 2 Vision; 2.1 Eye; 2.1.1 Physical Principles; 2.1.2 Optics of the Eye; 2.1.3 Optical Quality; 2.1.4 Eye Movements; 2.2 Retina; 2.2.1 Photoreceptors; 2.2.2 Retinal Neurons; 2.3 Visual Pathways; 2.3.1 Lateral Geniculate Nucleus; 2.3.2 Visual Cortex; 2.4 Sensitivity to Light; 2.4.1 Light Adaptation; 2.4.2 Contrast Sensitivity; 2.5 Color Perception; 2.5.1 Color Matching; 2.5.2 Opponent Colors; 2.6 Masking and Adaptation; 2.6.1 Spatial Masking; 2.6.2 Temporal Masking
2.6.3 Pattern Adaptation2.7 Multi-channel Organization; 2.7.1 Spatial Mechanisms; 2.7.2 Temporal Mechanisms; 2.8 Summary; 3 Video Quality; 3.1 Video Coding and Compression; 3.1.1 Color Coding; 3.1.2 Interlacing; 3.1.3 Compression Methods; 3.1.4 Standards; 3.2 Artifacts; 3.2.1 Compression Artifacts; 3.2.2 Transmission Errors; 3.2.3 Other Impairments; 3.3 Visual Quality; 3.3.1 Viewing Distance; 3.3.2 Subjective Quality Factors; 3.3.3 Testing Procedures; 3.4 Quality Metrics; 3.4.1 Pixel-based Metrics; 3.4.2 Single-channel Models; 3.4.3 Multi-channel Models; 3.4.4 Specialized Metrics
3.5 Metric Evaluation3.5.1 Performance Attributes; 3.5.2 Metric Comparisons; 3.5.3 Video Quality Experts Group; 3.5.4 Limits of Prediction Performance; 3.6 Summary; 4 Models and Metrics; 4.1 Isotropic Contrast; 4.1.1 Contrast Definitions; 4.1.2 In-phase and Quadrature Mechanisms; 4.1.3 Isotropic Local Contrast; 4.1.4 Filter Design; 4.2 Perceptual Distortion Metric; 4.2.1 Metric Design; 4.2.2 Color Space Conversion; 4.2.3 Perceptual Decomposition; 4.2.4 Contrast Gain Control; 4.2.5 Detection and Pooling; 4.2.6 Parameter Fitting; 4.2.7 Demonstration; 4.3 Summary; 5 Metric Evaluation
5.1 Still Images5.1.1 Test Images; 5.1.2 Subjective Experiments; 5.1.3 Prediction Performance; 5.2 Video; 5.2.1 Test Sequences; 5.2.2 Subjective Experiments; 5.2.3 Prediction Performance; 5.2.4 Discussion; 5.3 Component Analysis; 5.3.1 Dissecting the PDM; 5.3.2 Color Space; 5.3.3 Decomposition Filters; 5.3.4 Pooling Algorithm; 5.4 Summary; 6 Metric Extensions; 6.1 Blocking Artifacts; 6.1.1 Perceptual Blocking Distortion Metric; 6.1.2 Test Sequences; 6.1.3 Subjective Experiments; 6.1.4 Prediction Performance; 6.2 Object Segmentation; 6.2.1 Test Sequences; 6.2.2 Prediction Performance
6.3 Image Appeal6.3.1 Background; 6.3.2 Quantifying Image Appeal; 6.3.3 Results with VQEG Data; 6.3.4 Test Sequences; 6.3.5 Subjective Experiments; 6.3.6 PDM Prediction Performance; 6.3.7 Performance with Image Appeal Attributes; 6.4 Summary; 7 Closing Remarks; 7.1 Summary; 7.2 Perspectives; Appendix: Color Space Conversions; References; Index
Record Nr. UNINA-9910841569203321
Winkler Stefan  
Chichester, West Sussex ; ; Hoboken, NJ, : J. Wiley & Sons, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Autore Hanzo Lajos <1952->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2007
Descrizione fisica 1 online resource (703 p.)
Disciplina 006.6/96
621.38833
Altri autori (Persone) CherrimanPeter J. <1972->
StreitJùrgen <1968->
HanzoLajos <1952->
Soggetto topico Video compression
Digital video
Mobile communication systems
ISBN 1-281-13536-4
9786611135362
0-470-51992-4
0-470-51991-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors -- Other Wiley and IEEE Press Books on Related Topics -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 A Brief Introduction to Compression Theory -- 1.2 Introduction to Video Formats -- 1.3 Evolution of Video Compression Standards -- 1.3.1 The International Telecommunications Union's H.120 Standard -- 1.3.2 Joint Photographic Expert Group -- 1.3.3 The ITU H.261 Standard -- 1.3.4 The Motion Pictures Expert Group -- 1.3.5 The MPEG-2 Standard -- 1.3.6 The ITU H.263 Standard -- 1.3.7 The ITU H.263+/H.263++ Standards -- 1.3.8 The MPEG-4 Standard -- 1.3.9 The H.26L/H.264 Standard -- 1.4 Video Communications -- 1.5 Organisation of the Monograph -- I Video Codecs for HSDPA-Style Adaptive Videophones -- 2 Fractal Image Codecs -- 2.1 Fractal Principles -- 2.2 One-Dimensional Fractal Coding -- 2.2.1 Fractal Codec Design -- 2.2.2 Fractal Codec Performance -- 2.3 Error Sensitivity and Complexity -- 2.4 Summary and Conclusions -- 3 Low Bit-Rate DCT Codecs and HSDPA-Style Videophones -- 3.1 Video Codec Outline -- 3.2 The Principle of Motion Compensation -- 3.2.1 Distance Measures -- 3.2.2 Motion Search Algorithms -- 3.2.2.1 Full or Exhaustive Motion Search -- 3.2.2.2 Gradient-Based Motion Estimation -- 3.2.2.3 Hierarchical or Tree Search -- 3.2.2.4 Subsampling Search -- 3.2.2.5 Post-Processing of Motion Vectors -- 3.2.2.6 Gain-Cost-Controlled Motion Compensation -- 3.2.3 Other Motion Estimation Techniques -- 3.2.3.1 Pel-Recursive Displacement Estimation -- 3.2.3.2 Grid Interpolation Techniques -- 3.2.3.3 MC Using Higher Order Transformations -- 3.2.3.4 MC in the Transform Domain -- 3.2.4 Conclusion -- 3.3 Transform Coding -- 3.3.1 One-Dimensional Transform Coding -- 3.3.2 Two-Dimensional Transform Coding -- 3.3.3 Quantizer Training for Single-Class DCT -- 3.3.4 Quantizer Training for Multiclass DCT -- 3.4 The Codec Outline -- 3.5 Initial Intra-Frame Coding -- 3.6 Gain-Controlled Motion Compensation -- 3.7 The MCER Active/Passive Concept -- 3.8 Partial Forced Update of the Reconstructed Frame Buffers.
3.9 The Gain/Cost-Controlled Inter-Frame Codec -- 3.9.1 Complexity Considerations and Reduction Techniques -- 3.10 The Bit-Allocation Strategy -- 3.11 Results -- 3.12 DCT Codec Performance under Erroneous Conditions -- 3.12.1 Bit Sensitivity -- 3.12.2 Bit Sensitivity of Codec I and II -- 3.13 DCT-Based Low-Rate Video Transceivers -- 3.13.1 Choice of Modem -- 3.13.2 Source-Matched Transceiver -- 3.13.2.1 System 1 -- 3.13.2.1.1 System Concept -- 3.13.2.1.2 Sensitivity-Matched Modulation -- 3.13.2.1.3 Source Sensitivity -- 3.13.2.1.4 Forward Error Correction -- 3.13.2.1.5 Transmission Format -- 3.13.2.2 System 2 -- 3.13.2.2.1 Automatic Repeat Request -- 3.13.2.3 Systems 3-5 -- 3.14 System Performance -- 3.14.1 Performance of System 1 -- 3.14.2 Performance of System 2 -- 3.14.2.1 FER Performance -- 3.14.2.2 Slot Occupancy Performance -- 3.14.2.3 PSNR Performance -- 3.14.3 Performance of Systems 3-5 -- 3.15 Summary and Conclusions -- 4 Low Bit-Rate VQ Codecs and HSDPA-Style Videophones -- 4.1 Introduction -- 4.2 The Codebook Design -- 4.3 The Vector Quantizer Design -- 4.3.1 Mean and Shape Gain Vector Quantization -- 4.3.2 Adaptive Vector Quantization -- 4.3.3 Classified Vector Quantization -- 4.3.4 Algorithmic Complexity -- 4.4 Performance under Erroneous Conditions -- 4.4.1 Bit-Allocation Strategy -- 4.4.2 Bit Sensitivity -- 4.5 VQ-Based Low-Rate Video Transceivers -- 4.5.1 Choice of Modulation -- 4.5.2 Forward Error Correction -- 4.5.3 Architecture of System 1 -- 4.5.4 Architecture of System 2 -- 4.5.5 Architecture of Systems 3-6 -- 4.6 System Performance -- 4.6.1 Simulation Environment -- 4.6.2 Performance of Systems 1 and 3 -- 4.6.3 Performance of Systems 4 and 5 -- 4.6.4 Performance of Systems 2 and 6 -- 4.7 Joint Iterative Decoding of Trellis-Based VQ-Video and TCM -- 4.7.1 Introduction -- 4.7.2 System Overview -- 4.7.3 Compression -- 4.7.4 Vector quantization decomposition -- 4.7.5 Serial concatenation and iterative decoding -- 4.7.6 Transmission Frame Structure.
4.7.7 Frame difference decomposition -- 4.7.8 VQ codebook -- 4.7.9 VQ-induced code constraints -- 4.7.10 VQ trellis structure -- 4.7.11 VQ Encoding -- 4.7.12 VQ Decoding -- 4.7.13 Results -- 4.8 Summary and Conclusions -- 5 Low Bit-Rate Quad-Tree-Based Codecs and HSDPA-Style Videophones. -- 5.1 Introduction -- 5.2 Quad-Tree Decomposition -- 5.3 Quad-Tree Intensity Match -- 5.3.1 Zero-Order Intensity Match -- 5.3.2 First-Order Intensity Match -- 5.3.3 Decomposition Algorithmic Issues -- 5.4 Model-Based Parametric Enhancement -- 5.4.1 Eye and Mouth Detection -- 5.4.2 Parametric Codebook Training -- 5.4.3 Parametric Encoding -- 5.5 The Enhanced QT Codec -- 5.6 Performance under Erroneous Conditions -- 5.6.1 Bit Allocation -- 5.6.2 Bit Sensitivity -- 5.7 QT-Codec-Based Video Transceivers -- 5.7.1 Channel Coding and Modulation -- 5.7.2 QT-Based Transceiver Architectures -- 5.8 QT-Based Video-Transceiver Performance -- 5.9 Summary of QT-Based Video Transceivers -- 5.10 Summary of Low-Rate Codecs/Transceivers -- II High-Resolution Video Coding -- 6 Low-Complexity Techniques -- 6.1 Differential Pulse Code Modulation -- 6.1.1 Basic Differential Pulse Code Modulation -- 6.1.2 Intra/Inter-Frame Differential Pulse Code Modulation -- 6.1.3 Adaptive Differential Pulse Code Modulation -- 6.2 Block Truncation Coding -- 6.2.1 The Block Truncation Algorithm -- 6.2.2 Block Truncation Codec Implementations -- 6.2.3 Intra-Frame Block Truncation Coding -- 6.2.4 Inter-Frame Block Truncation Coding -- 6.3 Subband Coding -- 6.3.1 Perfect Reconstruction Quadrature Mirror Filtering -- 6.3.1.1 Analysis Filtering -- 6.3.1.2 Synthesis Filtering -- 6.3.1.3 Practical QMF Design Constraints -- 6.3.2 Practical Quadrature Mirror Filters -- 6.3.3 Run-Length-Based Intra-Frame Subband Coding. -- 6.3.4 Max-Lloyd-Based Subband Coding -- 6.4 Summary and Conclusions -- 7 High-Resolution DCT Coding -- 7.1 Introduction -- 7.2 Intra-Frame Quantizer Training -- 7.3 Motion Compensation for High-Quality Images.
7.4 Inter-Frame DCT Coding -- 7.4.1 Properties of the DCT transformed MCER -- 7.4.2 Joint Motion Compensation and Residual Encoding -- 7.5 The Proposed Codec -- 7.5.1 Motion Compensation -- 7.5.2 The Inter/Intra-DCT Codec -- 7.5.3 Frame Alignment -- 7.5.4 Bit-Allocation -- 7.5.5 The Codec Performance -- 7.5.6 Error Sensitivity and Complexity -- 7.6 Summary and Conclusions -- III H.261, H.263, H.264, MPEG2 and MPEG 4 forHSDPA-Style Wireless Video Telephony and DVB -- 8 H.261 for HSDPA-Style Wireless Video Telephony -- 8.1 Introduction -- 8.2 The H.261 Video Coding Standard -- 8.2.1 Overview -- 8.2.2 Source Encoder -- 8.2.3 Coding Control -- 8.2.4 Video Multiplex Coder -- 8.2.4.1 Picture Layer -- 8.2.4.2 Group of Blocks Layer -- 8.2.4.3 Macroblock Layer -- 8.2.4.4 Block Layer -- 8.2.5 Simulated Coding Statistics -- 8.2.5.1 Fixed-Quantizer Coding -- 8.2.5.2 Variable Quantizer Coding -- 8.3 Effect of Transmission Errors on the H.261 Codec -- 8.3.1 Error Mechanisms -- 8.3.2 Error Control Mechanisms -- 8.3.2.1 Background -- 8.3.2.2 Intra-Frame Coding -- 8.3.2.3 Automatic Repeat Request -- 8.3.2.4 Reconfigurable Modulations Schemes -- 8.3.2.5 Combined Source/Channel Coding -- 8.3.3 Error Recovery -- 8.3.4 Effects of Errors -- 8.3.4.1 Qualitative Effect of Errors on H.261 Parameters -- 8.3.4.2 Quantitative Effect of Errors on a H.261 Data Stream -- 8.3.4.2.1 Errors in an Intra-Coded Frame -- 8.3.4.2.2 Errors in an Inter-Coded Frame -- 8.3.4.2.3 Errors in Quantizer Indices -- 8.3.4.2.4 Errors in an Inter-Coded Frame withMotion Vectors -- 8.3.4.2.5 Errors in an Inter-Coded Frame at Low Rate -- 8.4 A Reconfigurable Wireless Videophone System -- 8.4.1 Introduction -- 8.4.2 Objectives -- 8.4.3 Bit-Rate Reduction of the H.261 Codec -- 8.4.4 Investigation of Macroblock Size -- 8.4.5 Error Correction Coding -- 8.4.6 Packetization Algorithm -- 8.4.6.1 Encoding History List -- 8.4.6.2 Macroblock Compounding -- 8.4.6.3 End of Frame Effect -- 8.4.6.4 Packet Transmission Feedback -- 8.4.6.5 Packet Truncation and Compounding Algorithms.
8.5 H.261-Based Wireless Videophone System Performance -- 8.5.2 System Performance -- 8.6 Summary and Conclusions -- 9 Comparison of the H.261 and H.263 Codecs -- 9.1 Introduction -- 9.2 The H.263 Coding Algorithms -- 9.2.1 Source Encoder -- 9.2.1.1 Prediction -- 9.2.1.2 Motion Compensation and Transform Coding -- 9.2.1.3 Quantization -- 9.2.2 Video Multiplex Coder -- 9.2.2.1 Picture Layer -- 9.2.2.2 Group of Blocks Layer -- 9.2.2.3 H.261 Macroblock Layer -- 9.2.2.4 H.263 Macroblock Layer -- 9.2.2.5 Block Layer -- 9.2.3 Motion Compensation -- 9.2.3.1 H.263 Motion Vector Predictor -- 9.2.3.2 H.263 Subpixel Interpolation -- 9.2.4 H.263 Negotiable Options -- 9.2.4.1 Unrestricted Motion Vector Mode -- 9.2.4.2 Syntax-Based Arithmetic Coding Mode -- 9.2.4.2.1 Arithmetic coding [1] -- 9.2.4.3 Advanced Prediction Mode -- 9.2.4.3.1 Four Motion Vectors per Macroblock -- 9.2.4.3.2 Overlapped Motion Compensation for Luminance -- 9.2.4.4 P-B Frames Mode -- 9.3 Performance Results -- 9.3.1 Introduction -- 9.3.2 H.261 Performance -- 9.3.3 H.261/H.263 Performance Comparison -- 9.3.4 H.263 Codec Performance -- 9.3.4.1 Gray-Scale versus Color Comparison -- 9.3.4.2 Comparison of QCIF Resolution Color Video -- 9.3.4.3 Coding Performance at Various Resolutions -- 9.4 Summary and Conclusions -- 10 H.263 for HSDPA-Style Wireless Video Telephony -- 10.1 Introduction -- 10.2 H.263 in a Mobile Environment -- 10.2.1 Problems of Using H.263 in a Mobile Environment -- 10.2.2 Possible Solutions for Using H.263 in a Mobile Environment. -- 10.2.2.1 Coding Video Sequences Using Exclusively Intra-Coded Frames -- 10.2.2.2 Automatic Repeat Requests -- 10.2.2.3 Multimode Modulation Schemes -- 10.2.2.4 Combined Source/Channel Coding -- 10.3 Design of an Error-Resilient Reconfigurable Videophone System -- 10.3.1 Introduction -- 10.3.2 Controling the Bit Rate -- 10.3.3 Employing FEC Codes in the Videophone System -- 10.3.4 Transmission Packet Structure -- 10.3.5 Coding Parameter History List -- 10.3.6 The Packetization Algorithm.
10.3.6.1 Operational Scenarios of the Packetizing Algorithm -- 10.4 H.263-Based Video System Performance -- 10.4.1 System Environment -- 10.4.2 Performance Results -- 10.4.2.1 Error-Free Transmission Results -- 10.4.2.2 Effect of Packet Dropping on Image Quality -- 10.4.2.3 Image Quality versus Channel Quality without ARQ -- 10.4.2.4 Image Quality versus Channel Quality with ARQ -- 10.4.3 Comparison of H.263 and H.261-Based Systems -- 10.4.3.1 Performance with Antenna Diversity -- 10.4.3.2 Performance over DECT Channels -- 10.5 Transmission Feedback -- 10.5.1 ARQ Issues -- 10.5.2 Implementation of Transmission Feedback -- 10.5.2.1 Majority Logic Coding -- 10.6 Summary and Conclusions -- 11 MPEG-4 Video Compression -- 11.1 Introduction -- 11.2 Overview of MPEG-4 -- 11.2.1 MPEG-4 Profiles -- 11.2.2 MPEG-4 Features -- 11.2.3 MPEG-4 Object Based Orientation -- 11.3 MPEG-4 : Content-Based Interactivity -- 11.3.1 Video Object Plane Based Encoding -- 11.3.2 Motion and Texture Encoding -- 11.3.3 Shape Coding -- 11.3.3.1 VOP Shape Encoding -- 11.3.3.2 Gray Scale Shape Coding -- 11.4 Scalability of Video Objects -- 11.5 Video Quality Measures -- 11.5.1 Subjective Video Quality Evaluation -- 11.5.2 Objective Video Quality -- 11.6 Effect of Coding Parameters. -- 11.7 Summary and Conclusion -- 12 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.1 Introduction -- 12.2 The ITU-T H.264 Project -- 12.3 H.264 Video Coding Techniques -- 12.3.1 H.264 Encoder -- 12.3.2 H.264 Decoder -- 12.4 H.264 Specific Coding Algorithm -- 12.4.1 Intra-frame Prediction -- 12.4.2 Inter-frame Prediction -- 12.4.2.1 Block Sizes -- 12.4.2.2 Motion Estimation Accuracy -- 12.4.2.3 Multiple Reference Frame Selection for Motion Compensation -- 12.4.2.4 De-blocking Filter -- 12.4.3 Integer Transform -- 12.4.3.1 Development of the 4 4-pixel Integer DCT -- 12.4.3.2 Quantisation -- 12.4.3.3 The Combined Transform, Quantisation, Rescaling and Inverse Transform Process -- 12.4.3.4 Integer Transform Example.
12.4.4 Entropy Coding -- 12.4.4.1 Universal Variable Length Coding -- 12.4.4.2 Context-Based Adaptive Binary Arithmetic Coding -- 12.4.4.3 H.264 Conclusion -- 12.5 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.5.1 Introduction -- 12.5.2 Intra-frame Coding and Prediction -- 12.5.3 Inter-frame Prediction and Motion Compensation -- 12.5.4 Transform Coding and Quantisation -- 12.5.5 Entropy Coding -- 12.5.6 De-blocking Filter -- 12.6 Performance Results -- 12.6.1 Introduction -- 12.6.2 MPEG-4 Performance -- 12.6.3 H.264 Performance -- 12.6.4 Comparative Study -- 12.6.5 Summary and Conclusions -- 13 MPEG-4 Bitstream and Bit-Sensitivity Study -- 13.1 Motivation -- 13.2 Structure of Coded Visual Data -- 13.3 Visual Bitstream Syntax -- 13.3.1 Start Codes -- 13.4 Introduction to Error-Resilient Video Encoding -- 13.5 Error-Resilient Video Coding in MPEG-4 -- 13.6 Error Resilience Tools in MPEG-4 -- 13.6.1 Resynchronisation -- 13.6.2 Data Partitioning -- 13.6.3 Reversible Variable-Length Codes -- 13.6.4 Header Extension Code -- 13.7 MPEG-4 Bit-Sensitivity Study -- 13.7.1 Objectives -- 13.7.2 Introduction -- 13.7.3 Simulated Coding Statistics -- 13.7.4 Effects of Errors -- 13.8 Chapter Conclusions -- 14 HSDPA-Like and Turbo-Style Adaptive Single- and Multi-Carrier Video Systems -- 14.1 Turbo-equalised H.263-based videophony for GSM/GPRS -- 14.1.1 Motivation and Background -- 14.1.2 System Parameters -- 14.1.3 Turbo Equalization -- 14.1.4 Turbo-equalization Performance -- 14.1.4.1 Video Performance -- 14.1.4.2 Bit Error Statistics -- 14.1.5 Summary and Conclusions -- 14.2 HSDPA-Style Burst-by-burst Adaptive CDMA Videophony -- 14.2.1 Motivation and Video Transceiver Overview -- 14.2.2 Multimode Video System Performance -- 14.2.3 Burst-by-Burst Adaptive Videophone System -- 14.2.4 Summary and Conclusions -- 14.3 Adaptive Turbo-Coded OFDM-Based Videotelephony. -- 14.3.1 Motivation and Background -- 14.3.2 AOFDM Modem Mode Adaptation and Signaling -- 14.3.3 AOFDM Subband BER Estimation.
14.3.4 Video Compression and Transmission Aspects -- 14.3.5 Comparison of Subband-Adaptive OFDM and Fixed Mode -- OFDM Transceivers -- 14.3.6 Subband-Adaptive OFDM Transceivers Having Different Target Bit Rates -- 14.3.7 Time-Variant Target Bit Rate OFDM Transceivers -- 14.3.8 Summary and Conclusions -- 14.4 HSDPA-Style Adaptive TCM, TTCM and BICM for H.263 Video Telephony -- 14.4.1 Introduction -- 14.4.2 System Overview -- 14.4.2.1 System Parameters and Channel Model -- 14.4.3 Employing Fixed Modulation Modes -- 14.4.4 Employing Adaptive Modulation -- 14.4.4.1 Performance of TTCM AQAM -- 14.4.4.2 Performance of AQAMUsing TTCM, TCC, TCMand BICM -- 14.4.4.3 The Effect of Various AQAM Thresholds -- 14.4.5 TTCM AQAM in CDMA system -- 14.4.5.1 Performance of TTCM AQAM in CDMA system -- 14.4.6 Conclusions -- 14.5 Turbo-Detected MPEG-4 Video Using Multi-Level Coding, TCM and STTC -- 14.5.1 Motivation and Background -- 14.5.2 The Turbo Transceiver -- 14.5.2.1 Turbo Decoding -- 14.5.2.2 Turbo Benchmark Scheme -- 14.5.3 MIMO Channel Capacity -- 14.5.4 Convergence Analysis -- 14.5.5 Simulation results -- 14.5.6 Conclusions -- 14.6 Near-Capacity Irregular Variable Length Codes -- 14.6.1 Introduction -- 14.6.2 Overview of Proposed Schemes -- 14.6.2.1 Joint source and channel coding -- 14.6.2.2 Iterative decoding -- 14.6.3 Parameter Design for the Proposed Schemes -- 14.6.3.1 Scheme hypothesis and parameters -- 14.6.3.2 EXIT chart analysis and optimization -- 14.6.4 Results -- 14.6.4.1 Asymptotic performance following iterative decoding convergence -- 14.6.4.2 Performance during iterative decoding -- 14.6.4.3 Complexity analysis -- 14.6.5 Conclusions -- 14.7 Digital Terrestrial Video Broadcasting for Mobile Receivers -- 14.7.1 Background and Motivation -- 14.7.2 MPEG-2 Bit Error Sensitivity -- 14.7.3 DVB Terrestrial Scheme -- 14.7.4 Terrestrial Broadcast Channel Model -- 14.7.5 Data Partitioning Scheme -- 14.7.6 Performance of the Data Partitioning Scheme -- 14.7.7 Nonhierarchical OFDM DVBP Performance.
14.7.8 Hierarchical OFDM DVB Performance -- 14.7.9 Summary and Conclusions -- 14.8 Satellite-Based Video Broadcasting -- 14.8.1 Background and Motivation -- 14.8.2 DVB Satellite Scheme -- 14.8.3 Satellite Channel Model -- 14.8.4 The Blind Equalizers -- 14.8.5 Performance of the DVB Satellite Scheme -- 14.8.5.1 Transmission over the Symbol-Spaced Two-Path Channel -- 14.8.5.2 Transmission over the Two-Symbol Delay Two-Path Channel -- 14.8.5.3 Performance Summary of the DVB-S System -- 14.8.6 Summary and Conclusions -- 14.9 Summary and Conclusions -- 14.10Wireless Video System Design Principles. -- Glossary -- Bibliography -- Subject Index -- Author Index.
Record Nr. UNINA-9910144581803321
Hanzo Lajos <1952->  
Hoboken, New Jersey : , : IEEE Press, , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Autore Hanzo Lajos <1952->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2007
Descrizione fisica 1 online resource (703 p.)
Disciplina 006.6/96
621.38833
Altri autori (Persone) CherrimanPeter J. <1972->
StreitJùrgen <1968->
HanzoLajos <1952->
Soggetto topico Video compression
Digital video
Mobile communication systems
ISBN 1-281-13536-4
9786611135362
0-470-51992-4
0-470-51991-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors -- Other Wiley and IEEE Press Books on Related Topics -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 A Brief Introduction to Compression Theory -- 1.2 Introduction to Video Formats -- 1.3 Evolution of Video Compression Standards -- 1.3.1 The International Telecommunications Union's H.120 Standard -- 1.3.2 Joint Photographic Expert Group -- 1.3.3 The ITU H.261 Standard -- 1.3.4 The Motion Pictures Expert Group -- 1.3.5 The MPEG-2 Standard -- 1.3.6 The ITU H.263 Standard -- 1.3.7 The ITU H.263+/H.263++ Standards -- 1.3.8 The MPEG-4 Standard -- 1.3.9 The H.26L/H.264 Standard -- 1.4 Video Communications -- 1.5 Organisation of the Monograph -- I Video Codecs for HSDPA-Style Adaptive Videophones -- 2 Fractal Image Codecs -- 2.1 Fractal Principles -- 2.2 One-Dimensional Fractal Coding -- 2.2.1 Fractal Codec Design -- 2.2.2 Fractal Codec Performance -- 2.3 Error Sensitivity and Complexity -- 2.4 Summary and Conclusions -- 3 Low Bit-Rate DCT Codecs and HSDPA-Style Videophones -- 3.1 Video Codec Outline -- 3.2 The Principle of Motion Compensation -- 3.2.1 Distance Measures -- 3.2.2 Motion Search Algorithms -- 3.2.2.1 Full or Exhaustive Motion Search -- 3.2.2.2 Gradient-Based Motion Estimation -- 3.2.2.3 Hierarchical or Tree Search -- 3.2.2.4 Subsampling Search -- 3.2.2.5 Post-Processing of Motion Vectors -- 3.2.2.6 Gain-Cost-Controlled Motion Compensation -- 3.2.3 Other Motion Estimation Techniques -- 3.2.3.1 Pel-Recursive Displacement Estimation -- 3.2.3.2 Grid Interpolation Techniques -- 3.2.3.3 MC Using Higher Order Transformations -- 3.2.3.4 MC in the Transform Domain -- 3.2.4 Conclusion -- 3.3 Transform Coding -- 3.3.1 One-Dimensional Transform Coding -- 3.3.2 Two-Dimensional Transform Coding -- 3.3.3 Quantizer Training for Single-Class DCT -- 3.3.4 Quantizer Training for Multiclass DCT -- 3.4 The Codec Outline -- 3.5 Initial Intra-Frame Coding -- 3.6 Gain-Controlled Motion Compensation -- 3.7 The MCER Active/Passive Concept -- 3.8 Partial Forced Update of the Reconstructed Frame Buffers.
3.9 The Gain/Cost-Controlled Inter-Frame Codec -- 3.9.1 Complexity Considerations and Reduction Techniques -- 3.10 The Bit-Allocation Strategy -- 3.11 Results -- 3.12 DCT Codec Performance under Erroneous Conditions -- 3.12.1 Bit Sensitivity -- 3.12.2 Bit Sensitivity of Codec I and II -- 3.13 DCT-Based Low-Rate Video Transceivers -- 3.13.1 Choice of Modem -- 3.13.2 Source-Matched Transceiver -- 3.13.2.1 System 1 -- 3.13.2.1.1 System Concept -- 3.13.2.1.2 Sensitivity-Matched Modulation -- 3.13.2.1.3 Source Sensitivity -- 3.13.2.1.4 Forward Error Correction -- 3.13.2.1.5 Transmission Format -- 3.13.2.2 System 2 -- 3.13.2.2.1 Automatic Repeat Request -- 3.13.2.3 Systems 3-5 -- 3.14 System Performance -- 3.14.1 Performance of System 1 -- 3.14.2 Performance of System 2 -- 3.14.2.1 FER Performance -- 3.14.2.2 Slot Occupancy Performance -- 3.14.2.3 PSNR Performance -- 3.14.3 Performance of Systems 3-5 -- 3.15 Summary and Conclusions -- 4 Low Bit-Rate VQ Codecs and HSDPA-Style Videophones -- 4.1 Introduction -- 4.2 The Codebook Design -- 4.3 The Vector Quantizer Design -- 4.3.1 Mean and Shape Gain Vector Quantization -- 4.3.2 Adaptive Vector Quantization -- 4.3.3 Classified Vector Quantization -- 4.3.4 Algorithmic Complexity -- 4.4 Performance under Erroneous Conditions -- 4.4.1 Bit-Allocation Strategy -- 4.4.2 Bit Sensitivity -- 4.5 VQ-Based Low-Rate Video Transceivers -- 4.5.1 Choice of Modulation -- 4.5.2 Forward Error Correction -- 4.5.3 Architecture of System 1 -- 4.5.4 Architecture of System 2 -- 4.5.5 Architecture of Systems 3-6 -- 4.6 System Performance -- 4.6.1 Simulation Environment -- 4.6.2 Performance of Systems 1 and 3 -- 4.6.3 Performance of Systems 4 and 5 -- 4.6.4 Performance of Systems 2 and 6 -- 4.7 Joint Iterative Decoding of Trellis-Based VQ-Video and TCM -- 4.7.1 Introduction -- 4.7.2 System Overview -- 4.7.3 Compression -- 4.7.4 Vector quantization decomposition -- 4.7.5 Serial concatenation and iterative decoding -- 4.7.6 Transmission Frame Structure.
4.7.7 Frame difference decomposition -- 4.7.8 VQ codebook -- 4.7.9 VQ-induced code constraints -- 4.7.10 VQ trellis structure -- 4.7.11 VQ Encoding -- 4.7.12 VQ Decoding -- 4.7.13 Results -- 4.8 Summary and Conclusions -- 5 Low Bit-Rate Quad-Tree-Based Codecs and HSDPA-Style Videophones. -- 5.1 Introduction -- 5.2 Quad-Tree Decomposition -- 5.3 Quad-Tree Intensity Match -- 5.3.1 Zero-Order Intensity Match -- 5.3.2 First-Order Intensity Match -- 5.3.3 Decomposition Algorithmic Issues -- 5.4 Model-Based Parametric Enhancement -- 5.4.1 Eye and Mouth Detection -- 5.4.2 Parametric Codebook Training -- 5.4.3 Parametric Encoding -- 5.5 The Enhanced QT Codec -- 5.6 Performance under Erroneous Conditions -- 5.6.1 Bit Allocation -- 5.6.2 Bit Sensitivity -- 5.7 QT-Codec-Based Video Transceivers -- 5.7.1 Channel Coding and Modulation -- 5.7.2 QT-Based Transceiver Architectures -- 5.8 QT-Based Video-Transceiver Performance -- 5.9 Summary of QT-Based Video Transceivers -- 5.10 Summary of Low-Rate Codecs/Transceivers -- II High-Resolution Video Coding -- 6 Low-Complexity Techniques -- 6.1 Differential Pulse Code Modulation -- 6.1.1 Basic Differential Pulse Code Modulation -- 6.1.2 Intra/Inter-Frame Differential Pulse Code Modulation -- 6.1.3 Adaptive Differential Pulse Code Modulation -- 6.2 Block Truncation Coding -- 6.2.1 The Block Truncation Algorithm -- 6.2.2 Block Truncation Codec Implementations -- 6.2.3 Intra-Frame Block Truncation Coding -- 6.2.4 Inter-Frame Block Truncation Coding -- 6.3 Subband Coding -- 6.3.1 Perfect Reconstruction Quadrature Mirror Filtering -- 6.3.1.1 Analysis Filtering -- 6.3.1.2 Synthesis Filtering -- 6.3.1.3 Practical QMF Design Constraints -- 6.3.2 Practical Quadrature Mirror Filters -- 6.3.3 Run-Length-Based Intra-Frame Subband Coding. -- 6.3.4 Max-Lloyd-Based Subband Coding -- 6.4 Summary and Conclusions -- 7 High-Resolution DCT Coding -- 7.1 Introduction -- 7.2 Intra-Frame Quantizer Training -- 7.3 Motion Compensation for High-Quality Images.
7.4 Inter-Frame DCT Coding -- 7.4.1 Properties of the DCT transformed MCER -- 7.4.2 Joint Motion Compensation and Residual Encoding -- 7.5 The Proposed Codec -- 7.5.1 Motion Compensation -- 7.5.2 The Inter/Intra-DCT Codec -- 7.5.3 Frame Alignment -- 7.5.4 Bit-Allocation -- 7.5.5 The Codec Performance -- 7.5.6 Error Sensitivity and Complexity -- 7.6 Summary and Conclusions -- III H.261, H.263, H.264, MPEG2 and MPEG 4 forHSDPA-Style Wireless Video Telephony and DVB -- 8 H.261 for HSDPA-Style Wireless Video Telephony -- 8.1 Introduction -- 8.2 The H.261 Video Coding Standard -- 8.2.1 Overview -- 8.2.2 Source Encoder -- 8.2.3 Coding Control -- 8.2.4 Video Multiplex Coder -- 8.2.4.1 Picture Layer -- 8.2.4.2 Group of Blocks Layer -- 8.2.4.3 Macroblock Layer -- 8.2.4.4 Block Layer -- 8.2.5 Simulated Coding Statistics -- 8.2.5.1 Fixed-Quantizer Coding -- 8.2.5.2 Variable Quantizer Coding -- 8.3 Effect of Transmission Errors on the H.261 Codec -- 8.3.1 Error Mechanisms -- 8.3.2 Error Control Mechanisms -- 8.3.2.1 Background -- 8.3.2.2 Intra-Frame Coding -- 8.3.2.3 Automatic Repeat Request -- 8.3.2.4 Reconfigurable Modulations Schemes -- 8.3.2.5 Combined Source/Channel Coding -- 8.3.3 Error Recovery -- 8.3.4 Effects of Errors -- 8.3.4.1 Qualitative Effect of Errors on H.261 Parameters -- 8.3.4.2 Quantitative Effect of Errors on a H.261 Data Stream -- 8.3.4.2.1 Errors in an Intra-Coded Frame -- 8.3.4.2.2 Errors in an Inter-Coded Frame -- 8.3.4.2.3 Errors in Quantizer Indices -- 8.3.4.2.4 Errors in an Inter-Coded Frame withMotion Vectors -- 8.3.4.2.5 Errors in an Inter-Coded Frame at Low Rate -- 8.4 A Reconfigurable Wireless Videophone System -- 8.4.1 Introduction -- 8.4.2 Objectives -- 8.4.3 Bit-Rate Reduction of the H.261 Codec -- 8.4.4 Investigation of Macroblock Size -- 8.4.5 Error Correction Coding -- 8.4.6 Packetization Algorithm -- 8.4.6.1 Encoding History List -- 8.4.6.2 Macroblock Compounding -- 8.4.6.3 End of Frame Effect -- 8.4.6.4 Packet Transmission Feedback -- 8.4.6.5 Packet Truncation and Compounding Algorithms.
8.5 H.261-Based Wireless Videophone System Performance -- 8.5.2 System Performance -- 8.6 Summary and Conclusions -- 9 Comparison of the H.261 and H.263 Codecs -- 9.1 Introduction -- 9.2 The H.263 Coding Algorithms -- 9.2.1 Source Encoder -- 9.2.1.1 Prediction -- 9.2.1.2 Motion Compensation and Transform Coding -- 9.2.1.3 Quantization -- 9.2.2 Video Multiplex Coder -- 9.2.2.1 Picture Layer -- 9.2.2.2 Group of Blocks Layer -- 9.2.2.3 H.261 Macroblock Layer -- 9.2.2.4 H.263 Macroblock Layer -- 9.2.2.5 Block Layer -- 9.2.3 Motion Compensation -- 9.2.3.1 H.263 Motion Vector Predictor -- 9.2.3.2 H.263 Subpixel Interpolation -- 9.2.4 H.263 Negotiable Options -- 9.2.4.1 Unrestricted Motion Vector Mode -- 9.2.4.2 Syntax-Based Arithmetic Coding Mode -- 9.2.4.2.1 Arithmetic coding [1] -- 9.2.4.3 Advanced Prediction Mode -- 9.2.4.3.1 Four Motion Vectors per Macroblock -- 9.2.4.3.2 Overlapped Motion Compensation for Luminance -- 9.2.4.4 P-B Frames Mode -- 9.3 Performance Results -- 9.3.1 Introduction -- 9.3.2 H.261 Performance -- 9.3.3 H.261/H.263 Performance Comparison -- 9.3.4 H.263 Codec Performance -- 9.3.4.1 Gray-Scale versus Color Comparison -- 9.3.4.2 Comparison of QCIF Resolution Color Video -- 9.3.4.3 Coding Performance at Various Resolutions -- 9.4 Summary and Conclusions -- 10 H.263 for HSDPA-Style Wireless Video Telephony -- 10.1 Introduction -- 10.2 H.263 in a Mobile Environment -- 10.2.1 Problems of Using H.263 in a Mobile Environment -- 10.2.2 Possible Solutions for Using H.263 in a Mobile Environment. -- 10.2.2.1 Coding Video Sequences Using Exclusively Intra-Coded Frames -- 10.2.2.2 Automatic Repeat Requests -- 10.2.2.3 Multimode Modulation Schemes -- 10.2.2.4 Combined Source/Channel Coding -- 10.3 Design of an Error-Resilient Reconfigurable Videophone System -- 10.3.1 Introduction -- 10.3.2 Controling the Bit Rate -- 10.3.3 Employing FEC Codes in the Videophone System -- 10.3.4 Transmission Packet Structure -- 10.3.5 Coding Parameter History List -- 10.3.6 The Packetization Algorithm.
10.3.6.1 Operational Scenarios of the Packetizing Algorithm -- 10.4 H.263-Based Video System Performance -- 10.4.1 System Environment -- 10.4.2 Performance Results -- 10.4.2.1 Error-Free Transmission Results -- 10.4.2.2 Effect of Packet Dropping on Image Quality -- 10.4.2.3 Image Quality versus Channel Quality without ARQ -- 10.4.2.4 Image Quality versus Channel Quality with ARQ -- 10.4.3 Comparison of H.263 and H.261-Based Systems -- 10.4.3.1 Performance with Antenna Diversity -- 10.4.3.2 Performance over DECT Channels -- 10.5 Transmission Feedback -- 10.5.1 ARQ Issues -- 10.5.2 Implementation of Transmission Feedback -- 10.5.2.1 Majority Logic Coding -- 10.6 Summary and Conclusions -- 11 MPEG-4 Video Compression -- 11.1 Introduction -- 11.2 Overview of MPEG-4 -- 11.2.1 MPEG-4 Profiles -- 11.2.2 MPEG-4 Features -- 11.2.3 MPEG-4 Object Based Orientation -- 11.3 MPEG-4 : Content-Based Interactivity -- 11.3.1 Video Object Plane Based Encoding -- 11.3.2 Motion and Texture Encoding -- 11.3.3 Shape Coding -- 11.3.3.1 VOP Shape Encoding -- 11.3.3.2 Gray Scale Shape Coding -- 11.4 Scalability of Video Objects -- 11.5 Video Quality Measures -- 11.5.1 Subjective Video Quality Evaluation -- 11.5.2 Objective Video Quality -- 11.6 Effect of Coding Parameters. -- 11.7 Summary and Conclusion -- 12 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.1 Introduction -- 12.2 The ITU-T H.264 Project -- 12.3 H.264 Video Coding Techniques -- 12.3.1 H.264 Encoder -- 12.3.2 H.264 Decoder -- 12.4 H.264 Specific Coding Algorithm -- 12.4.1 Intra-frame Prediction -- 12.4.2 Inter-frame Prediction -- 12.4.2.1 Block Sizes -- 12.4.2.2 Motion Estimation Accuracy -- 12.4.2.3 Multiple Reference Frame Selection for Motion Compensation -- 12.4.2.4 De-blocking Filter -- 12.4.3 Integer Transform -- 12.4.3.1 Development of the 4 4-pixel Integer DCT -- 12.4.3.2 Quantisation -- 12.4.3.3 The Combined Transform, Quantisation, Rescaling and Inverse Transform Process -- 12.4.3.4 Integer Transform Example.
12.4.4 Entropy Coding -- 12.4.4.1 Universal Variable Length Coding -- 12.4.4.2 Context-Based Adaptive Binary Arithmetic Coding -- 12.4.4.3 H.264 Conclusion -- 12.5 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.5.1 Introduction -- 12.5.2 Intra-frame Coding and Prediction -- 12.5.3 Inter-frame Prediction and Motion Compensation -- 12.5.4 Transform Coding and Quantisation -- 12.5.5 Entropy Coding -- 12.5.6 De-blocking Filter -- 12.6 Performance Results -- 12.6.1 Introduction -- 12.6.2 MPEG-4 Performance -- 12.6.3 H.264 Performance -- 12.6.4 Comparative Study -- 12.6.5 Summary and Conclusions -- 13 MPEG-4 Bitstream and Bit-Sensitivity Study -- 13.1 Motivation -- 13.2 Structure of Coded Visual Data -- 13.3 Visual Bitstream Syntax -- 13.3.1 Start Codes -- 13.4 Introduction to Error-Resilient Video Encoding -- 13.5 Error-Resilient Video Coding in MPEG-4 -- 13.6 Error Resilience Tools in MPEG-4 -- 13.6.1 Resynchronisation -- 13.6.2 Data Partitioning -- 13.6.3 Reversible Variable-Length Codes -- 13.6.4 Header Extension Code -- 13.7 MPEG-4 Bit-Sensitivity Study -- 13.7.1 Objectives -- 13.7.2 Introduction -- 13.7.3 Simulated Coding Statistics -- 13.7.4 Effects of Errors -- 13.8 Chapter Conclusions -- 14 HSDPA-Like and Turbo-Style Adaptive Single- and Multi-Carrier Video Systems -- 14.1 Turbo-equalised H.263-based videophony for GSM/GPRS -- 14.1.1 Motivation and Background -- 14.1.2 System Parameters -- 14.1.3 Turbo Equalization -- 14.1.4 Turbo-equalization Performance -- 14.1.4.1 Video Performance -- 14.1.4.2 Bit Error Statistics -- 14.1.5 Summary and Conclusions -- 14.2 HSDPA-Style Burst-by-burst Adaptive CDMA Videophony -- 14.2.1 Motivation and Video Transceiver Overview -- 14.2.2 Multimode Video System Performance -- 14.2.3 Burst-by-Burst Adaptive Videophone System -- 14.2.4 Summary and Conclusions -- 14.3 Adaptive Turbo-Coded OFDM-Based Videotelephony. -- 14.3.1 Motivation and Background -- 14.3.2 AOFDM Modem Mode Adaptation and Signaling -- 14.3.3 AOFDM Subband BER Estimation.
14.3.4 Video Compression and Transmission Aspects -- 14.3.5 Comparison of Subband-Adaptive OFDM and Fixed Mode -- OFDM Transceivers -- 14.3.6 Subband-Adaptive OFDM Transceivers Having Different Target Bit Rates -- 14.3.7 Time-Variant Target Bit Rate OFDM Transceivers -- 14.3.8 Summary and Conclusions -- 14.4 HSDPA-Style Adaptive TCM, TTCM and BICM for H.263 Video Telephony -- 14.4.1 Introduction -- 14.4.2 System Overview -- 14.4.2.1 System Parameters and Channel Model -- 14.4.3 Employing Fixed Modulation Modes -- 14.4.4 Employing Adaptive Modulation -- 14.4.4.1 Performance of TTCM AQAM -- 14.4.4.2 Performance of AQAMUsing TTCM, TCC, TCMand BICM -- 14.4.4.3 The Effect of Various AQAM Thresholds -- 14.4.5 TTCM AQAM in CDMA system -- 14.4.5.1 Performance of TTCM AQAM in CDMA system -- 14.4.6 Conclusions -- 14.5 Turbo-Detected MPEG-4 Video Using Multi-Level Coding, TCM and STTC -- 14.5.1 Motivation and Background -- 14.5.2 The Turbo Transceiver -- 14.5.2.1 Turbo Decoding -- 14.5.2.2 Turbo Benchmark Scheme -- 14.5.3 MIMO Channel Capacity -- 14.5.4 Convergence Analysis -- 14.5.5 Simulation results -- 14.5.6 Conclusions -- 14.6 Near-Capacity Irregular Variable Length Codes -- 14.6.1 Introduction -- 14.6.2 Overview of Proposed Schemes -- 14.6.2.1 Joint source and channel coding -- 14.6.2.2 Iterative decoding -- 14.6.3 Parameter Design for the Proposed Schemes -- 14.6.3.1 Scheme hypothesis and parameters -- 14.6.3.2 EXIT chart analysis and optimization -- 14.6.4 Results -- 14.6.4.1 Asymptotic performance following iterative decoding convergence -- 14.6.4.2 Performance during iterative decoding -- 14.6.4.3 Complexity analysis -- 14.6.5 Conclusions -- 14.7 Digital Terrestrial Video Broadcasting for Mobile Receivers -- 14.7.1 Background and Motivation -- 14.7.2 MPEG-2 Bit Error Sensitivity -- 14.7.3 DVB Terrestrial Scheme -- 14.7.4 Terrestrial Broadcast Channel Model -- 14.7.5 Data Partitioning Scheme -- 14.7.6 Performance of the Data Partitioning Scheme -- 14.7.7 Nonhierarchical OFDM DVBP Performance.
14.7.8 Hierarchical OFDM DVB Performance -- 14.7.9 Summary and Conclusions -- 14.8 Satellite-Based Video Broadcasting -- 14.8.1 Background and Motivation -- 14.8.2 DVB Satellite Scheme -- 14.8.3 Satellite Channel Model -- 14.8.4 The Blind Equalizers -- 14.8.5 Performance of the DVB Satellite Scheme -- 14.8.5.1 Transmission over the Symbol-Spaced Two-Path Channel -- 14.8.5.2 Transmission over the Two-Symbol Delay Two-Path Channel -- 14.8.5.3 Performance Summary of the DVB-S System -- 14.8.6 Summary and Conclusions -- 14.9 Summary and Conclusions -- 14.10Wireless Video System Design Principles. -- Glossary -- Bibliography -- Subject Index -- Author Index.
Record Nr. UNISA-996215465203316
Hanzo Lajos <1952->  
Hoboken, New Jersey : , : IEEE Press, , c2007
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Video compression and communications : from basics to H.261, H.263, H.264, MPEG2, MPEG4 for DVB and HSDPA-style adaptive turbo-transceivers / / L. Hanzo, P.J. Cherriman and J. Streit
Autore Hanzo Lajos <1952->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2007
Descrizione fisica 1 online resource (703 p.)
Disciplina 006.6/96
621.38833
Altri autori (Persone) CherrimanPeter J. <1972->
StreitJùrgen <1968->
HanzoLajos <1952->
Soggetto topico Video compression
Digital video
Mobile communication systems
ISBN 1-281-13536-4
9786611135362
0-470-51992-4
0-470-51991-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors -- Other Wiley and IEEE Press Books on Related Topics -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 A Brief Introduction to Compression Theory -- 1.2 Introduction to Video Formats -- 1.3 Evolution of Video Compression Standards -- 1.3.1 The International Telecommunications Union's H.120 Standard -- 1.3.2 Joint Photographic Expert Group -- 1.3.3 The ITU H.261 Standard -- 1.3.4 The Motion Pictures Expert Group -- 1.3.5 The MPEG-2 Standard -- 1.3.6 The ITU H.263 Standard -- 1.3.7 The ITU H.263+/H.263++ Standards -- 1.3.8 The MPEG-4 Standard -- 1.3.9 The H.26L/H.264 Standard -- 1.4 Video Communications -- 1.5 Organisation of the Monograph -- I Video Codecs for HSDPA-Style Adaptive Videophones -- 2 Fractal Image Codecs -- 2.1 Fractal Principles -- 2.2 One-Dimensional Fractal Coding -- 2.2.1 Fractal Codec Design -- 2.2.2 Fractal Codec Performance -- 2.3 Error Sensitivity and Complexity -- 2.4 Summary and Conclusions -- 3 Low Bit-Rate DCT Codecs and HSDPA-Style Videophones -- 3.1 Video Codec Outline -- 3.2 The Principle of Motion Compensation -- 3.2.1 Distance Measures -- 3.2.2 Motion Search Algorithms -- 3.2.2.1 Full or Exhaustive Motion Search -- 3.2.2.2 Gradient-Based Motion Estimation -- 3.2.2.3 Hierarchical or Tree Search -- 3.2.2.4 Subsampling Search -- 3.2.2.5 Post-Processing of Motion Vectors -- 3.2.2.6 Gain-Cost-Controlled Motion Compensation -- 3.2.3 Other Motion Estimation Techniques -- 3.2.3.1 Pel-Recursive Displacement Estimation -- 3.2.3.2 Grid Interpolation Techniques -- 3.2.3.3 MC Using Higher Order Transformations -- 3.2.3.4 MC in the Transform Domain -- 3.2.4 Conclusion -- 3.3 Transform Coding -- 3.3.1 One-Dimensional Transform Coding -- 3.3.2 Two-Dimensional Transform Coding -- 3.3.3 Quantizer Training for Single-Class DCT -- 3.3.4 Quantizer Training for Multiclass DCT -- 3.4 The Codec Outline -- 3.5 Initial Intra-Frame Coding -- 3.6 Gain-Controlled Motion Compensation -- 3.7 The MCER Active/Passive Concept -- 3.8 Partial Forced Update of the Reconstructed Frame Buffers.
3.9 The Gain/Cost-Controlled Inter-Frame Codec -- 3.9.1 Complexity Considerations and Reduction Techniques -- 3.10 The Bit-Allocation Strategy -- 3.11 Results -- 3.12 DCT Codec Performance under Erroneous Conditions -- 3.12.1 Bit Sensitivity -- 3.12.2 Bit Sensitivity of Codec I and II -- 3.13 DCT-Based Low-Rate Video Transceivers -- 3.13.1 Choice of Modem -- 3.13.2 Source-Matched Transceiver -- 3.13.2.1 System 1 -- 3.13.2.1.1 System Concept -- 3.13.2.1.2 Sensitivity-Matched Modulation -- 3.13.2.1.3 Source Sensitivity -- 3.13.2.1.4 Forward Error Correction -- 3.13.2.1.5 Transmission Format -- 3.13.2.2 System 2 -- 3.13.2.2.1 Automatic Repeat Request -- 3.13.2.3 Systems 3-5 -- 3.14 System Performance -- 3.14.1 Performance of System 1 -- 3.14.2 Performance of System 2 -- 3.14.2.1 FER Performance -- 3.14.2.2 Slot Occupancy Performance -- 3.14.2.3 PSNR Performance -- 3.14.3 Performance of Systems 3-5 -- 3.15 Summary and Conclusions -- 4 Low Bit-Rate VQ Codecs and HSDPA-Style Videophones -- 4.1 Introduction -- 4.2 The Codebook Design -- 4.3 The Vector Quantizer Design -- 4.3.1 Mean and Shape Gain Vector Quantization -- 4.3.2 Adaptive Vector Quantization -- 4.3.3 Classified Vector Quantization -- 4.3.4 Algorithmic Complexity -- 4.4 Performance under Erroneous Conditions -- 4.4.1 Bit-Allocation Strategy -- 4.4.2 Bit Sensitivity -- 4.5 VQ-Based Low-Rate Video Transceivers -- 4.5.1 Choice of Modulation -- 4.5.2 Forward Error Correction -- 4.5.3 Architecture of System 1 -- 4.5.4 Architecture of System 2 -- 4.5.5 Architecture of Systems 3-6 -- 4.6 System Performance -- 4.6.1 Simulation Environment -- 4.6.2 Performance of Systems 1 and 3 -- 4.6.3 Performance of Systems 4 and 5 -- 4.6.4 Performance of Systems 2 and 6 -- 4.7 Joint Iterative Decoding of Trellis-Based VQ-Video and TCM -- 4.7.1 Introduction -- 4.7.2 System Overview -- 4.7.3 Compression -- 4.7.4 Vector quantization decomposition -- 4.7.5 Serial concatenation and iterative decoding -- 4.7.6 Transmission Frame Structure.
4.7.7 Frame difference decomposition -- 4.7.8 VQ codebook -- 4.7.9 VQ-induced code constraints -- 4.7.10 VQ trellis structure -- 4.7.11 VQ Encoding -- 4.7.12 VQ Decoding -- 4.7.13 Results -- 4.8 Summary and Conclusions -- 5 Low Bit-Rate Quad-Tree-Based Codecs and HSDPA-Style Videophones. -- 5.1 Introduction -- 5.2 Quad-Tree Decomposition -- 5.3 Quad-Tree Intensity Match -- 5.3.1 Zero-Order Intensity Match -- 5.3.2 First-Order Intensity Match -- 5.3.3 Decomposition Algorithmic Issues -- 5.4 Model-Based Parametric Enhancement -- 5.4.1 Eye and Mouth Detection -- 5.4.2 Parametric Codebook Training -- 5.4.3 Parametric Encoding -- 5.5 The Enhanced QT Codec -- 5.6 Performance under Erroneous Conditions -- 5.6.1 Bit Allocation -- 5.6.2 Bit Sensitivity -- 5.7 QT-Codec-Based Video Transceivers -- 5.7.1 Channel Coding and Modulation -- 5.7.2 QT-Based Transceiver Architectures -- 5.8 QT-Based Video-Transceiver Performance -- 5.9 Summary of QT-Based Video Transceivers -- 5.10 Summary of Low-Rate Codecs/Transceivers -- II High-Resolution Video Coding -- 6 Low-Complexity Techniques -- 6.1 Differential Pulse Code Modulation -- 6.1.1 Basic Differential Pulse Code Modulation -- 6.1.2 Intra/Inter-Frame Differential Pulse Code Modulation -- 6.1.3 Adaptive Differential Pulse Code Modulation -- 6.2 Block Truncation Coding -- 6.2.1 The Block Truncation Algorithm -- 6.2.2 Block Truncation Codec Implementations -- 6.2.3 Intra-Frame Block Truncation Coding -- 6.2.4 Inter-Frame Block Truncation Coding -- 6.3 Subband Coding -- 6.3.1 Perfect Reconstruction Quadrature Mirror Filtering -- 6.3.1.1 Analysis Filtering -- 6.3.1.2 Synthesis Filtering -- 6.3.1.3 Practical QMF Design Constraints -- 6.3.2 Practical Quadrature Mirror Filters -- 6.3.3 Run-Length-Based Intra-Frame Subband Coding. -- 6.3.4 Max-Lloyd-Based Subband Coding -- 6.4 Summary and Conclusions -- 7 High-Resolution DCT Coding -- 7.1 Introduction -- 7.2 Intra-Frame Quantizer Training -- 7.3 Motion Compensation for High-Quality Images.
7.4 Inter-Frame DCT Coding -- 7.4.1 Properties of the DCT transformed MCER -- 7.4.2 Joint Motion Compensation and Residual Encoding -- 7.5 The Proposed Codec -- 7.5.1 Motion Compensation -- 7.5.2 The Inter/Intra-DCT Codec -- 7.5.3 Frame Alignment -- 7.5.4 Bit-Allocation -- 7.5.5 The Codec Performance -- 7.5.6 Error Sensitivity and Complexity -- 7.6 Summary and Conclusions -- III H.261, H.263, H.264, MPEG2 and MPEG 4 forHSDPA-Style Wireless Video Telephony and DVB -- 8 H.261 for HSDPA-Style Wireless Video Telephony -- 8.1 Introduction -- 8.2 The H.261 Video Coding Standard -- 8.2.1 Overview -- 8.2.2 Source Encoder -- 8.2.3 Coding Control -- 8.2.4 Video Multiplex Coder -- 8.2.4.1 Picture Layer -- 8.2.4.2 Group of Blocks Layer -- 8.2.4.3 Macroblock Layer -- 8.2.4.4 Block Layer -- 8.2.5 Simulated Coding Statistics -- 8.2.5.1 Fixed-Quantizer Coding -- 8.2.5.2 Variable Quantizer Coding -- 8.3 Effect of Transmission Errors on the H.261 Codec -- 8.3.1 Error Mechanisms -- 8.3.2 Error Control Mechanisms -- 8.3.2.1 Background -- 8.3.2.2 Intra-Frame Coding -- 8.3.2.3 Automatic Repeat Request -- 8.3.2.4 Reconfigurable Modulations Schemes -- 8.3.2.5 Combined Source/Channel Coding -- 8.3.3 Error Recovery -- 8.3.4 Effects of Errors -- 8.3.4.1 Qualitative Effect of Errors on H.261 Parameters -- 8.3.4.2 Quantitative Effect of Errors on a H.261 Data Stream -- 8.3.4.2.1 Errors in an Intra-Coded Frame -- 8.3.4.2.2 Errors in an Inter-Coded Frame -- 8.3.4.2.3 Errors in Quantizer Indices -- 8.3.4.2.4 Errors in an Inter-Coded Frame withMotion Vectors -- 8.3.4.2.5 Errors in an Inter-Coded Frame at Low Rate -- 8.4 A Reconfigurable Wireless Videophone System -- 8.4.1 Introduction -- 8.4.2 Objectives -- 8.4.3 Bit-Rate Reduction of the H.261 Codec -- 8.4.4 Investigation of Macroblock Size -- 8.4.5 Error Correction Coding -- 8.4.6 Packetization Algorithm -- 8.4.6.1 Encoding History List -- 8.4.6.2 Macroblock Compounding -- 8.4.6.3 End of Frame Effect -- 8.4.6.4 Packet Transmission Feedback -- 8.4.6.5 Packet Truncation and Compounding Algorithms.
8.5 H.261-Based Wireless Videophone System Performance -- 8.5.2 System Performance -- 8.6 Summary and Conclusions -- 9 Comparison of the H.261 and H.263 Codecs -- 9.1 Introduction -- 9.2 The H.263 Coding Algorithms -- 9.2.1 Source Encoder -- 9.2.1.1 Prediction -- 9.2.1.2 Motion Compensation and Transform Coding -- 9.2.1.3 Quantization -- 9.2.2 Video Multiplex Coder -- 9.2.2.1 Picture Layer -- 9.2.2.2 Group of Blocks Layer -- 9.2.2.3 H.261 Macroblock Layer -- 9.2.2.4 H.263 Macroblock Layer -- 9.2.2.5 Block Layer -- 9.2.3 Motion Compensation -- 9.2.3.1 H.263 Motion Vector Predictor -- 9.2.3.2 H.263 Subpixel Interpolation -- 9.2.4 H.263 Negotiable Options -- 9.2.4.1 Unrestricted Motion Vector Mode -- 9.2.4.2 Syntax-Based Arithmetic Coding Mode -- 9.2.4.2.1 Arithmetic coding [1] -- 9.2.4.3 Advanced Prediction Mode -- 9.2.4.3.1 Four Motion Vectors per Macroblock -- 9.2.4.3.2 Overlapped Motion Compensation for Luminance -- 9.2.4.4 P-B Frames Mode -- 9.3 Performance Results -- 9.3.1 Introduction -- 9.3.2 H.261 Performance -- 9.3.3 H.261/H.263 Performance Comparison -- 9.3.4 H.263 Codec Performance -- 9.3.4.1 Gray-Scale versus Color Comparison -- 9.3.4.2 Comparison of QCIF Resolution Color Video -- 9.3.4.3 Coding Performance at Various Resolutions -- 9.4 Summary and Conclusions -- 10 H.263 for HSDPA-Style Wireless Video Telephony -- 10.1 Introduction -- 10.2 H.263 in a Mobile Environment -- 10.2.1 Problems of Using H.263 in a Mobile Environment -- 10.2.2 Possible Solutions for Using H.263 in a Mobile Environment. -- 10.2.2.1 Coding Video Sequences Using Exclusively Intra-Coded Frames -- 10.2.2.2 Automatic Repeat Requests -- 10.2.2.3 Multimode Modulation Schemes -- 10.2.2.4 Combined Source/Channel Coding -- 10.3 Design of an Error-Resilient Reconfigurable Videophone System -- 10.3.1 Introduction -- 10.3.2 Controling the Bit Rate -- 10.3.3 Employing FEC Codes in the Videophone System -- 10.3.4 Transmission Packet Structure -- 10.3.5 Coding Parameter History List -- 10.3.6 The Packetization Algorithm.
10.3.6.1 Operational Scenarios of the Packetizing Algorithm -- 10.4 H.263-Based Video System Performance -- 10.4.1 System Environment -- 10.4.2 Performance Results -- 10.4.2.1 Error-Free Transmission Results -- 10.4.2.2 Effect of Packet Dropping on Image Quality -- 10.4.2.3 Image Quality versus Channel Quality without ARQ -- 10.4.2.4 Image Quality versus Channel Quality with ARQ -- 10.4.3 Comparison of H.263 and H.261-Based Systems -- 10.4.3.1 Performance with Antenna Diversity -- 10.4.3.2 Performance over DECT Channels -- 10.5 Transmission Feedback -- 10.5.1 ARQ Issues -- 10.5.2 Implementation of Transmission Feedback -- 10.5.2.1 Majority Logic Coding -- 10.6 Summary and Conclusions -- 11 MPEG-4 Video Compression -- 11.1 Introduction -- 11.2 Overview of MPEG-4 -- 11.2.1 MPEG-4 Profiles -- 11.2.2 MPEG-4 Features -- 11.2.3 MPEG-4 Object Based Orientation -- 11.3 MPEG-4 : Content-Based Interactivity -- 11.3.1 Video Object Plane Based Encoding -- 11.3.2 Motion and Texture Encoding -- 11.3.3 Shape Coding -- 11.3.3.1 VOP Shape Encoding -- 11.3.3.2 Gray Scale Shape Coding -- 11.4 Scalability of Video Objects -- 11.5 Video Quality Measures -- 11.5.1 Subjective Video Quality Evaluation -- 11.5.2 Objective Video Quality -- 11.6 Effect of Coding Parameters. -- 11.7 Summary and Conclusion -- 12 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.1 Introduction -- 12.2 The ITU-T H.264 Project -- 12.3 H.264 Video Coding Techniques -- 12.3.1 H.264 Encoder -- 12.3.2 H.264 Decoder -- 12.4 H.264 Specific Coding Algorithm -- 12.4.1 Intra-frame Prediction -- 12.4.2 Inter-frame Prediction -- 12.4.2.1 Block Sizes -- 12.4.2.2 Motion Estimation Accuracy -- 12.4.2.3 Multiple Reference Frame Selection for Motion Compensation -- 12.4.2.4 De-blocking Filter -- 12.4.3 Integer Transform -- 12.4.3.1 Development of the 4 4-pixel Integer DCT -- 12.4.3.2 Quantisation -- 12.4.3.3 The Combined Transform, Quantisation, Rescaling and Inverse Transform Process -- 12.4.3.4 Integer Transform Example.
12.4.4 Entropy Coding -- 12.4.4.1 Universal Variable Length Coding -- 12.4.4.2 Context-Based Adaptive Binary Arithmetic Coding -- 12.4.4.3 H.264 Conclusion -- 12.5 Comparative Study of the MPEG-4 and H.264 Codecs -- 12.5.1 Introduction -- 12.5.2 Intra-frame Coding and Prediction -- 12.5.3 Inter-frame Prediction and Motion Compensation -- 12.5.4 Transform Coding and Quantisation -- 12.5.5 Entropy Coding -- 12.5.6 De-blocking Filter -- 12.6 Performance Results -- 12.6.1 Introduction -- 12.6.2 MPEG-4 Performance -- 12.6.3 H.264 Performance -- 12.6.4 Comparative Study -- 12.6.5 Summary and Conclusions -- 13 MPEG-4 Bitstream and Bit-Sensitivity Study -- 13.1 Motivation -- 13.2 Structure of Coded Visual Data -- 13.3 Visual Bitstream Syntax -- 13.3.1 Start Codes -- 13.4 Introduction to Error-Resilient Video Encoding -- 13.5 Error-Resilient Video Coding in MPEG-4 -- 13.6 Error Resilience Tools in MPEG-4 -- 13.6.1 Resynchronisation -- 13.6.2 Data Partitioning -- 13.6.3 Reversible Variable-Length Codes -- 13.6.4 Header Extension Code -- 13.7 MPEG-4 Bit-Sensitivity Study -- 13.7.1 Objectives -- 13.7.2 Introduction -- 13.7.3 Simulated Coding Statistics -- 13.7.4 Effects of Errors -- 13.8 Chapter Conclusions -- 14 HSDPA-Like and Turbo-Style Adaptive Single- and Multi-Carrier Video Systems -- 14.1 Turbo-equalised H.263-based videophony for GSM/GPRS -- 14.1.1 Motivation and Background -- 14.1.2 System Parameters -- 14.1.3 Turbo Equalization -- 14.1.4 Turbo-equalization Performance -- 14.1.4.1 Video Performance -- 14.1.4.2 Bit Error Statistics -- 14.1.5 Summary and Conclusions -- 14.2 HSDPA-Style Burst-by-burst Adaptive CDMA Videophony -- 14.2.1 Motivation and Video Transceiver Overview -- 14.2.2 Multimode Video System Performance -- 14.2.3 Burst-by-Burst Adaptive Videophone System -- 14.2.4 Summary and Conclusions -- 14.3 Adaptive Turbo-Coded OFDM-Based Videotelephony. -- 14.3.1 Motivation and Background -- 14.3.2 AOFDM Modem Mode Adaptation and Signaling -- 14.3.3 AOFDM Subband BER Estimation.
14.3.4 Video Compression and Transmission Aspects -- 14.3.5 Comparison of Subband-Adaptive OFDM and Fixed Mode -- OFDM Transceivers -- 14.3.6 Subband-Adaptive OFDM Transceivers Having Different Target Bit Rates -- 14.3.7 Time-Variant Target Bit Rate OFDM Transceivers -- 14.3.8 Summary and Conclusions -- 14.4 HSDPA-Style Adaptive TCM, TTCM and BICM for H.263 Video Telephony -- 14.4.1 Introduction -- 14.4.2 System Overview -- 14.4.2.1 System Parameters and Channel Model -- 14.4.3 Employing Fixed Modulation Modes -- 14.4.4 Employing Adaptive Modulation -- 14.4.4.1 Performance of TTCM AQAM -- 14.4.4.2 Performance of AQAMUsing TTCM, TCC, TCMand BICM -- 14.4.4.3 The Effect of Various AQAM Thresholds -- 14.4.5 TTCM AQAM in CDMA system -- 14.4.5.1 Performance of TTCM AQAM in CDMA system -- 14.4.6 Conclusions -- 14.5 Turbo-Detected MPEG-4 Video Using Multi-Level Coding, TCM and STTC -- 14.5.1 Motivation and Background -- 14.5.2 The Turbo Transceiver -- 14.5.2.1 Turbo Decoding -- 14.5.2.2 Turbo Benchmark Scheme -- 14.5.3 MIMO Channel Capacity -- 14.5.4 Convergence Analysis -- 14.5.5 Simulation results -- 14.5.6 Conclusions -- 14.6 Near-Capacity Irregular Variable Length Codes -- 14.6.1 Introduction -- 14.6.2 Overview of Proposed Schemes -- 14.6.2.1 Joint source and channel coding -- 14.6.2.2 Iterative decoding -- 14.6.3 Parameter Design for the Proposed Schemes -- 14.6.3.1 Scheme hypothesis and parameters -- 14.6.3.2 EXIT chart analysis and optimization -- 14.6.4 Results -- 14.6.4.1 Asymptotic performance following iterative decoding convergence -- 14.6.4.2 Performance during iterative decoding -- 14.6.4.3 Complexity analysis -- 14.6.5 Conclusions -- 14.7 Digital Terrestrial Video Broadcasting for Mobile Receivers -- 14.7.1 Background and Motivation -- 14.7.2 MPEG-2 Bit Error Sensitivity -- 14.7.3 DVB Terrestrial Scheme -- 14.7.4 Terrestrial Broadcast Channel Model -- 14.7.5 Data Partitioning Scheme -- 14.7.6 Performance of the Data Partitioning Scheme -- 14.7.7 Nonhierarchical OFDM DVBP Performance.
14.7.8 Hierarchical OFDM DVB Performance -- 14.7.9 Summary and Conclusions -- 14.8 Satellite-Based Video Broadcasting -- 14.8.1 Background and Motivation -- 14.8.2 DVB Satellite Scheme -- 14.8.3 Satellite Channel Model -- 14.8.4 The Blind Equalizers -- 14.8.5 Performance of the DVB Satellite Scheme -- 14.8.5.1 Transmission over the Symbol-Spaced Two-Path Channel -- 14.8.5.2 Transmission over the Two-Symbol Delay Two-Path Channel -- 14.8.5.3 Performance Summary of the DVB-S System -- 14.8.6 Summary and Conclusions -- 14.9 Summary and Conclusions -- 14.10Wireless Video System Design Principles. -- Glossary -- Bibliography -- Subject Index -- Author Index.
Record Nr. UNINA-9910830037503321
Hanzo Lajos <1952->  
Hoboken, New Jersey : , : IEEE Press, , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui