2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2011 |
Disciplina | 621.3841/2 |
ISBN | 1-4244-8061-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996209944003316 |
[Place of publication not identified], : IEEE, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2011 |
Disciplina | 621.3841/2 |
ISBN | 1-4244-8061-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910139205303321 |
[Place of publication not identified], : IEEE, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang |
Autore | Wang Zhancang |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (xv, 371 pages) : illustrations |
Disciplina | 621.3841/2 |
Collana | Artech House microwave library |
Soggetto topico | Power amplifiers |
Soggetto genere / forma | Electronic books. |
ISBN | 1-63081-467-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack 3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers 3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency |
Record Nr. | UNINA-9910467210403321 |
Wang Zhancang | ||
Boston ; ; London : , : Artech House, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang |
Autore | Wang Zhancang |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (xv, 371 pages) : illustrations |
Disciplina | 621.3841/2 |
Collana | Artech House microwave library |
Soggetto topico | Power amplifiers |
ISBN | 1-63081-467-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack 3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers 3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency |
Record Nr. | UNINA-9910796616403321 |
Wang Zhancang | ||
Boston ; ; London : , : Artech House, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang |
Autore | Wang Zhancang |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (xv, 371 pages) : illustrations |
Disciplina | 621.3841/2 |
Collana | Artech House microwave library |
Soggetto topico | Power amplifiers |
ISBN | 1-63081-467-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack 3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers 3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency |
Record Nr. | UNINA-9910815442603321 |
Wang Zhancang | ||
Boston ; ; London : , : Artech House, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microwave filters for communication systems : fundamentals, design, and applications / / Richard J. Cameron, Chandra M. Kudsia, Raafat R. Mansour |
Autore | Cameron Richard J. |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2018 |
Descrizione fisica | 1 online resource (xxix, 897 p.) : ill |
Disciplina | 621.3841/2 |
Soggetto topico |
Microwave filters
Telecommunication systems Telecommunication systems - Equipment and supplies |
ISBN |
1-119-29238-7
1-119-29239-5 1-119-29237-9 |
Classificazione | TEC024000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1 Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective 1 -- Part I Introduction to a Communication System, Radio Spectrum, and Information 1 -- 1.1 Model of a Communication System 1 -- 1.2 Radio Spectrum and its Utilization 6 -- 1.3 Concept of Information 8 -- 1.4 Communication Channel and Link Budgets 10 -- Part II Noise in a Communication Channel 15 -- 1.5 Noise in Communication Systems 15 -- 1.6 Modulation-Demodulation Schemes in a Communication System 32 -- 1.7 Digital Transmission 39 -- Part III Impact of System Design on the Requirements of Filter Networks 50 -- 1.8 Communication Channels in a Satellite System 50 -- 1.9 RF Filters in Cellular Systems 62 -- 1.10 UltraWideband (UWB)Wireless Communication 66 -- 1.11 Impact of System Requirements on RF Filter Specifications 68 -- 1.12 Impact of Satellite and Cellular Communications on Filter Technology 72 -- Summary 72 -- References 72 -- Appendix 1A 74 -- Intermodulation Distortion Summary 74 -- 2 Fundamentals of Circuit Theory Approximation 75 -- 2.1 Linear Systems 75 -- 2.2 Classification of Systems 76 -- 2.3 Evolution of Electrical Circuits: A Historical Perspective 77 -- 2.4 Network Equation of Linear Systems in the Time Domain 78 -- 2.5 Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function 80 -- 2.6 Steady-State Response of Linear Systems to Sinusoidal Excitations 83 -- 2.7 Circuit Theory Approximation 84 -- Summary 85 -- References 86 -- 3 Characterization of Lossless Lowpass Prototype Filter Functions 87 -- 3.1 The Ideal Filter 87 -- 3.2 Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks 88 -- 3.3 Characteristic Polynomials for Idealized Lowpass Prototype Networks 93 -- 3.4 Lowpass Prototype Characteristics 95 -- 3.5 Characteristic Polynomials versus Response Shapes 96 -- 3.6 Classical Prototype Filters 98 -- 3.7 Unified Design Chart (UDC) Relationships 108 -- 3.8 Lowpass Prototype Circuit Configurations 109.
3.9 Effect of Dissipation 113 -- 3.10 Asymmetric Response Filters 115 -- Summary 118 -- References 119 -- Appendix 3A 121 -- Unified Design Charts 121 -- 4 Computer-Aided Synthesis of Characteristic Polynomials 129 -- 4.1 Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networks 129 -- 4.2 Analytic Gradients of the Objective Function 131 -- 4.3 Optimization Criteria for Classical Filters 134 -- 4.4 Generation of Novel Classes of Filter Functions 136 -- 4.5 Asymmetric Class of Filters 138 -- 4.6 Linear Phase Filters 142 -- 4.7 Critical Frequencies for Selected Filter Functions 143 -- Summary 144 -- References 144 -- Appendix 4A 145 -- Critical Frequencies for an Eight-Pole Filter with Arbitrary Response 145 -- 5 Analysis of Multiport Microwave Networks 147 -- 5.1 Matrix Representation of Two-Port Networks 147 -- 5.2 Cascade of Two Networks 160 -- 5.3 Multiport Networks 167 -- 5.4 Analysis of Multiport Networks 169 -- Summary 174 -- References 175 -- 6 Synthesis of a General Class of the Chebyshev Filter Function 177 -- 6.1 Polynomial Forms of the Transfer and Reflection Parameters S21(S) and S11(S) for a Two-port network 177 -- 6.2 Alternating Pole Method for the Determination of the Denominator Polynomial E(S) 186 -- 6.3 General Polynomial SynthesisMethods for Chebyshev Filter Functions 189 -- 6.4 Predistorted Filter Characteristics 200 -- 6.5 Transformation for Symmetric Dual-Passband Filters 208 -- Summary 210 -- References 211 -- Appendix 6A 212 -- Complex Terminating Impedances in Multiport Networks 212 -- 6A.1 Change of Termination Impedance 213 -- References 213 -- 7 Synthesis of Network-Circuit Approach 215 -- 7.1 Circuit Synthesis Approach 216 -- 7.2 Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass -- 7.3 Ladder Network Synthesis 229 -- 7.4 Synthesis Example of an Asymmetric (4-2) Filter Network 235 -- Summary 244 -- References 245 -- 8 Synthesis of Networks: Direct Coupling Matrix Synthesis Methods 247 -- 8.1 The Coupling Matrix 247. 8.2 Direct Synthesis of the Coupling Matrix 258 -- 8.3 Coupling Matrix Reduction 261 -- 8.4 Synthesis of the N + 2 Coupling Matrix 268 -- 8.5 Even- and Odd-Mode Coupling Matrix Synthesis Technique: the Folded Lattice Array 282 -- Network 289 -- Summary 292 -- References 293 -- 9 Reconfiguration of the Folded Coupling Matrix 295 -- 9.1 Symmetric Realizations for Dual-Mode Filters 295 -- 9.2 Asymmetric Realizations for Symmetric Characteristics 300 -- 9.3 "Pfitzenmaier" Configurations 301 -- 9.4 Cascaded Quartets (CQs): Two Quartets in Cascade for Degrees Eight and Above 304 -- 9.5 Parallel-Connected Two-Port Networks 306 -- 9.6 Cul-de-Sac Configuration 311 -- Summary 321 -- References 321 -- 10 Synthesis and Application of Extracted Pole and Trisection Elements 323 -- 10.1 Extracted Pole Filter Synthesis 323 -- 10.2 Synthesis of Bandstop Filters Using the Extracted Pole Technique 335 -- 10.3 Trisections 343 -- 10.4 Box Section and Extended Box Configurations 361 -- Summary 371 -- References 371 -- 11 Microwave Resonators 373 -- 11.1 Microwave Resonator Configurations 373 -- 11.2 Calculation of Resonant Frequency 376 -- 11.3 Resonator Unloaded Q Factor 383 -- 11.4 Measurement of Loaded and Unloaded Q Factor 387 -- Summary 393 -- References 393 -- 12 Waveguide and Coaxial Lowpass Filters 395 -- 12.1 Commensurate-Line Building Elements 395 -- 12.2 Lowpass Prototype Transfer Polynomials 396 -- 12.3 Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter 401 -- 12.4 Short-Step Transformers 410 -- 12.5 Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filters 411 -- Summary 425 -- References 426 -- 13 Waveguide Realization of Single- and Dual-Mode Resonator Filters 427 -- 13.1 Synthesis Process 428 -- 13.2 Design of the Filter Function 428 -- 13.3 Realization and Analysis of the Microwave Filter Network 434 -- 13.4 Dual-Mode Filters 440 -- 13.5 Coupling Sign Correction 442 -- 13.6 Dual-Mode Realizations for Some Typical Coupling Matrix Configurations 444. 13.7 Phase- and Direct-Coupled Extracted Pole Filters 447 -- 13.8 The "Full-Inductive" Dual-Mode Filter 450 -- Summary 454 -- References 454 -- 14 Design and Physical Realization of Coupled Resonator Filters 457 -- 14.1 Circuit Models for Chebyshev Bandpass Filters 459 -- 14.2 Calculation of Interresonator Coupling 463 -- 14.3 Calculation of Input/Output Coupling 467 -- 14.4 Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model 468 -- 14.5 Design Example of aWaveguide Iris Filter Using the Impedance InverterModel 475 -- 14.6 Design Example of a Microstrip Filter Using the J-Admittance InverterModel 478 -- Summary 483 -- References 484 -- 15 Advanced EM-Based Design Techniques for Microwave Filters 485 -- 15.1 EM-Based Synthesis Techniques 485 -- 15.2 EM-Based Optimization Techniques 486 -- 15.3 EM-Based Advanced Design Techniques 496 -- Summary 513 -- References 514 -- 16 Dielectric Resonator Filters 517 -- 16.1 Resonant Frequency Calculation in Dielectric Resonators 517 -- 16.2 Rigorous Analyses of Dielectric Resonators 521 -- 16.3 Dielectric Resonator Filter Configurations 524 -- 16.4 Design Considerations for Dielectric Resonator Filters 528 -- 16.5 Other Dielectric Resonator Configurations 531 -- 16.6 Cryogenic Dielectric Resonator Filters 534 -- 16.7 Hybrid Dielectric/Superconductor Filters 536 -- Summary 538 -- References 539 -- 17 Allpass Phase and Group Delay Equalizer Networks 541 -- 17.1 Characteristics of Allpass Networks 541 -- 17.2 Lumped-Element Allpass Networks 543 -- 17.3 Microwave Allpass Networks 547 -- 17.4 Physical Realization of Allpass Networks 550 -- 17.5 Synthesis of Reflection-Type Allpass Networks 553 -- 17.6 Practical Narrowband Reflection-Type Allpass Networks 554 -- 17.7 Optimization Criteria for Allpass Networks 557 -- 17.8 Dissipation Loss 562 -- 17.9 Equalization Tradeoffs 563 -- Summary 563 -- References 564 -- 18 Multiplexer Theory and Design 565 -- 18.1 Background 565 -- 18.2 Multiplexer Configurations 567. 18.3 RF Channelizers (Demultiplexers) 571 -- 18.4 RF Combiners 577 -- 18.5 Transmit-Receive Diplexers 596 -- Summary 603 -- References 604 -- 19 Computer-Aided Diagnosis and Tuning of Microwave Filters 607 -- 19.1 Sequential Tuning of Coupled Resonator Filters 608 -- 19.2 Computer-Aided Tuning Based on Circuit Model Parameter Extraction 613 -- 19.3 Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient 617 -- 19.4 Time-Domain Tuning 620 -- 19.5 Filter Tuning Based on Fuzzy Logic Techniques 625 -- 19.6 Automated Setups for Filter Tuning 635 -- Summary 637 -- References 638 -- 20 High-Power Considerations in Microwave Filter Networks 641 -- 20.1 Background 641 -- 20.2 High-Power Requirements inWireless Systems 641 -- 20.3 High-Power Amplifiers (HPAs) 643 -- 20.4 Gas Discharge 643 -- 20.5 Multipaction Breakdown 649 -- 20.6 High-Power Bandpass Filters 660 -- 20.7 Passive Intermodulation (PIM) Consideration for High-Power Equipment 668 -- Summary 672 -- Acknowledgment 673 -- References 673 -- 21 Multiband Filters 677 -- 21.1 Introduction 677 -- 21.2 Approach I: Multiband Filters Realized by Having Transmission Zeros Inside the Passband of a Bandpass Filter 679 -- 21.3 Approach II: Multiband Filters Employing Multimode Resonators 681 -- 21.4 Approach III: Multiband Filters Using Parallel Connected Filters 698 -- 21.5 Approach IV: Multiband Filter Implemented Using Notch Filters Connected in Cascade with aWideband Bandpass 699 -- 21.6 Use of Dual-Band Filters in Diplexer and Multiplexer Applications 701 -- 21.7 Synthesis of Multiband Filters 703 -- References 725 -- 22 Tunable Filters 729 -- 22.1 Introduction 729 -- 22.2 Major Challenges in Realizing High-Q 3D Tunable Filters 731 -- 22.3 Combline Tunable Filters 732 -- 22.4 Tunable Dielectric Resonator Filters 750 -- 22.5 Waveguide Tunable Filters 770 -- 22.6 Filters with Tunable Bandwidth 774 -- Summary 776 -- References 777 -- 23 Practical Considerations and Design Examples 783 /Chandra M. Kudsia, Vicente E. Boria, and Santiago Cogollos. 23.1 System Considerations for Filter Specifications in Communication Systems 783 -- 23.2 Filter Synthesis Techniques and Topologies 794 -- 23.3 Multiplexers 825 -- 23.4 High-Power Considerations 837 -- 23.5 Tolerance and Sensitivity Analysis in Filter Design 849 -- Summary 856 -- Acknowledgments 856 -- Appendix 23A 856 -- Thermal Expansion 856 -- References 857 -- A Impedance and Admittance Inverters 859 -- A.1 Filter Realization with Series Elements 859 -- A.2 Normalization of the Element Values 862 -- A.3 General Lowpass Prototype Case 863 -- A.3.1 Coupling Coefficient: Lowpass Prototype 864 -- A.4 Bandpass Prototype 864 -- A.4.1 Slope Parameter 865 -- A.4.2 Coupling Matrix Parameter M 865 -- A.4.3 Coupling Coefficient: Bandpass Prototype 866 -- A.4.4 Slope Parameter of Transmission-Line Resonators 866 -- A.4.5 Slope Parameter forWaveguide Resonators 867 -- A.4.6 Practical Impedance and Admittance Inverters 868 -- References 868 -- Index 869. |
Record Nr. | UNINA-9910270880103321 |
Cameron Richard J. | ||
Hoboken, New Jersey : , : Wiley, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
RF module : the three stub tuner |
Autore | Pryor Roger W |
Edizione | [1st ed.] |
Pubbl/distr/stampa | [Place of publication not identified], : Mercury Learning and Information, 2014 |
Descrizione fisica | 1 online resource (150 p.) |
Disciplina | 621.3841/2 |
Collana | Multiphysics modeling series RF module |
Soggetto topico |
Microwave circuits - Design and construction
Wave guides Electrical & Computer Engineering Engineering & Applied Sciences Electrical Engineering |
ISBN |
1-68392-313-8
1-938549-97-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. Modeling Methodology Using COMSOL 4.x -- Chapter 2. Applicable RF Theory -- Chapter 3. Designing the Three Stub Tuner Model -- Chapter 4. Building the Three Stub Tuner Model Using the RF Module in COMSOL Multiphysics 4.x -- Chapter 5. Three Stub Tuner Model Results -- Chapter 6. Three Stub Tuner Model VSWR Calculations -- Chapter 7. Conclusions from the Three Stub Tuner Model -- Chapter 8. First Variation on the Three Stub Tuner Model -- Chapter 9. Second Variation on the Three Stub Tuner Model -- Chapter 10. Third Variation on the Three Stub Tuner Model -- Chapter 11. Conclusions: Three Stub Tuner Model Plus Variations -- References -- Index |
Altri titoli varianti | RF module |
Record Nr. | UNINA-9910838372203321 |
Pryor Roger W | ||
[Place of publication not identified], : Mercury Learning and Information, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|