top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems
2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2011
Disciplina 621.3841/2
ISBN 1-4244-8061-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996209944003316
[Place of publication not identified], : IEEE, 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems
2011 11th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2011
Disciplina 621.3841/2
ISBN 1-4244-8061-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910139205303321
[Place of publication not identified], : IEEE, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
Autore Wang Zhancang
Pubbl/distr/stampa Boston ; ; London : , : Artech House, , [2017]
Descrizione fisica 1 online resource (xv, 371 pages) : illustrations
Disciplina 621.3841/2
Collana Artech House microwave library
Soggetto topico Power amplifiers
Soggetto genere / forma Electronic books.
ISBN 1-63081-467-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack
3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers
3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency
Record Nr. UNINA-9910467210403321
Wang Zhancang  
Boston ; ; London : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
Autore Wang Zhancang
Pubbl/distr/stampa Boston ; ; London : , : Artech House, , [2017]
Descrizione fisica 1 online resource (xv, 371 pages) : illustrations
Disciplina 621.3841/2
Collana Artech House microwave library
Soggetto topico Power amplifiers
ISBN 1-63081-467-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack
3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers
3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency
Record Nr. UNINA-9910796616403321
Wang Zhancang  
Boston ; ; London : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
High-efficiency load modulation power amplifiers for wireless communications / / Zhancang Wang
Autore Wang Zhancang
Pubbl/distr/stampa Boston ; ; London : , : Artech House, , [2017]
Descrizione fisica 1 online resource (xv, 371 pages) : illustrations
Disciplina 621.3841/2
Collana Artech House microwave library
Soggetto topico Power amplifiers
ISBN 1-63081-467-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro; High-Efficiency Load Modulation Power Amplifiers for Wireless Communications; Contents; Preface; Acknowledgments; Chapter 1 Call for Efficient Power Amplification; 1.1 Figures of Merit of a Modern Radio Power Amplifier; 1.1.1 Output Power; 1.1.2 Power Gain; 1.1.3 Power Added Efficiency; 1.1.4 Bandwidth; 1.1.5 Linearity; 1.2 Evolution of Communication Signals; 1.2.1 History and Trends of Communication Signals; 1.2.2 Effect of Signal Evolution on PAPR; 1.2.3 Effect of High PAPR on Figures of Merit for PAs; 1.3 Efficient Amplification with Modulation; 1.3.1 Bias Modulation Amplifiers
1.3.2 Load Modulation AmplifiersReferences; Select Bibliography; Chapter 2 Passive Load Impedance Tuner Design; 2.1 Specification of Passive Load Impedance Tuners; 2.2 Selection of Tuning Elements for Passive Impedance Tuners; 2.3 Microwave Varactors; 2.3.1 Varactors for Dynamic Load Modulation; 2.3.2 MEMS Varactors; 2.3.3 BST Varactors; 2.3.4 Silicon Varactor Diodes; 2.3.5 GaAs Varactor Diodes; 2.3.6 SiC Varactor Diodes; 2.3.7 GaN Varactor Diodes; 2.4 High-Performance Varactor Stacks; 2.4.1 Distortion-Free Varactor Stack; 2.4.2 Wide Tone Spacing Varactor Stack
3.4 PA Design for Dynamic Load3.4.1 Dynamic Load Class-AB Amplifier; 3.4.2 Dynamic Load Saturated Class-B Amplifier; 3.4.3 Dynamic Load Class-C Amplifier; 3.4.4 Dynamic Load Class-D Amplifier; 3.4.5 Dynamic Load Class-E Amplifier; 3.4.6 Dynamic Class-F Amplifier; 3.5 Digital Signal Processing for Dynamic Load; 3.5.1 Timing Alignment for Dynamic Load; 3.5.2 Bandwidth Reduction of Dynamic Load Control Signal; 3.5.3 Slew-Rate Reduction of Dynamic Load Control Signal; 3.5.4 Linearization of Dynamic Load Amplifier; 3.6 Measurement Methods for Dynamic Load Amplifiers
3.6.1 Test Bed Sync for the Dynamic Load System3.6.2 Continuous-Wave Versus Complex Stimulus; 3.6.3 Complex Stimulus Measurements Setup; 3.6.4 Complex Characterization Techniques; References; Selected Bibliography; Chapter 4 Active Load Modulation Power Amplifiers; 4.1 Balanced Versus Doherty; 4.2 Active Load Pulling Effect; 4.3 Active Load Amplifiers; 4.4 Doherty Amplifier; 4.4.1 Impedance Inverter; 4.4.2 Amplifier Cells; 4.4.3 Offset Lines; 4.4.4 Input Power Splitter; 4.4.5 Output Doherty Combining; 4.5 Classical Doherty Limitations and Solutions; 4.5.1 Low Breakpoint Efficiency
Record Nr. UNINA-9910815442603321
Wang Zhancang  
Boston ; ; London : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave filters for communication systems : fundamentals, design, and applications / / Richard J. Cameron, Chandra M. Kudsia, Raafat R. Mansour
Microwave filters for communication systems : fundamentals, design, and applications / / Richard J. Cameron, Chandra M. Kudsia, Raafat R. Mansour
Autore Cameron Richard J.
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2018
Descrizione fisica 1 online resource (xxix, 897 p.) : ill
Disciplina 621.3841/2
Soggetto topico Microwave filters
Telecommunication systems
Telecommunication systems - Equipment and supplies
ISBN 1-119-29238-7
1-119-29239-5
1-119-29237-9
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective 1 -- Part I Introduction to a Communication System, Radio Spectrum, and Information 1 -- 1.1 Model of a Communication System 1 -- 1.2 Radio Spectrum and its Utilization 6 -- 1.3 Concept of Information 8 -- 1.4 Communication Channel and Link Budgets 10 -- Part II Noise in a Communication Channel 15 -- 1.5 Noise in Communication Systems 15 -- 1.6 Modulation-Demodulation Schemes in a Communication System 32 -- 1.7 Digital Transmission 39 -- Part III Impact of System Design on the Requirements of Filter Networks 50 -- 1.8 Communication Channels in a Satellite System 50 -- 1.9 RF Filters in Cellular Systems 62 -- 1.10 UltraWideband (UWB)Wireless Communication 66 -- 1.11 Impact of System Requirements on RF Filter Specifications 68 -- 1.12 Impact of Satellite and Cellular Communications on Filter Technology 72 -- Summary 72 -- References 72 -- Appendix 1A 74 -- Intermodulation Distortion Summary 74 -- 2 Fundamentals of Circuit Theory Approximation 75 -- 2.1 Linear Systems 75 -- 2.2 Classification of Systems 76 -- 2.3 Evolution of Electrical Circuits: A Historical Perspective 77 -- 2.4 Network Equation of Linear Systems in the Time Domain 78 -- 2.5 Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function 80 -- 2.6 Steady-State Response of Linear Systems to Sinusoidal Excitations 83 -- 2.7 Circuit Theory Approximation 84 -- Summary 85 -- References 86 -- 3 Characterization of Lossless Lowpass Prototype Filter Functions 87 -- 3.1 The Ideal Filter 87 -- 3.2 Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks 88 -- 3.3 Characteristic Polynomials for Idealized Lowpass Prototype Networks 93 -- 3.4 Lowpass Prototype Characteristics 95 -- 3.5 Characteristic Polynomials versus Response Shapes 96 -- 3.6 Classical Prototype Filters 98 -- 3.7 Unified Design Chart (UDC) Relationships 108 -- 3.8 Lowpass Prototype Circuit Configurations 109.
3.9 Effect of Dissipation 113 -- 3.10 Asymmetric Response Filters 115 -- Summary 118 -- References 119 -- Appendix 3A 121 -- Unified Design Charts 121 -- 4 Computer-Aided Synthesis of Characteristic Polynomials 129 -- 4.1 Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networks 129 -- 4.2 Analytic Gradients of the Objective Function 131 -- 4.3 Optimization Criteria for Classical Filters 134 -- 4.4 Generation of Novel Classes of Filter Functions 136 -- 4.5 Asymmetric Class of Filters 138 -- 4.6 Linear Phase Filters 142 -- 4.7 Critical Frequencies for Selected Filter Functions 143 -- Summary 144 -- References 144 -- Appendix 4A 145 -- Critical Frequencies for an Eight-Pole Filter with Arbitrary Response 145 -- 5 Analysis of Multiport Microwave Networks 147 -- 5.1 Matrix Representation of Two-Port Networks 147 -- 5.2 Cascade of Two Networks 160 -- 5.3 Multiport Networks 167 -- 5.4 Analysis of Multiport Networks 169 -- Summary 174 -- References 175 -- 6 Synthesis of a General Class of the Chebyshev Filter Function 177 -- 6.1 Polynomial Forms of the Transfer and Reflection Parameters S21(S) and S11(S) for a Two-port network 177 -- 6.2 Alternating Pole Method for the Determination of the Denominator Polynomial E(S) 186 -- 6.3 General Polynomial SynthesisMethods for Chebyshev Filter Functions 189 -- 6.4 Predistorted Filter Characteristics 200 -- 6.5 Transformation for Symmetric Dual-Passband Filters 208 -- Summary 210 -- References 211 -- Appendix 6A 212 -- Complex Terminating Impedances in Multiport Networks 212 -- 6A.1 Change of Termination Impedance 213 -- References 213 -- 7 Synthesis of Network-Circuit Approach 215 -- 7.1 Circuit Synthesis Approach 216 -- 7.2 Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass -- 7.3 Ladder Network Synthesis 229 -- 7.4 Synthesis Example of an Asymmetric (4-2) Filter Network 235 -- Summary 244 -- References 245 -- 8 Synthesis of Networks: Direct Coupling Matrix Synthesis Methods 247 -- 8.1 The Coupling Matrix 247.
8.2 Direct Synthesis of the Coupling Matrix 258 -- 8.3 Coupling Matrix Reduction 261 -- 8.4 Synthesis of the N + 2 Coupling Matrix 268 -- 8.5 Even- and Odd-Mode Coupling Matrix Synthesis Technique: the Folded Lattice Array 282 -- Network 289 -- Summary 292 -- References 293 -- 9 Reconfiguration of the Folded Coupling Matrix 295 -- 9.1 Symmetric Realizations for Dual-Mode Filters 295 -- 9.2 Asymmetric Realizations for Symmetric Characteristics 300 -- 9.3 "Pfitzenmaier" Configurations 301 -- 9.4 Cascaded Quartets (CQs): Two Quartets in Cascade for Degrees Eight and Above 304 -- 9.5 Parallel-Connected Two-Port Networks 306 -- 9.6 Cul-de-Sac Configuration 311 -- Summary 321 -- References 321 -- 10 Synthesis and Application of Extracted Pole and Trisection Elements 323 -- 10.1 Extracted Pole Filter Synthesis 323 -- 10.2 Synthesis of Bandstop Filters Using the Extracted Pole Technique 335 -- 10.3 Trisections 343 -- 10.4 Box Section and Extended Box Configurations 361 -- Summary 371 -- References 371 -- 11 Microwave Resonators 373 -- 11.1 Microwave Resonator Configurations 373 -- 11.2 Calculation of Resonant Frequency 376 -- 11.3 Resonator Unloaded Q Factor 383 -- 11.4 Measurement of Loaded and Unloaded Q Factor 387 -- Summary 393 -- References 393 -- 12 Waveguide and Coaxial Lowpass Filters 395 -- 12.1 Commensurate-Line Building Elements 395 -- 12.2 Lowpass Prototype Transfer Polynomials 396 -- 12.3 Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter 401 -- 12.4 Short-Step Transformers 410 -- 12.5 Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filters 411 -- Summary 425 -- References 426 -- 13 Waveguide Realization of Single- and Dual-Mode Resonator Filters 427 -- 13.1 Synthesis Process 428 -- 13.2 Design of the Filter Function 428 -- 13.3 Realization and Analysis of the Microwave Filter Network 434 -- 13.4 Dual-Mode Filters 440 -- 13.5 Coupling Sign Correction 442 -- 13.6 Dual-Mode Realizations for Some Typical Coupling Matrix Configurations 444.
13.7 Phase- and Direct-Coupled Extracted Pole Filters 447 -- 13.8 The "Full-Inductive" Dual-Mode Filter 450 -- Summary 454 -- References 454 -- 14 Design and Physical Realization of Coupled Resonator Filters 457 -- 14.1 Circuit Models for Chebyshev Bandpass Filters 459 -- 14.2 Calculation of Interresonator Coupling 463 -- 14.3 Calculation of Input/Output Coupling 467 -- 14.4 Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model 468 -- 14.5 Design Example of aWaveguide Iris Filter Using the Impedance InverterModel 475 -- 14.6 Design Example of a Microstrip Filter Using the J-Admittance InverterModel 478 -- Summary 483 -- References 484 -- 15 Advanced EM-Based Design Techniques for Microwave Filters 485 -- 15.1 EM-Based Synthesis Techniques 485 -- 15.2 EM-Based Optimization Techniques 486 -- 15.3 EM-Based Advanced Design Techniques 496 -- Summary 513 -- References 514 -- 16 Dielectric Resonator Filters 517 -- 16.1 Resonant Frequency Calculation in Dielectric Resonators 517 -- 16.2 Rigorous Analyses of Dielectric Resonators 521 -- 16.3 Dielectric Resonator Filter Configurations 524 -- 16.4 Design Considerations for Dielectric Resonator Filters 528 -- 16.5 Other Dielectric Resonator Configurations 531 -- 16.6 Cryogenic Dielectric Resonator Filters 534 -- 16.7 Hybrid Dielectric/Superconductor Filters 536 -- Summary 538 -- References 539 -- 17 Allpass Phase and Group Delay Equalizer Networks 541 -- 17.1 Characteristics of Allpass Networks 541 -- 17.2 Lumped-Element Allpass Networks 543 -- 17.3 Microwave Allpass Networks 547 -- 17.4 Physical Realization of Allpass Networks 550 -- 17.5 Synthesis of Reflection-Type Allpass Networks 553 -- 17.6 Practical Narrowband Reflection-Type Allpass Networks 554 -- 17.7 Optimization Criteria for Allpass Networks 557 -- 17.8 Dissipation Loss 562 -- 17.9 Equalization Tradeoffs 563 -- Summary 563 -- References 564 -- 18 Multiplexer Theory and Design 565 -- 18.1 Background 565 -- 18.2 Multiplexer Configurations 567.
18.3 RF Channelizers (Demultiplexers) 571 -- 18.4 RF Combiners 577 -- 18.5 Transmit-Receive Diplexers 596 -- Summary 603 -- References 604 -- 19 Computer-Aided Diagnosis and Tuning of Microwave Filters 607 -- 19.1 Sequential Tuning of Coupled Resonator Filters 608 -- 19.2 Computer-Aided Tuning Based on Circuit Model Parameter Extraction 613 -- 19.3 Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient 617 -- 19.4 Time-Domain Tuning 620 -- 19.5 Filter Tuning Based on Fuzzy Logic Techniques 625 -- 19.6 Automated Setups for Filter Tuning 635 -- Summary 637 -- References 638 -- 20 High-Power Considerations in Microwave Filter Networks 641 -- 20.1 Background 641 -- 20.2 High-Power Requirements inWireless Systems 641 -- 20.3 High-Power Amplifiers (HPAs) 643 -- 20.4 Gas Discharge 643 -- 20.5 Multipaction Breakdown 649 -- 20.6 High-Power Bandpass Filters 660 -- 20.7 Passive Intermodulation (PIM) Consideration for High-Power Equipment 668 -- Summary 672 -- Acknowledgment 673 -- References 673 -- 21 Multiband Filters 677 -- 21.1 Introduction 677 -- 21.2 Approach I: Multiband Filters Realized by Having Transmission Zeros Inside the Passband of a Bandpass Filter 679 -- 21.3 Approach II: Multiband Filters Employing Multimode Resonators 681 -- 21.4 Approach III: Multiband Filters Using Parallel Connected Filters 698 -- 21.5 Approach IV: Multiband Filter Implemented Using Notch Filters Connected in Cascade with aWideband Bandpass 699 -- 21.6 Use of Dual-Band Filters in Diplexer and Multiplexer Applications 701 -- 21.7 Synthesis of Multiband Filters 703 -- References 725 -- 22 Tunable Filters 729 -- 22.1 Introduction 729 -- 22.2 Major Challenges in Realizing High-Q 3D Tunable Filters 731 -- 22.3 Combline Tunable Filters 732 -- 22.4 Tunable Dielectric Resonator Filters 750 -- 22.5 Waveguide Tunable Filters 770 -- 22.6 Filters with Tunable Bandwidth 774 -- Summary 776 -- References 777 -- 23 Practical Considerations and Design Examples 783 /Chandra M. Kudsia, Vicente E. Boria, and Santiago Cogollos.
23.1 System Considerations for Filter Specifications in Communication Systems 783 -- 23.2 Filter Synthesis Techniques and Topologies 794 -- 23.3 Multiplexers 825 -- 23.4 High-Power Considerations 837 -- 23.5 Tolerance and Sensitivity Analysis in Filter Design 849 -- Summary 856 -- Acknowledgments 856 -- Appendix 23A 856 -- Thermal Expansion 856 -- References 857 -- A Impedance and Admittance Inverters 859 -- A.1 Filter Realization with Series Elements 859 -- A.2 Normalization of the Element Values 862 -- A.3 General Lowpass Prototype Case 863 -- A.3.1 Coupling Coefficient: Lowpass Prototype 864 -- A.4 Bandpass Prototype 864 -- A.4.1 Slope Parameter 865 -- A.4.2 Coupling Matrix Parameter M 865 -- A.4.3 Coupling Coefficient: Bandpass Prototype 866 -- A.4.4 Slope Parameter of Transmission-Line Resonators 866 -- A.4.5 Slope Parameter forWaveguide Resonators 867 -- A.4.6 Practical Impedance and Admittance Inverters 868 -- References 868 -- Index 869.
Record Nr. UNINA-9910270880103321
Cameron Richard J.  
Hoboken, New Jersey : , : Wiley, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF module : the three stub tuner
RF module : the three stub tuner
Autore Pryor Roger W
Edizione [1st ed.]
Pubbl/distr/stampa [Place of publication not identified], : Mercury Learning and Information, 2014
Descrizione fisica 1 online resource (150 p.)
Disciplina 621.3841/2
Collana Multiphysics modeling series RF module
Soggetto topico Microwave circuits - Design and construction
Wave guides
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-68392-313-8
1-938549-97-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. Modeling Methodology Using COMSOL 4.x -- Chapter 2. Applicable RF Theory -- Chapter 3. Designing the Three Stub Tuner Model -- Chapter 4. Building the Three Stub Tuner Model Using the RF Module in COMSOL Multiphysics 4.x -- Chapter 5. Three Stub Tuner Model Results -- Chapter 6. Three Stub Tuner Model VSWR Calculations -- Chapter 7. Conclusions from the Three Stub Tuner Model -- Chapter 8. First Variation on the Three Stub Tuner Model -- Chapter 9. Second Variation on the Three Stub Tuner Model -- Chapter 10. Third Variation on the Three Stub Tuner Model -- Chapter 11. Conclusions: Three Stub Tuner Model Plus Variations -- References -- Index
Altri titoli varianti RF module
Record Nr. UNINA-9910838372203321
Pryor Roger W  
[Place of publication not identified], : Mercury Learning and Information, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui