top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
Autore Staszewski Robert Bogdan <1965->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (281 p.)
Disciplina 621.3815363
621.3815486
Altri autori (Persone) BalsaraPoras T. <1961->
Soggetto topico Frequency synthesizers - Design and construction
Wireless communication systems - Equipment and supplies - Design and construction
Metal oxide semiconductors, Complementary - Design and construction
Soggetto genere / forma Electronic books.
ISBN 1-280-65439-2
9786610654390
0-470-04195-1
0-470-04194-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS; CONTENTS; PREFACE; Acknowledgments; 1 INTRODUCTION; 1.1 Frequency Synthesis; 1.1.1 Noise in Oscillators; 1.1.2 Frequency Synthesis Techniques; 1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver; 1.2.1 Transmitter; 1.2.2 Receiver; 1.2.3 Toward Direct Transmitter Modulation; 1.3 Frequency Synthesizers for Mobile Communications; 1.3.1 Integer-N PLL Architecture; 1.3.2 Fractional-N PLL Architecture; 1.3.3 Toward an All-Digital PLL Approach; 1.4 Implementation of an RF Synthesizer
1.4.1 CMOS vs. Traditional RF Process Technologies1.4.2 Deep-Submicron CMOS; 1.4.3 Digitally Intensive Approach; 1.4.4 System Integration; 1.4.5 System Integration Challenges for Deep-Submicron CMOS; 2 DIGITALLY CONTROLLED OSCILLATOR; 2.1 Varactor in a Deep-Submicron CMOS Process; 2.2 Fully Digital Control of Oscillating Frequency; 2.3 LC Tank; 2.4 Oscillator Core; 2.5 Open-Loop Narrowband Digital-to-Frequency Conversion; 2.6 Example Implementation; 2.7 Time-Domain Mathematical Model of a DCO; 2.8 Summary; 3 NORMALIZED DCO; 3.1 Oscillator Transfer Function and Gain; 3.2 DCO Gain Estimation
3.3 DCO Gain Normalization3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming; 3.5 Time Dithering of DCO Tuning Input; 3.5.1 Oscillator Tune Time Dithering Principle; 3.5.2 Direct Time Dithering of Tuning Input; 3.5.3 Update Clock Dithering Scheme; 3.6 Implementation of PVT and Acquisition DCO Bits; 3.7 Implementation of Tracking DCO Bits; 3.7.1 High-Speed Dithering of Fractional Varactors; 3.7.2 Dynamic Element Matching of Varactors; 3.7.3 DCO Varactor Rearrangement; 3.8 Time-Domain Model; 3.9 Summary; 4 ALL-DIGITAL PHASE-LOCKED LOOP; 4.1 Phase-Domain Operation
4.2 Reference Clock Retiming4.3 Phase Detection; 4.3.1 Difference Mode of ADPLL Operation; 4.3.2 Integer-Domain Operation; 4.4 Modulo Arithmetic of the Reference and Variable Phases; 4.4.1 Variable-Phase Accumulator (PV Block); 4.5 Time-to-Digital Converter; 4.5.1 Frequency Reference Edge Estimation; 4.6 Fractional Error Estimator; 4.6.1 Fractional-Division Ratio Compensation; 4.6.2 TDC Resolution Effect on Estimated Frequency Resolution; 4.6.3 Active Removal of Fractional Spurs Through TDC (Optional); 4.7 Frequency Reference Retiming by a DCO Clock; 4.7.1 Sense Amplifier-Based Flip-Flop
4.7.2 General Idea of Clock Retiming4.7.3 Implementation; 4.7.4 Time-Deferred Calculation of the Variable Phase (Optional); 4.8 Loop Gain Factor; 4.8.1 Phase-Error Dynamic Range; 4.9 Phase-Domain ADPLL Architecture; 4.9.1 Close-in Spurs Due to Injection Pulling; 4.10 PLL Frequency Response; 4.10.1 Conversion Between the s- and z-Domains; 4.11 Noise and Error Sources; 4.11.1 TDC Resolution Effect on Phase Noise; 4.11.2 Phase Noise Due to DCO ΣΔ Dithering; 4.12 Type II ADPLL; 4.12.1 PLL Frequency Response of a Type II Loop; 4.13 Higher-Order ADPLL; 4.13.1 PLL Stability Analysis
4.14 Nonlinear Differential Term of an ADPLL
Record Nr. UNINA-9910143413503321
Staszewski Robert Bogdan <1965->  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
Autore Staszewski Robert Bogdan <1965->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (281 p.)
Disciplina 621.3815363
621.3815486
Altri autori (Persone) BalsaraPoras T. <1961->
Soggetto topico Frequency synthesizers - Design and construction
Wireless communication systems - Equipment and supplies - Design and construction
Metal oxide semiconductors, Complementary - Design and construction
ISBN 1-280-65439-2
9786610654390
0-470-04195-1
0-470-04194-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS; CONTENTS; PREFACE; Acknowledgments; 1 INTRODUCTION; 1.1 Frequency Synthesis; 1.1.1 Noise in Oscillators; 1.1.2 Frequency Synthesis Techniques; 1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver; 1.2.1 Transmitter; 1.2.2 Receiver; 1.2.3 Toward Direct Transmitter Modulation; 1.3 Frequency Synthesizers for Mobile Communications; 1.3.1 Integer-N PLL Architecture; 1.3.2 Fractional-N PLL Architecture; 1.3.3 Toward an All-Digital PLL Approach; 1.4 Implementation of an RF Synthesizer
1.4.1 CMOS vs. Traditional RF Process Technologies1.4.2 Deep-Submicron CMOS; 1.4.3 Digitally Intensive Approach; 1.4.4 System Integration; 1.4.5 System Integration Challenges for Deep-Submicron CMOS; 2 DIGITALLY CONTROLLED OSCILLATOR; 2.1 Varactor in a Deep-Submicron CMOS Process; 2.2 Fully Digital Control of Oscillating Frequency; 2.3 LC Tank; 2.4 Oscillator Core; 2.5 Open-Loop Narrowband Digital-to-Frequency Conversion; 2.6 Example Implementation; 2.7 Time-Domain Mathematical Model of a DCO; 2.8 Summary; 3 NORMALIZED DCO; 3.1 Oscillator Transfer Function and Gain; 3.2 DCO Gain Estimation
3.3 DCO Gain Normalization3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming; 3.5 Time Dithering of DCO Tuning Input; 3.5.1 Oscillator Tune Time Dithering Principle; 3.5.2 Direct Time Dithering of Tuning Input; 3.5.3 Update Clock Dithering Scheme; 3.6 Implementation of PVT and Acquisition DCO Bits; 3.7 Implementation of Tracking DCO Bits; 3.7.1 High-Speed Dithering of Fractional Varactors; 3.7.2 Dynamic Element Matching of Varactors; 3.7.3 DCO Varactor Rearrangement; 3.8 Time-Domain Model; 3.9 Summary; 4 ALL-DIGITAL PHASE-LOCKED LOOP; 4.1 Phase-Domain Operation
4.2 Reference Clock Retiming4.3 Phase Detection; 4.3.1 Difference Mode of ADPLL Operation; 4.3.2 Integer-Domain Operation; 4.4 Modulo Arithmetic of the Reference and Variable Phases; 4.4.1 Variable-Phase Accumulator (PV Block); 4.5 Time-to-Digital Converter; 4.5.1 Frequency Reference Edge Estimation; 4.6 Fractional Error Estimator; 4.6.1 Fractional-Division Ratio Compensation; 4.6.2 TDC Resolution Effect on Estimated Frequency Resolution; 4.6.3 Active Removal of Fractional Spurs Through TDC (Optional); 4.7 Frequency Reference Retiming by a DCO Clock; 4.7.1 Sense Amplifier-Based Flip-Flop
4.7.2 General Idea of Clock Retiming4.7.3 Implementation; 4.7.4 Time-Deferred Calculation of the Variable Phase (Optional); 4.8 Loop Gain Factor; 4.8.1 Phase-Error Dynamic Range; 4.9 Phase-Domain ADPLL Architecture; 4.9.1 Close-in Spurs Due to Injection Pulling; 4.10 PLL Frequency Response; 4.10.1 Conversion Between the s- and z-Domains; 4.11 Noise and Error Sources; 4.11.1 TDC Resolution Effect on Phase Noise; 4.11.2 Phase Noise Due to DCO ΣΔ Dithering; 4.12 Type II ADPLL; 4.12.1 PLL Frequency Response of a Type II Loop; 4.13 Higher-Order ADPLL; 4.13.1 PLL Stability Analysis
4.14 Nonlinear Differential Term of an ADPLL
Record Nr. UNINA-9910830214603321
Staszewski Robert Bogdan <1965->  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
All-digital frequency synthesizer in deep-submicron CMOS [[electronic resource] /] / Robert Bogdan Staszewski, Poras T. Balasara
Autore Staszewski Robert Bogdan <1965->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (281 p.)
Disciplina 621.3815363
621.3815486
Altri autori (Persone) BalsaraPoras T. <1961->
Soggetto topico Frequency synthesizers - Design and construction
Wireless communication systems - Equipment and supplies - Design and construction
Metal oxide semiconductors, Complementary - Design and construction
ISBN 1-280-65439-2
9786610654390
0-470-04195-1
0-470-04194-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS; CONTENTS; PREFACE; Acknowledgments; 1 INTRODUCTION; 1.1 Frequency Synthesis; 1.1.1 Noise in Oscillators; 1.1.2 Frequency Synthesis Techniques; 1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver; 1.2.1 Transmitter; 1.2.2 Receiver; 1.2.3 Toward Direct Transmitter Modulation; 1.3 Frequency Synthesizers for Mobile Communications; 1.3.1 Integer-N PLL Architecture; 1.3.2 Fractional-N PLL Architecture; 1.3.3 Toward an All-Digital PLL Approach; 1.4 Implementation of an RF Synthesizer
1.4.1 CMOS vs. Traditional RF Process Technologies1.4.2 Deep-Submicron CMOS; 1.4.3 Digitally Intensive Approach; 1.4.4 System Integration; 1.4.5 System Integration Challenges for Deep-Submicron CMOS; 2 DIGITALLY CONTROLLED OSCILLATOR; 2.1 Varactor in a Deep-Submicron CMOS Process; 2.2 Fully Digital Control of Oscillating Frequency; 2.3 LC Tank; 2.4 Oscillator Core; 2.5 Open-Loop Narrowband Digital-to-Frequency Conversion; 2.6 Example Implementation; 2.7 Time-Domain Mathematical Model of a DCO; 2.8 Summary; 3 NORMALIZED DCO; 3.1 Oscillator Transfer Function and Gain; 3.2 DCO Gain Estimation
3.3 DCO Gain Normalization3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming; 3.5 Time Dithering of DCO Tuning Input; 3.5.1 Oscillator Tune Time Dithering Principle; 3.5.2 Direct Time Dithering of Tuning Input; 3.5.3 Update Clock Dithering Scheme; 3.6 Implementation of PVT and Acquisition DCO Bits; 3.7 Implementation of Tracking DCO Bits; 3.7.1 High-Speed Dithering of Fractional Varactors; 3.7.2 Dynamic Element Matching of Varactors; 3.7.3 DCO Varactor Rearrangement; 3.8 Time-Domain Model; 3.9 Summary; 4 ALL-DIGITAL PHASE-LOCKED LOOP; 4.1 Phase-Domain Operation
4.2 Reference Clock Retiming4.3 Phase Detection; 4.3.1 Difference Mode of ADPLL Operation; 4.3.2 Integer-Domain Operation; 4.4 Modulo Arithmetic of the Reference and Variable Phases; 4.4.1 Variable-Phase Accumulator (PV Block); 4.5 Time-to-Digital Converter; 4.5.1 Frequency Reference Edge Estimation; 4.6 Fractional Error Estimator; 4.6.1 Fractional-Division Ratio Compensation; 4.6.2 TDC Resolution Effect on Estimated Frequency Resolution; 4.6.3 Active Removal of Fractional Spurs Through TDC (Optional); 4.7 Frequency Reference Retiming by a DCO Clock; 4.7.1 Sense Amplifier-Based Flip-Flop
4.7.2 General Idea of Clock Retiming4.7.3 Implementation; 4.7.4 Time-Deferred Calculation of the Variable Phase (Optional); 4.8 Loop Gain Factor; 4.8.1 Phase-Error Dynamic Range; 4.9 Phase-Domain ADPLL Architecture; 4.9.1 Close-in Spurs Due to Injection Pulling; 4.10 PLL Frequency Response; 4.10.1 Conversion Between the s- and z-Domains; 4.11 Noise and Error Sources; 4.11.1 TDC Resolution Effect on Phase Noise; 4.11.2 Phase Noise Due to DCO ΣΔ Dithering; 4.12 Type II ADPLL; 4.12.1 PLL Frequency Response of a Type II Loop; 4.13 Higher-Order ADPLL; 4.13.1 PLL Stability Analysis
4.14 Nonlinear Differential Term of an ADPLL
Record Nr. UNINA-9910841612103321
Staszewski Robert Bogdan <1965->  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency standards [[electronic resource] ] : basics and applications / / Fritz Riehle
Frequency standards [[electronic resource] ] : basics and applications / / Fritz Riehle
Autore Riehle Fritz
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (542 p.)
Disciplina 529.750971
621.3815363
Soggetto topico Frequency standards
Standards, Engineering
ISBN 1-280-52083-3
9786610520831
3-527-60599-1
3-527-60595-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Standards Basics and Applications; Contents; Preface; 1 Introduction; 1.1 Features of Frequency Standards and Clocks; 1.2 Historical Perspective of Clocks and Frequency Standards; 1.2.1 Nature's Clocks; 1.2.2 Man-made Clocks and Frequency Standards; 2 Basics of Frequency Standards; 2.1 Mathematical Description of Oscillations; 2.1.1 Ideal and Real Harmonic Oscillators; 2.1.2 Amplitude Modulation; 2.1.3 Phase Modulation; 2.2 Oscillator with Feedback; 2.3 Frequency Stabilisation; 2.3.1 Model of a Servo Loop; 2.3.2 Generation of an Error Signal; 2.4 Electronic Servo Systems
2.4.1 Components2.4.2 Example of an Electronic Servo System; 3 Characterisation of Amplitude and Frequency Noise; 3.1 Time-domain Description of Frequency Fluctuations; 3.1.1 Allan Variance; 3.1.2 Correlated Fluctuations; 3.2 Fourier-domain Description of Frequency Fluctuations; 3.3 Conversion from Fourier-frequency Domain to Time Domain; 3.4 From Fourier-frequency to Carrier-frequency Domain; 3.4.1 Power Spectrum of a Source with White Frequency Noise; 3.4.2 Spectrum of a Diode Laser; 3.4.3 Low-noise Spectrum of a Source with White Phase Noise; 3.5 Measurement Techniques
3.5.1 Heterodyne Measurements of Frequency3.5.2 Self-heterodyning; 3.5.3 Aliasing; 3.6 Frequency Stabilization with a Noisy Signal; 3.6.1 Degradation of the Frequency Stability Due to Aliasing; 4 Macroscopic Frequency References; 4.1 Piezoelectric Crystal Frequency References; 4.1.1 Basic Properties of Piezoelectric Materials; 4.1.2 Mechanical Resonances; 4.1.3 Equivalent Circuit; 4.1.4 Stability and Accuracy of Quartz Oscillators; 4.2 Microwave Cavity Resonators; 4.2.1 Electromagnetic Wave Equations; 4.2.2 Electromagnetic Fields in Cylindrical Wave Guides; 4.2.3 Cylindrical Cavity Resonators
4.2.4 Losses due to Finite Conductivity4.2.5 Dielectric Resonators; 4.3 Optical Resonators; 4.3.1 Reflection and Transmission at the Fabry-Pérot Interferometer; 4.3.2 Radial Modes; 4.3.3 Microsphere Resonators; 4.4 Stability of Resonators; 5 Atomic and Molecular Frequency References; 5.1 Energy Levels of Atoms; 5.1.1 Single-electron Atoms; 5.1.2 Multi-electron Systems; 5.2 Energy States of Molecules; 5.2.1 Ro-vibronic Structure; 5.2.2 Optical Transitions in Molecular Iodine; 5.2.3 Optical Transitions in Acetylene; 5.2.4 Other Molecular Absorbers
5.3 Interaction of Simple Quantum Systems with Electromagnetic Radiation5.3.1 The Two-level System; 5.3.2 Optical Bloch Equations; 5.3.3 Three-level Systems; 5.4 Line Shifts and Line Broadening; 5.4.1 Interaction Time Broadening; 5.4.2 Doppler Effect and Recoil Effect; 5.4.3 Saturation Broadening; 5.4.4 Collisional Shift and Collisional Broadening; 5.4.5 Influence of External Fields; 5.4.6 Line Shifts and Uncertainty of a Frequency Standard; 6 Preparation and Interrogation of Atoms and Molecules; 6.1 Storage of Atoms and Molecules in a Cell; 6.2 Collimated Atomic and Molecular Beams
6.3 Cooling
Record Nr. UNINA-9910144708403321
Riehle Fritz  
Weinheim, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency standards [[electronic resource] ] : basics and applications / / Fritz Riehle
Frequency standards [[electronic resource] ] : basics and applications / / Fritz Riehle
Autore Riehle Fritz
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (542 p.)
Disciplina 529.750971
621.3815363
Soggetto topico Frequency standards
Standards, Engineering
ISBN 1-280-52083-3
9786610520831
3-527-60599-1
3-527-60595-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Standards Basics and Applications; Contents; Preface; 1 Introduction; 1.1 Features of Frequency Standards and Clocks; 1.2 Historical Perspective of Clocks and Frequency Standards; 1.2.1 Nature's Clocks; 1.2.2 Man-made Clocks and Frequency Standards; 2 Basics of Frequency Standards; 2.1 Mathematical Description of Oscillations; 2.1.1 Ideal and Real Harmonic Oscillators; 2.1.2 Amplitude Modulation; 2.1.3 Phase Modulation; 2.2 Oscillator with Feedback; 2.3 Frequency Stabilisation; 2.3.1 Model of a Servo Loop; 2.3.2 Generation of an Error Signal; 2.4 Electronic Servo Systems
2.4.1 Components2.4.2 Example of an Electronic Servo System; 3 Characterisation of Amplitude and Frequency Noise; 3.1 Time-domain Description of Frequency Fluctuations; 3.1.1 Allan Variance; 3.1.2 Correlated Fluctuations; 3.2 Fourier-domain Description of Frequency Fluctuations; 3.3 Conversion from Fourier-frequency Domain to Time Domain; 3.4 From Fourier-frequency to Carrier-frequency Domain; 3.4.1 Power Spectrum of a Source with White Frequency Noise; 3.4.2 Spectrum of a Diode Laser; 3.4.3 Low-noise Spectrum of a Source with White Phase Noise; 3.5 Measurement Techniques
3.5.1 Heterodyne Measurements of Frequency3.5.2 Self-heterodyning; 3.5.3 Aliasing; 3.6 Frequency Stabilization with a Noisy Signal; 3.6.1 Degradation of the Frequency Stability Due to Aliasing; 4 Macroscopic Frequency References; 4.1 Piezoelectric Crystal Frequency References; 4.1.1 Basic Properties of Piezoelectric Materials; 4.1.2 Mechanical Resonances; 4.1.3 Equivalent Circuit; 4.1.4 Stability and Accuracy of Quartz Oscillators; 4.2 Microwave Cavity Resonators; 4.2.1 Electromagnetic Wave Equations; 4.2.2 Electromagnetic Fields in Cylindrical Wave Guides; 4.2.3 Cylindrical Cavity Resonators
4.2.4 Losses due to Finite Conductivity4.2.5 Dielectric Resonators; 4.3 Optical Resonators; 4.3.1 Reflection and Transmission at the Fabry-Pérot Interferometer; 4.3.2 Radial Modes; 4.3.3 Microsphere Resonators; 4.4 Stability of Resonators; 5 Atomic and Molecular Frequency References; 5.1 Energy Levels of Atoms; 5.1.1 Single-electron Atoms; 5.1.2 Multi-electron Systems; 5.2 Energy States of Molecules; 5.2.1 Ro-vibronic Structure; 5.2.2 Optical Transitions in Molecular Iodine; 5.2.3 Optical Transitions in Acetylene; 5.2.4 Other Molecular Absorbers
5.3 Interaction of Simple Quantum Systems with Electromagnetic Radiation5.3.1 The Two-level System; 5.3.2 Optical Bloch Equations; 5.3.3 Three-level Systems; 5.4 Line Shifts and Line Broadening; 5.4.1 Interaction Time Broadening; 5.4.2 Doppler Effect and Recoil Effect; 5.4.3 Saturation Broadening; 5.4.4 Collisional Shift and Collisional Broadening; 5.4.5 Influence of External Fields; 5.4.6 Line Shifts and Uncertainty of a Frequency Standard; 6 Preparation and Interrogation of Atoms and Molecules; 6.1 Storage of Atoms and Molecules in a Cell; 6.2 Collimated Atomic and Molecular Beams
6.3 Cooling
Record Nr. UNINA-9910830126803321
Riehle Fritz  
Weinheim, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency standards : basics and applications / / Fritz Riehle
Frequency standards : basics and applications / / Fritz Riehle
Autore Riehle Fritz
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (542 p.)
Disciplina 529.750971
621.3815363
Soggetto topico Frequency standards
Standards, Engineering
ISBN 1-280-52083-3
9786610520831
3-527-60599-1
3-527-60595-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Standards Basics and Applications; Contents; Preface; 1 Introduction; 1.1 Features of Frequency Standards and Clocks; 1.2 Historical Perspective of Clocks and Frequency Standards; 1.2.1 Nature's Clocks; 1.2.2 Man-made Clocks and Frequency Standards; 2 Basics of Frequency Standards; 2.1 Mathematical Description of Oscillations; 2.1.1 Ideal and Real Harmonic Oscillators; 2.1.2 Amplitude Modulation; 2.1.3 Phase Modulation; 2.2 Oscillator with Feedback; 2.3 Frequency Stabilisation; 2.3.1 Model of a Servo Loop; 2.3.2 Generation of an Error Signal; 2.4 Electronic Servo Systems
2.4.1 Components2.4.2 Example of an Electronic Servo System; 3 Characterisation of Amplitude and Frequency Noise; 3.1 Time-domain Description of Frequency Fluctuations; 3.1.1 Allan Variance; 3.1.2 Correlated Fluctuations; 3.2 Fourier-domain Description of Frequency Fluctuations; 3.3 Conversion from Fourier-frequency Domain to Time Domain; 3.4 From Fourier-frequency to Carrier-frequency Domain; 3.4.1 Power Spectrum of a Source with White Frequency Noise; 3.4.2 Spectrum of a Diode Laser; 3.4.3 Low-noise Spectrum of a Source with White Phase Noise; 3.5 Measurement Techniques
3.5.1 Heterodyne Measurements of Frequency3.5.2 Self-heterodyning; 3.5.3 Aliasing; 3.6 Frequency Stabilization with a Noisy Signal; 3.6.1 Degradation of the Frequency Stability Due to Aliasing; 4 Macroscopic Frequency References; 4.1 Piezoelectric Crystal Frequency References; 4.1.1 Basic Properties of Piezoelectric Materials; 4.1.2 Mechanical Resonances; 4.1.3 Equivalent Circuit; 4.1.4 Stability and Accuracy of Quartz Oscillators; 4.2 Microwave Cavity Resonators; 4.2.1 Electromagnetic Wave Equations; 4.2.2 Electromagnetic Fields in Cylindrical Wave Guides; 4.2.3 Cylindrical Cavity Resonators
4.2.4 Losses due to Finite Conductivity4.2.5 Dielectric Resonators; 4.3 Optical Resonators; 4.3.1 Reflection and Transmission at the Fabry-Pérot Interferometer; 4.3.2 Radial Modes; 4.3.3 Microsphere Resonators; 4.4 Stability of Resonators; 5 Atomic and Molecular Frequency References; 5.1 Energy Levels of Atoms; 5.1.1 Single-electron Atoms; 5.1.2 Multi-electron Systems; 5.2 Energy States of Molecules; 5.2.1 Ro-vibronic Structure; 5.2.2 Optical Transitions in Molecular Iodine; 5.2.3 Optical Transitions in Acetylene; 5.2.4 Other Molecular Absorbers
5.3 Interaction of Simple Quantum Systems with Electromagnetic Radiation5.3.1 The Two-level System; 5.3.2 Optical Bloch Equations; 5.3.3 Three-level Systems; 5.4 Line Shifts and Line Broadening; 5.4.1 Interaction Time Broadening; 5.4.2 Doppler Effect and Recoil Effect; 5.4.3 Saturation Broadening; 5.4.4 Collisional Shift and Collisional Broadening; 5.4.5 Influence of External Fields; 5.4.6 Line Shifts and Uncertainty of a Frequency Standard; 6 Preparation and Interrogation of Atoms and Molecules; 6.1 Storage of Atoms and Molecules in a Cell; 6.2 Collimated Atomic and Molecular Beams
6.3 Cooling
Record Nr. UNINA-9910840655203321
Riehle Fritz  
Weinheim, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing / / by Ren Zhu, Rusen Yang
Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing / / by Ren Zhu, Rusen Yang
Autore Zhu Ren
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (70 pages) : illustrations (some color)
Disciplina 621.3815363
Collana Mechanical Engineering Series
Soggetto topico Nanotechnology
Mechatronics
Optical materials
Electronic materials
Lasers
Photonics
Remote sensing
Nanotechnology and Microengineering
Optical and Electronic Materials
Optics, Lasers, Photonics, Optical Devices
Remote Sensing/Photogrammetry
ISBN 3-319-70038-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to the piezotronic effect and sensing applications -- Growth of uniform nanowires with orientation control -- Alignment and transfer of nanowires in a spinning Langmuir film -- Piezotronic effect in a zinc oxide nanowire -- Ultra-sensitive strain/stress sensing -- Closure.-.
Record Nr. UNINA-9910299958503321
Zhu Ren  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui