top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced SPICE model for GaN HEMTs (ASM-HEMT) : a new industry-standard compact model for GaN-based power and RF circuit design / / Sourabh Khandelwal
Advanced SPICE model for GaN HEMTs (ASM-HEMT) : a new industry-standard compact model for GaN-based power and RF circuit design / / Sourabh Khandelwal
Autore Khandelwal Sourabh
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (194 pages)
Disciplina 621.3815284
Soggetto topico Modulation-doped field-effect transistors
Radio frequency integrated circuits
Semiconductors
ISBN 9783030777302
9783030777296
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910523725103321
Khandelwal Sourabh  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor [[electronic resource] /] / by Iraj Sadegh Amiri, Mahdiar Ghadiry
Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor [[electronic resource] /] / by Iraj Sadegh Amiri, Mahdiar Ghadiry
Autore Amiri Iraj Sadegh
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (IX, 86 p. 55 illus., 16 illus. in color.)
Disciplina 621.3815284
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Nanotechnology
Electronic circuits
Nanotechnology and Microengineering
Electronic Circuits and Devices
ISBN 981-10-6550-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction on Scaling Issues of Conventional Semiconductors -- Basic Concept of Field Effect Transistors -- Methodology for Modelling of Surface Potemntial, Ionization and Breakdown of Graphene Field Effect Transistors -- Results and Discussion on Ionization and Breakdown of Grapehene Field Efffect Transistor -- Conclusion and Futureworks on High Voltage Application of Graphene.
Record Nr. UNINA-9910299564703321
Amiri Iraj Sadegh  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ANSI/IEEE Std 641-1987 / / Institute of Electrical and Electronics Engineers
ANSI/IEEE Std 641-1987 / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 1988
Descrizione fisica 1 online resource (33 pages)
Disciplina 621.3815284
Soggetto topico Field-effect transistors
ISBN 0-7381-4235-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti ANSI/IEEE Std 641-1987: IEEE Standard Definitions and Characterization of Metal Nitride Oxide Semiconductor Arrays
Record Nr. UNINA-9910135267403321
[Place of publication not identified] : , : IEEE, , 1988
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ANSI/IEEE Std 641-1987 / / Institute of Electrical and Electronics Engineers
ANSI/IEEE Std 641-1987 / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 1988
Descrizione fisica 1 online resource (33 pages)
Disciplina 621.3815284
Soggetto topico Field-effect transistors
ISBN 0-7381-4235-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti ANSI/IEEE Std 641-1987: IEEE Standard Definitions and Characterization of Metal Nitride Oxide Semiconductor Arrays
Record Nr. UNISA-996279556003316
[Place of publication not identified] : , : IEEE, , 1988
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Charge Transport in Low Dimensional Semiconductor Structures [[electronic resource] ] : The Maximum Entropy Approach / / by Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
Charge Transport in Low Dimensional Semiconductor Structures [[electronic resource] ] : The Maximum Entropy Approach / / by Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
Autore Camiola Vito Dario
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVI, 337 p. 83 illus., 23 illus. in color.)
Disciplina 621.3815284
Collana The European Consortium for Mathematics in Industry
Soggetto topico Mathematical physics
Applied mathematics
Engineering mathematics
Nanotechnology
Mathematical Physics
Theoretical, Mathematical and Computational Physics
Mathematical and Computational Engineering
ISBN 3-030-35993-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Band Structure and Boltzmann Equation -- Maximum Entropy Principle -- Application of MEP to Charge Transport in Semiconductors -- Application of MEP to Silicon -- Some Formal Properties of the Hydrodynamical Model -- Quantum Corrections to the Semiclassical Models -- Mathematical Models for the Double-Gate MOSFET -- Numerical Method and Simulations -- Application of MEP to Charge Transport in Graphene.
Record Nr. UNISA-996418193503316
Camiola Vito Dario  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Charge Transport in Low Dimensional Semiconductor Structures [[electronic resource] ] : The Maximum Entropy Approach / / by Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
Charge Transport in Low Dimensional Semiconductor Structures [[electronic resource] ] : The Maximum Entropy Approach / / by Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
Autore Camiola Vito Dario
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVI, 337 p. 83 illus., 23 illus. in color.)
Disciplina 621.3815284
Collana The European Consortium for Mathematics in Industry
Soggetto topico Mathematical physics
Applied mathematics
Engineering mathematics
Nanotechnology
Mathematical Physics
Theoretical, Mathematical and Computational Physics
Mathematical and Computational Engineering
ISBN 3-030-35993-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Band Structure and Boltzmann Equation -- Maximum Entropy Principle -- Application of MEP to Charge Transport in Semiconductors -- Application of MEP to Silicon -- Some Formal Properties of the Hydrodynamical Model -- Quantum Corrections to the Semiclassical Models -- Mathematical Models for the Double-Gate MOSFET -- Numerical Method and Simulations -- Application of MEP to Charge Transport in Graphene.
Record Nr. UNINA-9910483112403321
Camiola Vito Dario  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Autore Enz Christian
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Descrizione fisica 1 online resource (329 p.)
Disciplina 621.3815284
Altri autori (Persone) VittozEric A. <1938->
Soggetto topico Metal oxide semiconductors - Mathematical models
Metal oxide semiconductor field-effect transistors - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-64993-3
9786610649938
0-470-85546-0
0-470-85545-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Charge-based MOS Transistor Modeling; Contents; Foreword; Preface; List of Symbols; 1 Introduction; 1.1 The Importance of Device Modeling for IC Design; 1.2 A Short History of the EKV MOS Transistor Model; 1.3 The Book Structure; Part I The Basic Long-Channel Intrinsic Charge-Based Model; 2 Definitions; 2.1 The N-channel Transistor Structure; 2.2 Definition of Charges, Current, Potential, and Electric Fields; 2.3 Transistor Symbol and P-Channel Transistor; 3 The Basic Charge Model; 3.1 Poisson's Equation and Gradual Channel Approximation; 3.2 Surface Potential as a Function of Gate Voltage
3.3 Gate Capacitance3.4 Charge Sheet Approximation; 3.5 Density of Mobile Inverted Charge; 3.5.1 Mobile Charge as a Function of Gate Voltage and Surface Potential; 3.5.2 Mobile Charge as a Function of Channel Voltage and Surface Potential; 3.6 Charge-Potential Linearization; 3.6.1 Linearization of Qi (s); 3.6.2 Linearized Bulk Depletion Charge Qb; 3.6.3 Strong Inversion Approximation; 3.6.4 Evaluation of the Slope Factor; 3.6.5 Compact Model Parameters; 4 Static Drain Current; 4.1 Drain Current Expression; 4.2 Forward and Reverse Current Components; 4.3 Modes of Operation
4.4 Model of Drain Current Based on Charge Linearization4.4.1 Expression Valid for All Levels of Inversion; 4.4.2 Compact Model Parameters; 4.4.3 Inversion Coefficient; 4.4.4 Approximation of the Drain Current in Strong Inversion; 4.4.5 Approximation of the Drain Current in Weak Inversion; 4.4.6 Alternative Continuous Models; 4.5 Fundamental Property: Validity and Application; 4.5.1 Generalization of Drain Current Expression; 4.5.2 Domain of Validity; 4.5.3 Causes of Degradation; 4.5.4 Concept of Pseudo-Resistor; 4.6 Channel Length Modulation; 4.6.1 Effective Channel Length
4.6.2 Weak Inversion4.6.3 Strong Inversion; 4.6.4 Geometrical Effects; 5 The Small-Signal Model; 5.1 The Static Small-Signal Model; 5.1.1 Transconductances; 5.1.2 Residual Output Conductance in Saturation; 5.1.3 Equivalent Circuit; 5.1.4 The Normalized Transconductance to Drain Current Ratio; 5.2 A General NQS Small-Signal Model; 5.3 The QS Dynamic Small-Signal Model; 5.3.1 Intrinsic Capacitances; 5.3.2 Transcapacitances; 5.3.3 Complete QS Circuit; 5.3.4 Domains of Validity of the Different Models; 6 The Noise Model; 6.1 Noise Calculation Methods; 6.1.1 General Expression
6.1.2 Long-Channel Simplification6.2 Low-Frequency Channel Thermal Noise; 6.2.1 Drain Current Thermal Noise PSD; 6.2.2 Thermal Noise Excess Factor Definitions; 6.2.3 Circuit Examples; 6.3 Flicker Noise; 6.3.1 Carrier Number Fluctuations (Mc Worther Model); 6.3.2 Mobility Fluctuations (Hooge Model); 6.3.3 Additional Contributions Due to the Source and Drain Access Resistances; 6.3.4 Total 1/f Noise at the Drain; 6.3.5 Scaling Properties; 6.4 Appendices; Appendix: The Nyquist and Bode Theorems; Appendix: General Noise Expression; 7 Temperature Effects and Matching; 7.1 Introduction
7.2 Temperature Effects
Record Nr. UNINA-9910143747403321
Enz Christian  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Autore Enz Christian
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Descrizione fisica 1 online resource (329 p.)
Disciplina 621.3815284
Altri autori (Persone) VittozEric A. <1938->
Soggetto topico Metal oxide semiconductors - Mathematical models
Metal oxide semiconductor field-effect transistors - Mathematical models
ISBN 1-280-64993-3
9786610649938
0-470-85546-0
0-470-85545-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Charge-based MOS Transistor Modeling; Contents; Foreword; Preface; List of Symbols; 1 Introduction; 1.1 The Importance of Device Modeling for IC Design; 1.2 A Short History of the EKV MOS Transistor Model; 1.3 The Book Structure; Part I The Basic Long-Channel Intrinsic Charge-Based Model; 2 Definitions; 2.1 The N-channel Transistor Structure; 2.2 Definition of Charges, Current, Potential, and Electric Fields; 2.3 Transistor Symbol and P-Channel Transistor; 3 The Basic Charge Model; 3.1 Poisson's Equation and Gradual Channel Approximation; 3.2 Surface Potential as a Function of Gate Voltage
3.3 Gate Capacitance3.4 Charge Sheet Approximation; 3.5 Density of Mobile Inverted Charge; 3.5.1 Mobile Charge as a Function of Gate Voltage and Surface Potential; 3.5.2 Mobile Charge as a Function of Channel Voltage and Surface Potential; 3.6 Charge-Potential Linearization; 3.6.1 Linearization of Qi (s); 3.6.2 Linearized Bulk Depletion Charge Qb; 3.6.3 Strong Inversion Approximation; 3.6.4 Evaluation of the Slope Factor; 3.6.5 Compact Model Parameters; 4 Static Drain Current; 4.1 Drain Current Expression; 4.2 Forward and Reverse Current Components; 4.3 Modes of Operation
4.4 Model of Drain Current Based on Charge Linearization4.4.1 Expression Valid for All Levels of Inversion; 4.4.2 Compact Model Parameters; 4.4.3 Inversion Coefficient; 4.4.4 Approximation of the Drain Current in Strong Inversion; 4.4.5 Approximation of the Drain Current in Weak Inversion; 4.4.6 Alternative Continuous Models; 4.5 Fundamental Property: Validity and Application; 4.5.1 Generalization of Drain Current Expression; 4.5.2 Domain of Validity; 4.5.3 Causes of Degradation; 4.5.4 Concept of Pseudo-Resistor; 4.6 Channel Length Modulation; 4.6.1 Effective Channel Length
4.6.2 Weak Inversion4.6.3 Strong Inversion; 4.6.4 Geometrical Effects; 5 The Small-Signal Model; 5.1 The Static Small-Signal Model; 5.1.1 Transconductances; 5.1.2 Residual Output Conductance in Saturation; 5.1.3 Equivalent Circuit; 5.1.4 The Normalized Transconductance to Drain Current Ratio; 5.2 A General NQS Small-Signal Model; 5.3 The QS Dynamic Small-Signal Model; 5.3.1 Intrinsic Capacitances; 5.3.2 Transcapacitances; 5.3.3 Complete QS Circuit; 5.3.4 Domains of Validity of the Different Models; 6 The Noise Model; 6.1 Noise Calculation Methods; 6.1.1 General Expression
6.1.2 Long-Channel Simplification6.2 Low-Frequency Channel Thermal Noise; 6.2.1 Drain Current Thermal Noise PSD; 6.2.2 Thermal Noise Excess Factor Definitions; 6.2.3 Circuit Examples; 6.3 Flicker Noise; 6.3.1 Carrier Number Fluctuations (Mc Worther Model); 6.3.2 Mobility Fluctuations (Hooge Model); 6.3.3 Additional Contributions Due to the Source and Drain Access Resistances; 6.3.4 Total 1/f Noise at the Drain; 6.3.5 Scaling Properties; 6.4 Appendices; Appendix: The Nyquist and Bode Theorems; Appendix: General Noise Expression; 7 Temperature Effects and Matching; 7.1 Introduction
7.2 Temperature Effects
Record Nr. UNINA-9910830878003321
Enz Christian  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Charge-based MOS transistor modeling [[electronic resource] ] : the EKV model for low-power and RF IC design / / Christian C. Enz, Eric A. Vittoz
Autore Enz Christian
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Descrizione fisica 1 online resource (329 p.)
Disciplina 621.3815284
Altri autori (Persone) VittozEric A. <1938->
Soggetto topico Metal oxide semiconductors - Mathematical models
Metal oxide semiconductor field-effect transistors - Mathematical models
ISBN 1-280-64993-3
9786610649938
0-470-85546-0
0-470-85545-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Charge-based MOS Transistor Modeling; Contents; Foreword; Preface; List of Symbols; 1 Introduction; 1.1 The Importance of Device Modeling for IC Design; 1.2 A Short History of the EKV MOS Transistor Model; 1.3 The Book Structure; Part I The Basic Long-Channel Intrinsic Charge-Based Model; 2 Definitions; 2.1 The N-channel Transistor Structure; 2.2 Definition of Charges, Current, Potential, and Electric Fields; 2.3 Transistor Symbol and P-Channel Transistor; 3 The Basic Charge Model; 3.1 Poisson's Equation and Gradual Channel Approximation; 3.2 Surface Potential as a Function of Gate Voltage
3.3 Gate Capacitance3.4 Charge Sheet Approximation; 3.5 Density of Mobile Inverted Charge; 3.5.1 Mobile Charge as a Function of Gate Voltage and Surface Potential; 3.5.2 Mobile Charge as a Function of Channel Voltage and Surface Potential; 3.6 Charge-Potential Linearization; 3.6.1 Linearization of Qi (s); 3.6.2 Linearized Bulk Depletion Charge Qb; 3.6.3 Strong Inversion Approximation; 3.6.4 Evaluation of the Slope Factor; 3.6.5 Compact Model Parameters; 4 Static Drain Current; 4.1 Drain Current Expression; 4.2 Forward and Reverse Current Components; 4.3 Modes of Operation
4.4 Model of Drain Current Based on Charge Linearization4.4.1 Expression Valid for All Levels of Inversion; 4.4.2 Compact Model Parameters; 4.4.3 Inversion Coefficient; 4.4.4 Approximation of the Drain Current in Strong Inversion; 4.4.5 Approximation of the Drain Current in Weak Inversion; 4.4.6 Alternative Continuous Models; 4.5 Fundamental Property: Validity and Application; 4.5.1 Generalization of Drain Current Expression; 4.5.2 Domain of Validity; 4.5.3 Causes of Degradation; 4.5.4 Concept of Pseudo-Resistor; 4.6 Channel Length Modulation; 4.6.1 Effective Channel Length
4.6.2 Weak Inversion4.6.3 Strong Inversion; 4.6.4 Geometrical Effects; 5 The Small-Signal Model; 5.1 The Static Small-Signal Model; 5.1.1 Transconductances; 5.1.2 Residual Output Conductance in Saturation; 5.1.3 Equivalent Circuit; 5.1.4 The Normalized Transconductance to Drain Current Ratio; 5.2 A General NQS Small-Signal Model; 5.3 The QS Dynamic Small-Signal Model; 5.3.1 Intrinsic Capacitances; 5.3.2 Transcapacitances; 5.3.3 Complete QS Circuit; 5.3.4 Domains of Validity of the Different Models; 6 The Noise Model; 6.1 Noise Calculation Methods; 6.1.1 General Expression
6.1.2 Long-Channel Simplification6.2 Low-Frequency Channel Thermal Noise; 6.2.1 Drain Current Thermal Noise PSD; 6.2.2 Thermal Noise Excess Factor Definitions; 6.2.3 Circuit Examples; 6.3 Flicker Noise; 6.3.1 Carrier Number Fluctuations (Mc Worther Model); 6.3.2 Mobility Fluctuations (Hooge Model); 6.3.3 Additional Contributions Due to the Source and Drain Access Resistances; 6.3.4 Total 1/f Noise at the Drain; 6.3.5 Scaling Properties; 6.4 Appendices; Appendix: The Nyquist and Bode Theorems; Appendix: General Noise Expression; 7 Temperature Effects and Matching; 7.1 Introduction
7.2 Temperature Effects
Record Nr. UNINA-9910841214603321
Enz Christian  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Complementary Metal Oxide Semiconductor / / edited by Kim Ho Yeap and Humaira Nisar
Complementary Metal Oxide Semiconductor / / edited by Kim Ho Yeap and Humaira Nisar
Pubbl/distr/stampa Croatia : , : IntechOpen, , 2018
Descrizione fisica 1 online resource (162 pages) : illustrations
Disciplina 621.3815284
Soggetto topico Metal oxide semiconductor field-effect transistors
ISBN 1-83881-512-0
1-78923-497-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317801903321
Croatia : , : IntechOpen, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui