top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (375 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-5731-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Recent Trends in Terahertz Antenna Development Implementing Planar Geometries -- 1 Introduction -- 2 Designing of THz Antenna -- 2.1 Microstrip Patch Antenna Array -- 2.2 Sectoral H-plane Horn Antenna -- 3 Circuit Modeling of THz Antenna -- 4 Fabrication of Prototypes -- 5 Conclusion -- References -- Element Failure Correction Techniques for Phased Array Antennas in Future Terahertz Communication Systems -- 1 Introduction -- 1.1 Antenna Array Failure Correction Software Techniques -- 1.2 Antenna Array Failure Correction Hardware Solutions -- 2 Proposed IFT Antenna Array Failure Correction Technique -- 3 Single Antenna Element Design at 3.5 THz -- 3.1 3.5 THz Linear Antenna Array with Element Failure Correction -- 4 Simulation Results -- 5 Summary -- Appendix A -- References -- The Magneto Electron Statistics in Heavily Doped Doping Super-Lattices at Terahertz Frequency -- 1 Introduction -- 2 Theoretical Background -- 3 Results and Discussion -- 4 Conclusion -- References -- Circularly Polarized Dual-Band Terahertz Antenna Embedded on Badge for Military and Security Applications -- 1 Introduction -- 2 Circularly Polarized Antenna Geometry and Simulation Results -- 2.1 Return Loss of the Proposed Design -- 2.2 Design Process and Equations Used -- 2.3 VSWR of the CP Antenna -- 2.4 Farfield of the Proposed CP Antenna -- 2.5 Circularly Polarized Behavior -- 2.6 Bending Analysis -- 2.7 Surface Current Distribution -- 2.8 Parametric Study -- 3 Antenna Simulation on Badge -- 3.1 Return Loss (dB) -- 3.2 3D Radiation Pattern -- 3.3 Total Radiation Efficiency (%) -- 4 Comparison with Related Works -- 5 Conclusion -- References -- Tera-Bit Per Second Quantum Dot Semiconductor Optical Amplifier-Based All Optical NOT and NAND Gates -- 1 Introduction.
2 Working Principle of the Inverter and Mathematical Modeling -- 3 Results and Discussions -- 4 Application of the Inverter in Designing NAND Gate -- 5 Implementation of NAND Gate Without Using Inverter -- 6 Conclusions -- References -- Performance Analysis of Oversampled OFDM for a Terahertz Wireless Communication System -- 1 Introduction -- 2 Terahertz Wireless Communication -- 2.1 Terahertz Frequency Domain -- 2.2 THz Band Characteristics -- 2.3 Applications THz Band -- 2.4 Technologies of THz Wireless Communication System -- 2.5 THz Wireless Communication -- 2.6 Challenges of THz Wireless Communication Systems -- 3 Modulation for THz Wireless Communication System -- 3.1 Justification for the Choice of Modulation Technique -- 3.2 Oversampled OFDM Modulation in THz Band -- 4 Simulation Results and Discussions -- 4.1 Power Spectral Density -- 4.2 Cumulative Distribution Function -- 5 Conclusion -- References -- Terahertz Antenna: Fundamentals, Types, Fabrication, and Future Scope -- 1 Introduction -- 2 Development of Terahertz Antennas -- 3 Basic Terahertz Antennas -- 3.1 Metallic Antennas (Horn Antenna) -- 3.2 Traveling-Wave Corner Cube Antenna -- 3.3 Dielectric Antenna -- 3.4 Novel Antenna -- 3.5 Terahertz Photoconductive Antennas -- 3.6 Reflector Antenna -- 3.7 Terahertz Lens Antennas -- 3.8 Terahertz Microstrip Antennas -- 3.9 THz On-Chip Antennas -- 4 Terahertz Sources and Detectors -- 5 Proposed Terahertz Lecky Wave Antenna -- 5.1 Introduction -- 5.2 Terahertz Antenna Design -- 5.3 Discussion on Result -- 6 Terahertz Antenna Process Technology -- 7 Future Research on Terahertz Antenna -- 7.1 The High Value of Gain -- 7.2 Size Reduction -- 7.3 The High Degree of Incorporation -- 8 Conclusion -- References -- 1D Periodic Nonlinear Model and Using It to Design All-Optical Parity Generator Cum Checker Circuit -- 1 Introduction.
2 1D Periodic Nonlinear Model -- 3 All-Optical XOR Gate -- 4 Parity Bit Generator Cum Checker Circuit -- 5 Discussion -- 6 Conclusion -- References -- Section I: Wide Bandgap (WBG) Semiconductors as Terahertz Radiation Generator -- 1 Introduction -- 2 Operation Principle of IMPATT and Its Development as a Terahertz Radiation Generator -- 3 Wide Bandgap (WBG) Semiconductors as Reliable THz Source -- 4 THz Operation Based on Avalanche Response Time (ART) Analysis -- 4.1 ART Method to Find the Suitability of Silicon Carbide and Gallium Nitride -- 5 Physical Parameters of 4H-Silicon Carbide and Wurtzite-Gallium Nitride -- 5.1 Ionization Rates -- 5.2 Drift Velocity of Charge Carriers -- 5.3 Various Important Parameters -- 6 Design and Methodology -- 6.1 Device Model -- 6.2 DC Analysis -- 6.3 Analysis for Small Amplitude RF Signal -- 6.4 Large Signal Analysis -- 7 Millimeter Wave and THz Simulation Results -- 8 Conclusion -- References -- Section II: Prospect of Heterojunction (HT) IMPATT Devices as a Source of Terahertz Radiation -- 1 Introduction -- 2 Potentiality of 3C-SiC  Si and AlmGa1−mN  GaN Based HT IMPATTs as Promising Sources of THz Radiation -- 3 Device Design -- 4 Simulated Outputs -- 4.1 Results for HT 3C-SiC/Si and Its HM Counterparts -- 4.2 Results for HT Al0.4Ga0.6 N  GaN and Its HM Counterparts -- 5 Conclusion -- References -- Advanced Materials-Based Nano-absorbers for Thermo-Photovoltaic Cells -- 1 Introduction -- 1.1 Generations of PV Cells -- 2 Basics of Thermo-Photovoltaic Cell -- 2.1 Important Parameters, Issues and Constituent Materials -- 3 Advanced Material-Based TPV Cell Absorber -- 4 Conclusion -- References -- Broadband SIW Traveling Wave Antenna Array for Terahertz Applications -- 1 Introduction -- 2 Single SIW Antenna Design -- 3 Single SIW Antenna Design -- 4 The Proposed Two-Way Linear SIW Antenna Array -- 5 Conclusion.
References -- Polarization of THz Signals Using Graphene-Based Metamaterial Structure -- 1 Introduction -- 2 Graphene Conductivity Model -- 3 Graphene-Based Polarizer -- 4 Graphene-Based Polarizer Using Optical Fiber -- 5 Graphene Array-Based Polarizer -- 6 Graphene Gold Patch-Based Three-Layered THz Polarizer -- 6.1 Introduction and Design Modeling -- 6.2 Results and Discussion -- 7 Graphene Metamaterial-Based Polarizer -- 8 Conclusion -- References -- Terahertz Frequency, Heisenberg's Uncertainty Principle, Einstein Relation, Dimensional Quantization, and Opto-Electronic Materials -- 1 Introduction -- 2 Theoretical Background -- 3 Suggestion for Experimental Determination of ER -- 4 Result and Discussion -- 5 Conclusion -- References -- Design and Characterization of Novel Reconfigurable Graphene Terahertz Antenna Using Metamaterials -- 1 Introduction -- 1.1 Traits and Properties of THz Band -- 1.2 Evolution of THz Technology -- 1.3 Applications of THz Band -- 2 Antenna Technologies for Terahertz Communications -- 2.1 Consequences for Antenna Design -- 2.2 Different Types of THz Antenna -- 3 Material Selection at THz Band -- 3.1 Graphene for THz Devices -- 3.2 Graphene Modeling -- 4 Proposed Antenna Design -- 4.1 Design of Circular Patch Antenna -- 4.2 Metasurface Loaded Circular Patch Antenna -- 5 Conclusion -- References -- Monopole Patch Antenna to Generate and Detect THz Pulses -- 1 Introduction -- 2 MIMO Principle -- 3 MIMO Skill Categories -- 4 MIMO Channel and Signal Patterns -- 4.1 Large-Scale Phenomena -- 4.2 Small-Scale Phenomena -- 4.3 Noise -- 4.4 Channel Characterization -- 4.5 Propagation Channel Modeling -- 5 Typical Coil Parameters -- 5.1 Input Impedance -- 5.2 Coefficient of Reflection and ROS -- 5.3 Radiation Pattern -- 5.4 Antenna Directivity, Gain and Performance -- 5.5 Bandwidth and Quality Factor.
6 Design and Optimization of a MIMO Antenna -- 7 Conclusion -- References -- Artificial Neuron Based on Tera Hertz Optical Asymmetric Demultiplexer Using Quantum Dot Semiconductor Optical Amplifier -- 1 Introduction -- 2 Artificial Neural Networks (ANN) -- 3 Optical Neural Network -- 4 Quantum Dot Semiconductor Optical Amplifier (QDSOA) -- 5 Tera Hertz Optical Asymmetric Demultiplexer -- 6 Optical Neuron Using TOAD -- 7 Conclusions -- References -- Terahertz E-Healthcare System and Intelligent Spectrum Sensing Based on Deep Learning -- 1 Introduction -- 1.1 Contributions of the Book Chapter -- 2 Role of THz Frequency in Forthcoming Wireless Generations and E-Health Systems -- 2.1 THz Technology for Medical Applications -- 3 Terahertz E-Health System-A Novel Approach to Smart Healthcare -- 3.1 Proposed Perceptive Hierarchal Networking Architecture and Intelligent Spectrum Sensing for Medical Data Transmission -- 4 Intelligent Spectrum Sensing Based on Deep Learning Classifiers for THz E-Healthcare System -- 4.1 Recurrent Neural Network-Based Intelligent Spectrum Sensing -- 4.2 Long Short Term Memory Based Spectrum Sensing Model -- 4.3 Convolutional Neural Network-Based Spectrum Sensing Model -- 4.4 CNN-LSTM Classifier Model-Based Spectrum Sensing -- 4.5 Advantages and Disadvantages of RNN, CNN, LSTM, and CNN-LSTM Models -- 5 Conclusion -- References -- Overview of THz Antenna Design Methodologies -- 1 Introduction -- 2 Features of THz Spectrum -- 3 Applications of THz Antenna -- 3.1 Medical Application -- 3.2 Wireless Communication -- 3.3 Security -- 3.4 Space Application -- 4 Salient Features of THz Antenna -- 4.1 THz Antenna Materials -- 4.2 THz Antenna Structures -- 5 Challenges and Research Scope -- 5.1 Antenna Design Parameters -- 5.2 Antenna Fabrication -- 5.3 THz Measurement -- 5.4 Future Research Scope -- 6 Conclusion -- References.
THz Meta-Atoms Versus Lattice to Non-invasively Sense MDAMB 231 Cells in Near Field.
Record Nr. UNINA-9910508453803321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (375 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-5731-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Recent Trends in Terahertz Antenna Development Implementing Planar Geometries -- 1 Introduction -- 2 Designing of THz Antenna -- 2.1 Microstrip Patch Antenna Array -- 2.2 Sectoral H-plane Horn Antenna -- 3 Circuit Modeling of THz Antenna -- 4 Fabrication of Prototypes -- 5 Conclusion -- References -- Element Failure Correction Techniques for Phased Array Antennas in Future Terahertz Communication Systems -- 1 Introduction -- 1.1 Antenna Array Failure Correction Software Techniques -- 1.2 Antenna Array Failure Correction Hardware Solutions -- 2 Proposed IFT Antenna Array Failure Correction Technique -- 3 Single Antenna Element Design at 3.5 THz -- 3.1 3.5 THz Linear Antenna Array with Element Failure Correction -- 4 Simulation Results -- 5 Summary -- Appendix A -- References -- The Magneto Electron Statistics in Heavily Doped Doping Super-Lattices at Terahertz Frequency -- 1 Introduction -- 2 Theoretical Background -- 3 Results and Discussion -- 4 Conclusion -- References -- Circularly Polarized Dual-Band Terahertz Antenna Embedded on Badge for Military and Security Applications -- 1 Introduction -- 2 Circularly Polarized Antenna Geometry and Simulation Results -- 2.1 Return Loss of the Proposed Design -- 2.2 Design Process and Equations Used -- 2.3 VSWR of the CP Antenna -- 2.4 Farfield of the Proposed CP Antenna -- 2.5 Circularly Polarized Behavior -- 2.6 Bending Analysis -- 2.7 Surface Current Distribution -- 2.8 Parametric Study -- 3 Antenna Simulation on Badge -- 3.1 Return Loss (dB) -- 3.2 3D Radiation Pattern -- 3.3 Total Radiation Efficiency (%) -- 4 Comparison with Related Works -- 5 Conclusion -- References -- Tera-Bit Per Second Quantum Dot Semiconductor Optical Amplifier-Based All Optical NOT and NAND Gates -- 1 Introduction.
2 Working Principle of the Inverter and Mathematical Modeling -- 3 Results and Discussions -- 4 Application of the Inverter in Designing NAND Gate -- 5 Implementation of NAND Gate Without Using Inverter -- 6 Conclusions -- References -- Performance Analysis of Oversampled OFDM for a Terahertz Wireless Communication System -- 1 Introduction -- 2 Terahertz Wireless Communication -- 2.1 Terahertz Frequency Domain -- 2.2 THz Band Characteristics -- 2.3 Applications THz Band -- 2.4 Technologies of THz Wireless Communication System -- 2.5 THz Wireless Communication -- 2.6 Challenges of THz Wireless Communication Systems -- 3 Modulation for THz Wireless Communication System -- 3.1 Justification for the Choice of Modulation Technique -- 3.2 Oversampled OFDM Modulation in THz Band -- 4 Simulation Results and Discussions -- 4.1 Power Spectral Density -- 4.2 Cumulative Distribution Function -- 5 Conclusion -- References -- Terahertz Antenna: Fundamentals, Types, Fabrication, and Future Scope -- 1 Introduction -- 2 Development of Terahertz Antennas -- 3 Basic Terahertz Antennas -- 3.1 Metallic Antennas (Horn Antenna) -- 3.2 Traveling-Wave Corner Cube Antenna -- 3.3 Dielectric Antenna -- 3.4 Novel Antenna -- 3.5 Terahertz Photoconductive Antennas -- 3.6 Reflector Antenna -- 3.7 Terahertz Lens Antennas -- 3.8 Terahertz Microstrip Antennas -- 3.9 THz On-Chip Antennas -- 4 Terahertz Sources and Detectors -- 5 Proposed Terahertz Lecky Wave Antenna -- 5.1 Introduction -- 5.2 Terahertz Antenna Design -- 5.3 Discussion on Result -- 6 Terahertz Antenna Process Technology -- 7 Future Research on Terahertz Antenna -- 7.1 The High Value of Gain -- 7.2 Size Reduction -- 7.3 The High Degree of Incorporation -- 8 Conclusion -- References -- 1D Periodic Nonlinear Model and Using It to Design All-Optical Parity Generator Cum Checker Circuit -- 1 Introduction.
2 1D Periodic Nonlinear Model -- 3 All-Optical XOR Gate -- 4 Parity Bit Generator Cum Checker Circuit -- 5 Discussion -- 6 Conclusion -- References -- Section I: Wide Bandgap (WBG) Semiconductors as Terahertz Radiation Generator -- 1 Introduction -- 2 Operation Principle of IMPATT and Its Development as a Terahertz Radiation Generator -- 3 Wide Bandgap (WBG) Semiconductors as Reliable THz Source -- 4 THz Operation Based on Avalanche Response Time (ART) Analysis -- 4.1 ART Method to Find the Suitability of Silicon Carbide and Gallium Nitride -- 5 Physical Parameters of 4H-Silicon Carbide and Wurtzite-Gallium Nitride -- 5.1 Ionization Rates -- 5.2 Drift Velocity of Charge Carriers -- 5.3 Various Important Parameters -- 6 Design and Methodology -- 6.1 Device Model -- 6.2 DC Analysis -- 6.3 Analysis for Small Amplitude RF Signal -- 6.4 Large Signal Analysis -- 7 Millimeter Wave and THz Simulation Results -- 8 Conclusion -- References -- Section II: Prospect of Heterojunction (HT) IMPATT Devices as a Source of Terahertz Radiation -- 1 Introduction -- 2 Potentiality of 3C-SiC  Si and AlmGa1−mN  GaN Based HT IMPATTs as Promising Sources of THz Radiation -- 3 Device Design -- 4 Simulated Outputs -- 4.1 Results for HT 3C-SiC/Si and Its HM Counterparts -- 4.2 Results for HT Al0.4Ga0.6 N  GaN and Its HM Counterparts -- 5 Conclusion -- References -- Advanced Materials-Based Nano-absorbers for Thermo-Photovoltaic Cells -- 1 Introduction -- 1.1 Generations of PV Cells -- 2 Basics of Thermo-Photovoltaic Cell -- 2.1 Important Parameters, Issues and Constituent Materials -- 3 Advanced Material-Based TPV Cell Absorber -- 4 Conclusion -- References -- Broadband SIW Traveling Wave Antenna Array for Terahertz Applications -- 1 Introduction -- 2 Single SIW Antenna Design -- 3 Single SIW Antenna Design -- 4 The Proposed Two-Way Linear SIW Antenna Array -- 5 Conclusion.
References -- Polarization of THz Signals Using Graphene-Based Metamaterial Structure -- 1 Introduction -- 2 Graphene Conductivity Model -- 3 Graphene-Based Polarizer -- 4 Graphene-Based Polarizer Using Optical Fiber -- 5 Graphene Array-Based Polarizer -- 6 Graphene Gold Patch-Based Three-Layered THz Polarizer -- 6.1 Introduction and Design Modeling -- 6.2 Results and Discussion -- 7 Graphene Metamaterial-Based Polarizer -- 8 Conclusion -- References -- Terahertz Frequency, Heisenberg's Uncertainty Principle, Einstein Relation, Dimensional Quantization, and Opto-Electronic Materials -- 1 Introduction -- 2 Theoretical Background -- 3 Suggestion for Experimental Determination of ER -- 4 Result and Discussion -- 5 Conclusion -- References -- Design and Characterization of Novel Reconfigurable Graphene Terahertz Antenna Using Metamaterials -- 1 Introduction -- 1.1 Traits and Properties of THz Band -- 1.2 Evolution of THz Technology -- 1.3 Applications of THz Band -- 2 Antenna Technologies for Terahertz Communications -- 2.1 Consequences for Antenna Design -- 2.2 Different Types of THz Antenna -- 3 Material Selection at THz Band -- 3.1 Graphene for THz Devices -- 3.2 Graphene Modeling -- 4 Proposed Antenna Design -- 4.1 Design of Circular Patch Antenna -- 4.2 Metasurface Loaded Circular Patch Antenna -- 5 Conclusion -- References -- Monopole Patch Antenna to Generate and Detect THz Pulses -- 1 Introduction -- 2 MIMO Principle -- 3 MIMO Skill Categories -- 4 MIMO Channel and Signal Patterns -- 4.1 Large-Scale Phenomena -- 4.2 Small-Scale Phenomena -- 4.3 Noise -- 4.4 Channel Characterization -- 4.5 Propagation Channel Modeling -- 5 Typical Coil Parameters -- 5.1 Input Impedance -- 5.2 Coefficient of Reflection and ROS -- 5.3 Radiation Pattern -- 5.4 Antenna Directivity, Gain and Performance -- 5.5 Bandwidth and Quality Factor.
6 Design and Optimization of a MIMO Antenna -- 7 Conclusion -- References -- Artificial Neuron Based on Tera Hertz Optical Asymmetric Demultiplexer Using Quantum Dot Semiconductor Optical Amplifier -- 1 Introduction -- 2 Artificial Neural Networks (ANN) -- 3 Optical Neural Network -- 4 Quantum Dot Semiconductor Optical Amplifier (QDSOA) -- 5 Tera Hertz Optical Asymmetric Demultiplexer -- 6 Optical Neuron Using TOAD -- 7 Conclusions -- References -- Terahertz E-Healthcare System and Intelligent Spectrum Sensing Based on Deep Learning -- 1 Introduction -- 1.1 Contributions of the Book Chapter -- 2 Role of THz Frequency in Forthcoming Wireless Generations and E-Health Systems -- 2.1 THz Technology for Medical Applications -- 3 Terahertz E-Health System-A Novel Approach to Smart Healthcare -- 3.1 Proposed Perceptive Hierarchal Networking Architecture and Intelligent Spectrum Sensing for Medical Data Transmission -- 4 Intelligent Spectrum Sensing Based on Deep Learning Classifiers for THz E-Healthcare System -- 4.1 Recurrent Neural Network-Based Intelligent Spectrum Sensing -- 4.2 Long Short Term Memory Based Spectrum Sensing Model -- 4.3 Convolutional Neural Network-Based Spectrum Sensing Model -- 4.4 CNN-LSTM Classifier Model-Based Spectrum Sensing -- 4.5 Advantages and Disadvantages of RNN, CNN, LSTM, and CNN-LSTM Models -- 5 Conclusion -- References -- Overview of THz Antenna Design Methodologies -- 1 Introduction -- 2 Features of THz Spectrum -- 3 Applications of THz Antenna -- 3.1 Medical Application -- 3.2 Wireless Communication -- 3.3 Security -- 3.4 Space Application -- 4 Salient Features of THz Antenna -- 4.1 THz Antenna Materials -- 4.2 THz Antenna Structures -- 5 Challenges and Research Scope -- 5.1 Antenna Design Parameters -- 5.2 Antenna Fabrication -- 5.3 THz Measurement -- 5.4 Future Research Scope -- 6 Conclusion -- References.
THz Meta-Atoms Versus Lattice to Non-invasively Sense MDAMB 231 Cells in Near Field.
Record Nr. UNISA-996466852003316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNISA-996466847603316
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNINA-9910488693203321
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNISA-996466730403316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNINA-9910484187703321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
Soggetto genere / forma Electronic books.
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910555277903321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910830663703321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Autore Belov L. A. (Leonid Alekseevich)
Pubbl/distr/stampa Boston ; , : Artech House, , 2012
Descrizione fisica 1 online resource (519 p.)
Disciplina 621.38133
Altri autori (Persone) SmolskiySergey M
KochemasovV. N (Viktor Neofidovich)
Collana Artech House microwave library
Soggetto topico Radio circuits - Design and construction
Microwave circuits - Design and construction
Radio frequency
Soggetto genere / forma Electronic books.
ISBN 1-60807-210-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Handbook of RF, Microwave, and Millimeter-Wave Components; Contents; Preface; Chapter 1Devices for Signal Generation and Processing; 1.1General Information About Signals; 1.2Architecture of Devices for Generation and Processing of Signals; 1.2.1 Reference Oscillations; 1.2.2 Signals with Phase Modulation and Shift Keying; 1.2.3 QAM Signals; 1.2.4 Signals with Frequency Modulation and Shift Keying; 1.2.5 Multifrequency Signals; 1.3Requirements to Devices and Components; 1.4Product Certification and Quality Standards; 1.5Foundry Service; Questions; References
Chapter 2Transmission Line Components2.1Fundamentals; 2.2Classification and Parameters; 2.3RF Coaxial Cables; 2.4Coaxial Connectors; 2.5Cable Assemblies; 2.6Waveguides and Flanges; 2.7Coaxial and Waveguide Components; 2.8Rotary Joints; Questions; References; Chapter 3 Passive Components; 3.1 Substrates and Laminates; 3.2Resistors and Fixed Attenuators; 3.3Inductors, Chokes, and Transformers; 3.4Capacitors; 3.5EMI and RFI Filters; 3.6Power Dividers/Combiners, Splitters; 3.7Couplers; 3.8Beamformer Networks; 3.9Gain Equalizers; 3.10Circulators and Isolators; Questions; References
Chapter 4 Fixed Frequency Filters4.1Fundamentals; 4.2Lumped LC-Element Filters; 4.3Cavity Filters; 4.4Ceramic Resonator Filters; 4.5Microstrip and Stripline Filters; 4.6Tubular Filters; 4.7Waveguide Filters; 4.8Ytriium-Iron Garnet (YIG) Filters; 4.9Thin- and Thick-Film Filters; 4.10Monolithic Crystal Filters; 4.11SAW and BAW Filters; 4.12MEMS Filters; 4.13Harmonic Filters; 4.14Frequency Multiplexers and Duplexers; 4.15Fixed Frequency Filter Assemblies; Questions; References; Chapter 5 Control Components: Attenuators, Phase Shifters, Time Delay Lines, and Controlled Frequency Filters
5.1 Fundamentals5.2Classification and Parameters; 5.3Variable Attenuators; 5.3.1Manually controlled attenuators; 5.3.2Electrically Variable Attenuators; 5.3.3Digitally Controlled Attenuators; 5.3.4Programmable Attenuators; 5.3.5Phase Invariant Attenuators; 5.4Phase Shifters; 5.5Time Delay Lines; 5.6Tunable and Switched Frequency Filters; Questions; References; Chapter 6 Control Components: Switches and Matrices; 6.1Fundamentals; 6.2Classification and Parameters; 6.3Solid-State Switches and Matrices; 6.3.1PIN-Diode Switches; 6.3.2FET/GaAs Switches; 6.3.3Solid-State Matrices
6.4Coaxial Electromechanical Switches and Matrices6.5Waveguide Electromechanical Switches; 6.6Microelectromechanical Switches; 6.7Ferrite Switches; 6.8Reed, Motorized, Redundancy, Shorting, Transmitter/Receiver, Bidirectional, Programmable Switches; Questions; References; Chapter 7 Amplifiers; 7.1Fundamentals; 7.2Classification and Parameters; 7.3Low-Noise Amplifiers; 7.4High Dynamic Range Amplifiers; 7.5Solid-State Power Amplifiers; 7.6Wideband Solid-State Amplifiers; 7.7Variable Gain, Transimpedance, Limiting, Cryogenic, Distribution, Fast Recovering, Temperature Compensated Amplifiers
7.8Klystrodes, Klystrons, TWTs, Amplitrons, Crossed-Field, and Gyro-Amplifiers
Record Nr. UNINA-9910462960003321
Belov L. A. (Leonid Alekseevich)  
Boston ; , : Artech House, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Autore Belov L. A. (Leonid Alekseevich)
Pubbl/distr/stampa Boston ; , : Artech House, , 2012
Descrizione fisica 1 online resource (519 p.)
Disciplina 621.38133
Altri autori (Persone) SmolskiySergey M
KochemasovV. N (Viktor Neofidovich)
Collana Artech House microwave library
Soggetto topico Radio circuits - Design and construction
Microwave circuits - Design and construction
Radio frequency
ISBN 1-60807-210-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Handbook of RF, Microwave, and Millimeter-Wave Components; Contents; Preface; Chapter 1Devices for Signal Generation and Processing; 1.1General Information About Signals; 1.2Architecture of Devices for Generation and Processing of Signals; 1.2.1 Reference Oscillations; 1.2.2 Signals with Phase Modulation and Shift Keying; 1.2.3 QAM Signals; 1.2.4 Signals with Frequency Modulation and Shift Keying; 1.2.5 Multifrequency Signals; 1.3Requirements to Devices and Components; 1.4Product Certification and Quality Standards; 1.5Foundry Service; Questions; References
Chapter 2Transmission Line Components2.1Fundamentals; 2.2Classification and Parameters; 2.3RF Coaxial Cables; 2.4Coaxial Connectors; 2.5Cable Assemblies; 2.6Waveguides and Flanges; 2.7Coaxial and Waveguide Components; 2.8Rotary Joints; Questions; References; Chapter 3 Passive Components; 3.1 Substrates and Laminates; 3.2Resistors and Fixed Attenuators; 3.3Inductors, Chokes, and Transformers; 3.4Capacitors; 3.5EMI and RFI Filters; 3.6Power Dividers/Combiners, Splitters; 3.7Couplers; 3.8Beamformer Networks; 3.9Gain Equalizers; 3.10Circulators and Isolators; Questions; References
Chapter 4 Fixed Frequency Filters4.1Fundamentals; 4.2Lumped LC-Element Filters; 4.3Cavity Filters; 4.4Ceramic Resonator Filters; 4.5Microstrip and Stripline Filters; 4.6Tubular Filters; 4.7Waveguide Filters; 4.8Ytriium-Iron Garnet (YIG) Filters; 4.9Thin- and Thick-Film Filters; 4.10Monolithic Crystal Filters; 4.11SAW and BAW Filters; 4.12MEMS Filters; 4.13Harmonic Filters; 4.14Frequency Multiplexers and Duplexers; 4.15Fixed Frequency Filter Assemblies; Questions; References; Chapter 5 Control Components: Attenuators, Phase Shifters, Time Delay Lines, and Controlled Frequency Filters
5.1 Fundamentals5.2Classification and Parameters; 5.3Variable Attenuators; 5.3.1Manually controlled attenuators; 5.3.2Electrically Variable Attenuators; 5.3.3Digitally Controlled Attenuators; 5.3.4Programmable Attenuators; 5.3.5Phase Invariant Attenuators; 5.4Phase Shifters; 5.5Time Delay Lines; 5.6Tunable and Switched Frequency Filters; Questions; References; Chapter 6 Control Components: Switches and Matrices; 6.1Fundamentals; 6.2Classification and Parameters; 6.3Solid-State Switches and Matrices; 6.3.1PIN-Diode Switches; 6.3.2FET/GaAs Switches; 6.3.3Solid-State Matrices
6.4Coaxial Electromechanical Switches and Matrices6.5Waveguide Electromechanical Switches; 6.6Microelectromechanical Switches; 6.7Ferrite Switches; 6.8Reed, Motorized, Redundancy, Shorting, Transmitter/Receiver, Bidirectional, Programmable Switches; Questions; References; Chapter 7 Amplifiers; 7.1Fundamentals; 7.2Classification and Parameters; 7.3Low-Noise Amplifiers; 7.4High Dynamic Range Amplifiers; 7.5Solid-State Power Amplifiers; 7.6Wideband Solid-State Amplifiers; 7.7Variable Gain, Transimpedance, Limiting, Cryogenic, Distribution, Fast Recovering, Temperature Compensated Amplifiers
7.8Klystrodes, Klystrons, TWTs, Amplitrons, Crossed-Field, and Gyro-Amplifiers
Record Nr. UNINA-9910786582303321
Belov L. A. (Leonid Alekseevich)  
Boston ; , : Artech House, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui