top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Advances in terahertz technology and its applications / / Sudipta Das [and three others] editor
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (375 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-5731-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Recent Trends in Terahertz Antenna Development Implementing Planar Geometries -- 1 Introduction -- 2 Designing of THz Antenna -- 2.1 Microstrip Patch Antenna Array -- 2.2 Sectoral H-plane Horn Antenna -- 3 Circuit Modeling of THz Antenna -- 4 Fabrication of Prototypes -- 5 Conclusion -- References -- Element Failure Correction Techniques for Phased Array Antennas in Future Terahertz Communication Systems -- 1 Introduction -- 1.1 Antenna Array Failure Correction Software Techniques -- 1.2 Antenna Array Failure Correction Hardware Solutions -- 2 Proposed IFT Antenna Array Failure Correction Technique -- 3 Single Antenna Element Design at 3.5 THz -- 3.1 3.5 THz Linear Antenna Array with Element Failure Correction -- 4 Simulation Results -- 5 Summary -- Appendix A -- References -- The Magneto Electron Statistics in Heavily Doped Doping Super-Lattices at Terahertz Frequency -- 1 Introduction -- 2 Theoretical Background -- 3 Results and Discussion -- 4 Conclusion -- References -- Circularly Polarized Dual-Band Terahertz Antenna Embedded on Badge for Military and Security Applications -- 1 Introduction -- 2 Circularly Polarized Antenna Geometry and Simulation Results -- 2.1 Return Loss of the Proposed Design -- 2.2 Design Process and Equations Used -- 2.3 VSWR of the CP Antenna -- 2.4 Farfield of the Proposed CP Antenna -- 2.5 Circularly Polarized Behavior -- 2.6 Bending Analysis -- 2.7 Surface Current Distribution -- 2.8 Parametric Study -- 3 Antenna Simulation on Badge -- 3.1 Return Loss (dB) -- 3.2 3D Radiation Pattern -- 3.3 Total Radiation Efficiency (%) -- 4 Comparison with Related Works -- 5 Conclusion -- References -- Tera-Bit Per Second Quantum Dot Semiconductor Optical Amplifier-Based All Optical NOT and NAND Gates -- 1 Introduction.
2 Working Principle of the Inverter and Mathematical Modeling -- 3 Results and Discussions -- 4 Application of the Inverter in Designing NAND Gate -- 5 Implementation of NAND Gate Without Using Inverter -- 6 Conclusions -- References -- Performance Analysis of Oversampled OFDM for a Terahertz Wireless Communication System -- 1 Introduction -- 2 Terahertz Wireless Communication -- 2.1 Terahertz Frequency Domain -- 2.2 THz Band Characteristics -- 2.3 Applications THz Band -- 2.4 Technologies of THz Wireless Communication System -- 2.5 THz Wireless Communication -- 2.6 Challenges of THz Wireless Communication Systems -- 3 Modulation for THz Wireless Communication System -- 3.1 Justification for the Choice of Modulation Technique -- 3.2 Oversampled OFDM Modulation in THz Band -- 4 Simulation Results and Discussions -- 4.1 Power Spectral Density -- 4.2 Cumulative Distribution Function -- 5 Conclusion -- References -- Terahertz Antenna: Fundamentals, Types, Fabrication, and Future Scope -- 1 Introduction -- 2 Development of Terahertz Antennas -- 3 Basic Terahertz Antennas -- 3.1 Metallic Antennas (Horn Antenna) -- 3.2 Traveling-Wave Corner Cube Antenna -- 3.3 Dielectric Antenna -- 3.4 Novel Antenna -- 3.5 Terahertz Photoconductive Antennas -- 3.6 Reflector Antenna -- 3.7 Terahertz Lens Antennas -- 3.8 Terahertz Microstrip Antennas -- 3.9 THz On-Chip Antennas -- 4 Terahertz Sources and Detectors -- 5 Proposed Terahertz Lecky Wave Antenna -- 5.1 Introduction -- 5.2 Terahertz Antenna Design -- 5.3 Discussion on Result -- 6 Terahertz Antenna Process Technology -- 7 Future Research on Terahertz Antenna -- 7.1 The High Value of Gain -- 7.2 Size Reduction -- 7.3 The High Degree of Incorporation -- 8 Conclusion -- References -- 1D Periodic Nonlinear Model and Using It to Design All-Optical Parity Generator Cum Checker Circuit -- 1 Introduction.
2 1D Periodic Nonlinear Model -- 3 All-Optical XOR Gate -- 4 Parity Bit Generator Cum Checker Circuit -- 5 Discussion -- 6 Conclusion -- References -- Section I: Wide Bandgap (WBG) Semiconductors as Terahertz Radiation Generator -- 1 Introduction -- 2 Operation Principle of IMPATT and Its Development as a Terahertz Radiation Generator -- 3 Wide Bandgap (WBG) Semiconductors as Reliable THz Source -- 4 THz Operation Based on Avalanche Response Time (ART) Analysis -- 4.1 ART Method to Find the Suitability of Silicon Carbide and Gallium Nitride -- 5 Physical Parameters of 4H-Silicon Carbide and Wurtzite-Gallium Nitride -- 5.1 Ionization Rates -- 5.2 Drift Velocity of Charge Carriers -- 5.3 Various Important Parameters -- 6 Design and Methodology -- 6.1 Device Model -- 6.2 DC Analysis -- 6.3 Analysis for Small Amplitude RF Signal -- 6.4 Large Signal Analysis -- 7 Millimeter Wave and THz Simulation Results -- 8 Conclusion -- References -- Section II: Prospect of Heterojunction (HT) IMPATT Devices as a Source of Terahertz Radiation -- 1 Introduction -- 2 Potentiality of 3C-SiC  Si and AlmGa1−mN  GaN Based HT IMPATTs as Promising Sources of THz Radiation -- 3 Device Design -- 4 Simulated Outputs -- 4.1 Results for HT 3C-SiC/Si and Its HM Counterparts -- 4.2 Results for HT Al0.4Ga0.6 N  GaN and Its HM Counterparts -- 5 Conclusion -- References -- Advanced Materials-Based Nano-absorbers for Thermo-Photovoltaic Cells -- 1 Introduction -- 1.1 Generations of PV Cells -- 2 Basics of Thermo-Photovoltaic Cell -- 2.1 Important Parameters, Issues and Constituent Materials -- 3 Advanced Material-Based TPV Cell Absorber -- 4 Conclusion -- References -- Broadband SIW Traveling Wave Antenna Array for Terahertz Applications -- 1 Introduction -- 2 Single SIW Antenna Design -- 3 Single SIW Antenna Design -- 4 The Proposed Two-Way Linear SIW Antenna Array -- 5 Conclusion.
References -- Polarization of THz Signals Using Graphene-Based Metamaterial Structure -- 1 Introduction -- 2 Graphene Conductivity Model -- 3 Graphene-Based Polarizer -- 4 Graphene-Based Polarizer Using Optical Fiber -- 5 Graphene Array-Based Polarizer -- 6 Graphene Gold Patch-Based Three-Layered THz Polarizer -- 6.1 Introduction and Design Modeling -- 6.2 Results and Discussion -- 7 Graphene Metamaterial-Based Polarizer -- 8 Conclusion -- References -- Terahertz Frequency, Heisenberg's Uncertainty Principle, Einstein Relation, Dimensional Quantization, and Opto-Electronic Materials -- 1 Introduction -- 2 Theoretical Background -- 3 Suggestion for Experimental Determination of ER -- 4 Result and Discussion -- 5 Conclusion -- References -- Design and Characterization of Novel Reconfigurable Graphene Terahertz Antenna Using Metamaterials -- 1 Introduction -- 1.1 Traits and Properties of THz Band -- 1.2 Evolution of THz Technology -- 1.3 Applications of THz Band -- 2 Antenna Technologies for Terahertz Communications -- 2.1 Consequences for Antenna Design -- 2.2 Different Types of THz Antenna -- 3 Material Selection at THz Band -- 3.1 Graphene for THz Devices -- 3.2 Graphene Modeling -- 4 Proposed Antenna Design -- 4.1 Design of Circular Patch Antenna -- 4.2 Metasurface Loaded Circular Patch Antenna -- 5 Conclusion -- References -- Monopole Patch Antenna to Generate and Detect THz Pulses -- 1 Introduction -- 2 MIMO Principle -- 3 MIMO Skill Categories -- 4 MIMO Channel and Signal Patterns -- 4.1 Large-Scale Phenomena -- 4.2 Small-Scale Phenomena -- 4.3 Noise -- 4.4 Channel Characterization -- 4.5 Propagation Channel Modeling -- 5 Typical Coil Parameters -- 5.1 Input Impedance -- 5.2 Coefficient of Reflection and ROS -- 5.3 Radiation Pattern -- 5.4 Antenna Directivity, Gain and Performance -- 5.5 Bandwidth and Quality Factor.
6 Design and Optimization of a MIMO Antenna -- 7 Conclusion -- References -- Artificial Neuron Based on Tera Hertz Optical Asymmetric Demultiplexer Using Quantum Dot Semiconductor Optical Amplifier -- 1 Introduction -- 2 Artificial Neural Networks (ANN) -- 3 Optical Neural Network -- 4 Quantum Dot Semiconductor Optical Amplifier (QDSOA) -- 5 Tera Hertz Optical Asymmetric Demultiplexer -- 6 Optical Neuron Using TOAD -- 7 Conclusions -- References -- Terahertz E-Healthcare System and Intelligent Spectrum Sensing Based on Deep Learning -- 1 Introduction -- 1.1 Contributions of the Book Chapter -- 2 Role of THz Frequency in Forthcoming Wireless Generations and E-Health Systems -- 2.1 THz Technology for Medical Applications -- 3 Terahertz E-Health System-A Novel Approach to Smart Healthcare -- 3.1 Proposed Perceptive Hierarchal Networking Architecture and Intelligent Spectrum Sensing for Medical Data Transmission -- 4 Intelligent Spectrum Sensing Based on Deep Learning Classifiers for THz E-Healthcare System -- 4.1 Recurrent Neural Network-Based Intelligent Spectrum Sensing -- 4.2 Long Short Term Memory Based Spectrum Sensing Model -- 4.3 Convolutional Neural Network-Based Spectrum Sensing Model -- 4.4 CNN-LSTM Classifier Model-Based Spectrum Sensing -- 4.5 Advantages and Disadvantages of RNN, CNN, LSTM, and CNN-LSTM Models -- 5 Conclusion -- References -- Overview of THz Antenna Design Methodologies -- 1 Introduction -- 2 Features of THz Spectrum -- 3 Applications of THz Antenna -- 3.1 Medical Application -- 3.2 Wireless Communication -- 3.3 Security -- 3.4 Space Application -- 4 Salient Features of THz Antenna -- 4.1 THz Antenna Materials -- 4.2 THz Antenna Structures -- 5 Challenges and Research Scope -- 5.1 Antenna Design Parameters -- 5.2 Antenna Fabrication -- 5.3 THz Measurement -- 5.4 Future Research Scope -- 6 Conclusion -- References.
THz Meta-Atoms Versus Lattice to Non-invasively Sense MDAMB 231 Cells in Near Field.
Record Nr. UNISA-996466852003316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in Terahertz Technology and Its Applications / / edited by Sudipta Das, N. Anveshkumar, Joydeep Dutta, Arindam Biswas
Advances in Terahertz Technology and Its Applications / / edited by Sudipta Das, N. Anveshkumar, Joydeep Dutta, Arindam Biswas
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (375 pages)
Disciplina 621.38133
Collana Physics and Astronomy Series
Soggetto topico Submillimeter waves
Solid state physics
Signal processing
Biomedical engineering
Nanoscience
Terahertz Optics
Electronic Devices
Signal, Speech and Image Processing
Biomedical Devices and Instrumentation
Nanophysics
ISBN 981-16-5731-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Recent Trends in Terahertz Antenna Development Implementing Planar Geometries -- 2. Element Failure Correction Techniques for Phased Array Antennas in Future Terahertz Communication Systems -- 3. The Magneto Electron Statistics in Heavily Doped Doping Super lattices at Terahertz Frequency -- 4. Circularly Polarized Dual Band Terahertz Antenna Embedded on Badge for Military and Security Applications -- 5. Tera-bit per second Quantum Dot Semiconductor Optical Amplifier based all optical NOT and NAND gates.
Record Nr. UNINA-9910508453803321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNISA-996466847603316
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNINA-9910488693203321
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNISA-996466730403316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Emerging Trends in Terahertz Engineering and System Technologies : Devices, Materials, Imaging, Data Acquisition and Processing / / edited by Arindam Biswas, Amit Banerjee, Aritra Acharyya, Hiroshi Inokawa
Emerging Trends in Terahertz Engineering and System Technologies : Devices, Materials, Imaging, Data Acquisition and Processing / / edited by Arindam Biswas, Amit Banerjee, Aritra Acharyya, Hiroshi Inokawa
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Submillimeter waves
Solid state physics
Signal processing
Nanotechnology
Biomedical engineering
Internet of things
Terahertz Optics
Electronic Devices
Signal, Speech and Image Processing
Biomedical Devices and Instrumentation
Internet of Things
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNINA-9910484187703321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
Soggetto genere / forma Electronic books.
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910555277903321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910830663703321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Autore Belov L. A. (Leonid Alekseevich)
Pubbl/distr/stampa Boston ; , : Artech House, , 2012
Descrizione fisica 1 online resource (519 p.)
Disciplina 621.38133
Altri autori (Persone) SmolskiySergey M
KochemasovV. N (Viktor Neofidovich)
Collana Artech House microwave library
Soggetto topico Radio circuits - Design and construction
Microwave circuits - Design and construction
Radio frequency
Soggetto genere / forma Electronic books.
ISBN 1-60807-210-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Handbook of RF, Microwave, and Millimeter-Wave Components; Contents; Preface; Chapter 1Devices for Signal Generation and Processing; 1.1General Information About Signals; 1.2Architecture of Devices for Generation and Processing of Signals; 1.2.1 Reference Oscillations; 1.2.2 Signals with Phase Modulation and Shift Keying; 1.2.3 QAM Signals; 1.2.4 Signals with Frequency Modulation and Shift Keying; 1.2.5 Multifrequency Signals; 1.3Requirements to Devices and Components; 1.4Product Certification and Quality Standards; 1.5Foundry Service; Questions; References
Chapter 2Transmission Line Components2.1Fundamentals; 2.2Classification and Parameters; 2.3RF Coaxial Cables; 2.4Coaxial Connectors; 2.5Cable Assemblies; 2.6Waveguides and Flanges; 2.7Coaxial and Waveguide Components; 2.8Rotary Joints; Questions; References; Chapter 3 Passive Components; 3.1 Substrates and Laminates; 3.2Resistors and Fixed Attenuators; 3.3Inductors, Chokes, and Transformers; 3.4Capacitors; 3.5EMI and RFI Filters; 3.6Power Dividers/Combiners, Splitters; 3.7Couplers; 3.8Beamformer Networks; 3.9Gain Equalizers; 3.10Circulators and Isolators; Questions; References
Chapter 4 Fixed Frequency Filters4.1Fundamentals; 4.2Lumped LC-Element Filters; 4.3Cavity Filters; 4.4Ceramic Resonator Filters; 4.5Microstrip and Stripline Filters; 4.6Tubular Filters; 4.7Waveguide Filters; 4.8Ytriium-Iron Garnet (YIG) Filters; 4.9Thin- and Thick-Film Filters; 4.10Monolithic Crystal Filters; 4.11SAW and BAW Filters; 4.12MEMS Filters; 4.13Harmonic Filters; 4.14Frequency Multiplexers and Duplexers; 4.15Fixed Frequency Filter Assemblies; Questions; References; Chapter 5 Control Components: Attenuators, Phase Shifters, Time Delay Lines, and Controlled Frequency Filters
5.1 Fundamentals5.2Classification and Parameters; 5.3Variable Attenuators; 5.3.1Manually controlled attenuators; 5.3.2Electrically Variable Attenuators; 5.3.3Digitally Controlled Attenuators; 5.3.4Programmable Attenuators; 5.3.5Phase Invariant Attenuators; 5.4Phase Shifters; 5.5Time Delay Lines; 5.6Tunable and Switched Frequency Filters; Questions; References; Chapter 6 Control Components: Switches and Matrices; 6.1Fundamentals; 6.2Classification and Parameters; 6.3Solid-State Switches and Matrices; 6.3.1PIN-Diode Switches; 6.3.2FET/GaAs Switches; 6.3.3Solid-State Matrices
6.4Coaxial Electromechanical Switches and Matrices6.5Waveguide Electromechanical Switches; 6.6Microelectromechanical Switches; 6.7Ferrite Switches; 6.8Reed, Motorized, Redundancy, Shorting, Transmitter/Receiver, Bidirectional, Programmable Switches; Questions; References; Chapter 7 Amplifiers; 7.1Fundamentals; 7.2Classification and Parameters; 7.3Low-Noise Amplifiers; 7.4High Dynamic Range Amplifiers; 7.5Solid-State Power Amplifiers; 7.6Wideband Solid-State Amplifiers; 7.7Variable Gain, Transimpedance, Limiting, Cryogenic, Distribution, Fast Recovering, Temperature Compensated Amplifiers
7.8Klystrodes, Klystrons, TWTs, Amplitrons, Crossed-Field, and Gyro-Amplifiers
Record Nr. UNINA-9910462960003321
Belov L. A. (Leonid Alekseevich)  
Boston ; , : Artech House, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Handbook of RF, microwave, and millimeter-wave components / / Leonid A. Belov, Sergey M. Smolskiy, Victor N. Kochemasov
Autore Belov L. A. (Leonid Alekseevich)
Pubbl/distr/stampa Boston ; , : Artech House, , 2012
Descrizione fisica 1 online resource (519 p.)
Disciplina 621.38133
Altri autori (Persone) SmolskiySergey M
KochemasovV. N (Viktor Neofidovich)
Collana Artech House microwave library
Soggetto topico Radio circuits - Design and construction
Microwave circuits - Design and construction
Radio frequency
ISBN 1-60807-210-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Handbook of RF, Microwave, and Millimeter-Wave Components; Contents; Preface; Chapter 1Devices for Signal Generation and Processing; 1.1General Information About Signals; 1.2Architecture of Devices for Generation and Processing of Signals; 1.2.1 Reference Oscillations; 1.2.2 Signals with Phase Modulation and Shift Keying; 1.2.3 QAM Signals; 1.2.4 Signals with Frequency Modulation and Shift Keying; 1.2.5 Multifrequency Signals; 1.3Requirements to Devices and Components; 1.4Product Certification and Quality Standards; 1.5Foundry Service; Questions; References
Chapter 2Transmission Line Components2.1Fundamentals; 2.2Classification and Parameters; 2.3RF Coaxial Cables; 2.4Coaxial Connectors; 2.5Cable Assemblies; 2.6Waveguides and Flanges; 2.7Coaxial and Waveguide Components; 2.8Rotary Joints; Questions; References; Chapter 3 Passive Components; 3.1 Substrates and Laminates; 3.2Resistors and Fixed Attenuators; 3.3Inductors, Chokes, and Transformers; 3.4Capacitors; 3.5EMI and RFI Filters; 3.6Power Dividers/Combiners, Splitters; 3.7Couplers; 3.8Beamformer Networks; 3.9Gain Equalizers; 3.10Circulators and Isolators; Questions; References
Chapter 4 Fixed Frequency Filters4.1Fundamentals; 4.2Lumped LC-Element Filters; 4.3Cavity Filters; 4.4Ceramic Resonator Filters; 4.5Microstrip and Stripline Filters; 4.6Tubular Filters; 4.7Waveguide Filters; 4.8Ytriium-Iron Garnet (YIG) Filters; 4.9Thin- and Thick-Film Filters; 4.10Monolithic Crystal Filters; 4.11SAW and BAW Filters; 4.12MEMS Filters; 4.13Harmonic Filters; 4.14Frequency Multiplexers and Duplexers; 4.15Fixed Frequency Filter Assemblies; Questions; References; Chapter 5 Control Components: Attenuators, Phase Shifters, Time Delay Lines, and Controlled Frequency Filters
5.1 Fundamentals5.2Classification and Parameters; 5.3Variable Attenuators; 5.3.1Manually controlled attenuators; 5.3.2Electrically Variable Attenuators; 5.3.3Digitally Controlled Attenuators; 5.3.4Programmable Attenuators; 5.3.5Phase Invariant Attenuators; 5.4Phase Shifters; 5.5Time Delay Lines; 5.6Tunable and Switched Frequency Filters; Questions; References; Chapter 6 Control Components: Switches and Matrices; 6.1Fundamentals; 6.2Classification and Parameters; 6.3Solid-State Switches and Matrices; 6.3.1PIN-Diode Switches; 6.3.2FET/GaAs Switches; 6.3.3Solid-State Matrices
6.4Coaxial Electromechanical Switches and Matrices6.5Waveguide Electromechanical Switches; 6.6Microelectromechanical Switches; 6.7Ferrite Switches; 6.8Reed, Motorized, Redundancy, Shorting, Transmitter/Receiver, Bidirectional, Programmable Switches; Questions; References; Chapter 7 Amplifiers; 7.1Fundamentals; 7.2Classification and Parameters; 7.3Low-Noise Amplifiers; 7.4High Dynamic Range Amplifiers; 7.5Solid-State Power Amplifiers; 7.6Wideband Solid-State Amplifiers; 7.7Variable Gain, Transimpedance, Limiting, Cryogenic, Distribution, Fast Recovering, Temperature Compensated Amplifiers
7.8Klystrodes, Klystrons, TWTs, Amplitrons, Crossed-Field, and Gyro-Amplifiers
Record Nr. UNINA-9910786582303321
Belov L. A. (Leonid Alekseevich)  
Boston ; , : Artech House, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui