top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Compact and broadband microstrip antennas / / Kin-Lu Wong
Compact and broadband microstrip antennas / / Kin-Lu Wong
Autore Wong Kin-Lu
Pubbl/distr/stampa New York, : John Wiley & Sons, Inc., c2002
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.381/33
Collana Wiley series in microwave and optical engineering
Soggetto topico Microstrip antennas
Electrical engineering
ISBN 9786610367740
9781280367748
1280367741
9780470236123
0470236124
9780471465737
0471465739
9780471221111
0471221112
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact and Broadband Microstrip Antennas; Contents; Preface; 1 Introduction and Overview; 1.1 Introduction; 1.2 Compact Microstrip Antennas; 1.3 Compact Broadband Microstrip Antennas; 1.4 Compact Dual-Frequency Microstrip Antennas; 1.5 Compact Dual-Polarized Microstrip Antennas; 1.6 Compact Circularly Polarized Microstrip Antennas; 1.7 Compact Microstrip Antennas with Enhanced Gain; 1.8 Broadband Microstrip Antennas; 1.9 Broadband Dual-Frequency and Dual-Polarized Microstrip Antennas; 1.10 Broadband and Dual-Band Circularly Polarized Microstrip Antennas; 2 Compact Microstrip Antennas
2.1 Introduction2.2 Use of a Shorted Patch with a Thin Dielectric Substrate; 2.3 Use of a Meandered Patch; 2.4 Use of a Meandered Ground Plane; 2.5 Use of a Planar Inverted-L Patch; 2.6 Use of an Inverted U-Shaped or Folded Patch; 3 Compact Broadband Microstrip Antennas; 3.1 Introduction; 3.2 Use of a Shorted Patch with a Thick Air Substrate; 3.2.1 Probe-Fed Shorted Patch or Planar Inverted-F Antenna (PIFA); 3.2.2 Aperture-Coupled Shorted Patch; 3.2.3 Microstrip-Line-Fed Shorted Patch; 3.2.4 Capacitively Coupled or L-Probe-Fed Shorted Patch; 3.3 Use of Stacked Shorted Patches
3.4 Use of Chip-Resistor and Chip-Capacitor Loading Technique3.4.1 Design with a Rectangular Patch; 3.4.2 Design with a Circular Patch; 3.4.3 Design with a Triangular Patch; 3.4.4 Design with a Meandered PIFA; 3.5 Use of a Slot-Loading Technique; 3.6 Use of a Slotted Ground Plane; 4 Compact Dual-Frequency and Dual-Polarized Microstrip Antennas; 4.1 Introduction; 4.2 Some Recent Advances in Regular-Size Dual-Frequency Designs; 4.2.1 Dual-Frequency Operation with Same Polarization Planes; 4.2.2 Dual-Frequency Operation with Orthogonal Polarization Planes
4.2.3 Dual-Frequency Feed Network Designs4.3 Compact Dual-Frequency Operation with Same Polarization Planes; 4.3.1 Design with a Pair of Narrow Slots; 4.3.2 Design with a Shorted Microstrip Antenna; 4.3.3 Design with a Triangular Microstrip Antenna; 4.4 Compact Dual-Frequency Operation; 4.4.1 Design with a Rectangular Microstrip Antenna; 4.4.2 Design with a Circular Microstrip Antenna; 4.4.3 Design with a Triangular Microstrip Antenna; 4.5 Dual-Band or Triple-Band PIFA; 4.6 Compact Dual-Polarized Designs; 4.6.1 Design with a Slotted Square Patch; 4.6.2 Design with a Slotted Ground Plane
4.6.3 Design with a Triangular Patch5 Compact Circularly Polarized Microstrip Antennas; 5.1 Introduction; 5.2 Designs with a Cross-Slot of Unequal Arm Lengths; 5.3 Designs with a Y-Shaped Slot of Unequal Arm Lengths; 5.4 Designs with Slits; 5.4.1 With a Slit; 5.4.2 With a Pair of Slits; 5.4.3 With Four Inserted Slits; 5.5 Designs with Spur Lines; 5.6 Designs with Truncated Corners; 5.6.1 With a Triangular Patch; 5.6.2 With a Square-Ring Patch; 5.6.3 With a Triangular-Ring Patch; 5.6.4 With a Slotted Square Patch; 5.7 Designs with Peripheral Cuts; 5.8 Designs with a Tuning Stub
5.8.1 With a Circular Patch
Record Nr. UNINA-9911020271703321
Wong Kin-Lu  
New York, : John Wiley & Sons, Inc., c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave component mechanics / / Harri Eskelinen, Pekka Eskelinen
Microwave component mechanics / / Harri Eskelinen, Pekka Eskelinen
Autore Eskelinen Harri
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , ©2003
Descrizione fisica xix, 368 p. : ill
Disciplina 621.381/33
Altri autori (Persone) EskelinenPekka
Collana Artech House microwave library
Soggetto topico Microwave devices - Design and construction
Electronic apparatus and appliances - Design and construction
Soggetto genere / forma Electronic books.
ISBN 9781580535895
1-58053-589-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Special requirements for microwave mechanics -- Chapter 2. Systematic flowchart model -- Chpater 3. Material selection for microwave mechanics -- Chapter 4. Computer-aided environment for design work -- Chapter 5. Instructions for technical documentation and dimensioning --
Record Nr. UNINA-9910466115503321
Eskelinen Harri  
Boston, Massachusetts : , : Artech House, , ©2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave component mechanics / / Harri Eskelinen, Pekka Eskelinen
Microwave component mechanics / / Harri Eskelinen, Pekka Eskelinen
Autore Eskelinen Harri
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , ©2003
Descrizione fisica xix, 368 p. : ill
Disciplina 621.381/33
Altri autori (Persone) EskelinenPekka
Collana Artech House microwave library
Soggetto topico Microwave devices - Design and construction
Electronic apparatus and appliances - Design and construction
ISBN 9781580535895
1-58053-589-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Special requirements for microwave mechanics -- Chapter 2. Systematic flowchart model -- Chpater 3. Material selection for microwave mechanics -- Chapter 4. Computer-aided environment for design work -- Chapter 5. Instructions for technical documentation and dimensioning --
Record Nr. UNINA-9910798148303321
Eskelinen Harri  
Boston, Massachusetts : , : Artech House, , ©2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave field-effect transistors : theory, design, and applications / / by Raymond S. Pengelly
Microwave field-effect transistors : theory, design, and applications / / by Raymond S. Pengelly
Autore Pengelly Raymond S (Raymond Sydney), <1948->
Edizione [3rd ed.]
Pubbl/distr/stampa Atlanta, : Noble, 1994
Descrizione fisica 1 online resource (704 p.)
Disciplina 621.381/33
Collana Noble Publishing classic series
Soggetto topico Gallium arsenide semiconductors
Metal semiconductor field-effect transistors
ISBN 1-62198-827-9
1-61353-079-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Microwave field effect transistors
Record Nr. UNINA-9911007369103321
Pengelly Raymond S (Raymond Sydney), <1948->  
Atlanta, : Noble, 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave polarizers, power dividers, phase shifters, circulators and switches / / by Joseph Helszajn
Microwave polarizers, power dividers, phase shifters, circulators and switches / / by Joseph Helszajn
Autore Helszajn J (Joseph)
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2019]
Descrizione fisica 1 PDF (352 pages)
Disciplina 621.381/33
Soggetto topico Microwave devices
ISBN 1-119-49007-3
1-119-49010-3
1-119-49008-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Acknowledgments xv -- List of Contributors xvii -- 1 Microwave Switching Using Junction Circulators 1 -- Joseph Helszajn -- 1.1 Microwave Switching Using Circulators 1 -- 1.2 The Operation of the Switched Junction Circulator 1 -- 1.3 The Turnstile Circulator 4 -- 1.4 Externally and Internally Latched Junction Circulators 7 -- 1.5 Standing Wave Solution of Resonators with Threefold Symmetry 7 -- 1.6 Magnetic Circuit Using Major Hysteresis Loop 8 -- 1.7 Display of Hysteresis Loop 9 -- 1.8 Switching Coefficient of Magnetization 11 -- 1.9 Magnetostatic Problem 13 -- 1.10 Multiwire Magnetostatic Problem 14 -- 1.11 Shape Factor of Cylindrical Resonator 15 -- Bibliography 16 -- 2 The Operation of Nonreciprocal Microwave Faraday Rotation Devices and Circulators 19 -- Joseph Helszajn -- 2.1 Introduction 19 -- 2.2 Faraday Rotation 20 -- 2.3 Magnetic Variables of Faraday Rotation Devices 25 -- 2.4 The Gyrator Network 27 -- 2.5 Faraday Rotation Isolator 29 -- 2.6 Four-port Faraday Rotation Circulator 30 -- 2.7 Nonreciprocal Faraday Rotation-type Phase Shifter 31 -- 2.8 Coupled Wave Theory of Faraday Rotation Section 32 -- 2.9 The Partially Ferrite-filled Circular Waveguide 33 -- Bibliography 34 -- 3 Circular Polarization in Parallel Plate Waveguides 37 -- Joseph Helszajn -- 3.1 Circular Polarization in Rectangular Waveguide 37 -- 3.2 Circular Polarization in Dielectric Loaded Parallel Plate Waveguide with Open Sidewalls 40 -- Bibliography 47 -- 4 Reciprocal Quarter-wave Plates in Circular Waveguides 49 -- Joseph Helszajn -- 4.1 Quarter-wave Plate 50 -- 4.2 Coupled Mode Theory of Quarter-wave Plate 53 -- 4.3 Effective Waveguide Model of Quarter-wave Plate 58 -- 4.4 Phase Constants of Quarter-wave Plate Using the Cavity Method 59 -- 4.5 Variable Rotor Power Divider 62 -- Bibliography 63 -- 5 Nonreciprocal Ferrite Quarter-wave Plates 65 -- Joseph Helszajn -- 5.1 Introduction 65 -- 5.2 Birefringence 65 -- 5.3 Nonreciprocal Quarter-wave Plate Using the Birefringence Effect 67.
5.4 Circulator Representation of Nonreciprocal Quarter-wave Plates 71 -- 5.5 Coupled and Normal Modes in Magnetized Ferrite Medium 72 -- 5.6 Variable Phase-shifters Employing Birefringent, Faraday Rotation, and Dielectric Half-wave Plates 73 -- 5.7 Circulators and Switches Using Nonreciprocal Quarter-wave Plates 76 -- 5.8 Nonreciprocal Circular Polarizer Using Elliptical Gyromagnetic Waveguide 77 -- Bibliography 79 -- 6 Ridge, Coaxial, and Stripline Phase-shifters 81 -- Joseph Helszajn -- 6.1 Differential Phase-shift, Phase Deviation, and Figure of Merit of Ferrite Phase-shifter 82 -- 6.2 Coaxial Differential Phase-shifter 82 -- 6.3 Ridge Waveguide Differential Phase-shifter 88 -- 6.4 The Stripline Edge Mode Phase-shifter 90 -- 6.5 Latched Quasi-TEM Phase-shifters 91 -- Bibliography 92 -- 7 Finite Element Adjustment of the Rectangular Waveguide-latched Differential Phase-shifter 95 -- Joseph Helszajn and Mark McKay -- 7.1 Introduction 95 -- 7.2 FE Discretization of Rectangular Waveguide Phase-shifters 97 -- 7.3 LS Modes Limit Waveguide Bandwidths 98 -- 7.4 Cutoff Numbers and Split Phase Constants of a Twin Slab Ferrite Phase-shifter 99 -- 7.5 The Waveguide Toroidal Phase-shifter 102 -- 7.6 Industrial Practice 103 -- 7.7 Magnetic Circuits Using Major and Minor Hysteresis Loops 103 -- 7.8 Construction of Latching Circuits 106 -- 7.9 Temperature Compensation Using Composite Circuits 107 -- Bibliography 109 -- 8 Edge Mode Phase-shifter 111 -- Joseph Helszajn and Henry Downs -- 8.1 Edge Mode Effect 112 -- 8.2 Edge Mode Characteristic Equation 115 -- 8.3 Fields and Power in Edge Mode Devices 115 -- 8.4 Circular Polarization and the Edge Mode Effect 118 -- 8.5 Edge Mode Phase-shifter 120 -- 8.6 Edge Mode Isolators, Phase-shifters, and Circulators 123 -- Bibliography 124 -- 9 The Two-port On/Off H-plane Waveguide Turnstile Gyromagnetic Switch 127 -- Joseph Helszajn, Mark McKay, Alicia Casanueva, and Angel Mediavilla Sánchez -- 9.1 Introduction 127 -- 9.2 Two-port H-plane Turnstile On/Off Switch 127.
9.3 Even and Odd Eigenvectors of E-plane Waveguide Tee Junction 129 -- 9.4 Eigenvalue Adjustment of Turnstile Plane Switch 130 -- 9.5 Eigen-networks 132 -- 9.6 Numerical Adjustments of Passbands 133 -- 9.7 An Off/On H-plane Switch 134 -- Bibliography 136 -- 10 Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 137 -- Joseph Helszajn, Mark McKay, and John Sharp -- 10.1 Introduction 137 -- 10.2 The Shunt E-plane Tee Junction 138 -- 10.3 Operation of Off/On and On/Off E-plane Switches 140 -- 10.4 Even and Odd Eigenvector of H-plane Waveguide Tee Junction 141 -- 10.5 Phenomenological Description of Two-port Off/On and On/Off Switches 142 -- 10.6 Eigenvalue Diagrams of Small- and Large-gap E-plane Waveguide Tee Junction 144 -- 10.7 Eigenvalue Diagrams of E-plane Waveguide Tee Junction 145 -- 10.8 Eigen-networks of E-plane Tee Junction 146 -- 10.9 Eigenvalue Algorithm 147 -- 10.10 Pass and Stop Bands in Demagnetized E-plane Waveguide Tee Junction 148 -- Bibliography 150 -- 11 Operation of Two-port On/Off and Off/On Planar Switches Using the Mutual Energy-Finite Element Method 153 -- Joseph Helszajn and David J. Lynch -- 11.1 Introduction 153 -- 11.2 Impedance and Admittance Matrices from Mutual Energy Consideration 154 -- 11.3 Impedance and Admittance Matrices for Reciprocal Planar Circuits 157 -- 11.4 Immittance Matrices of n-Port Planar Circuits Using Finite Elements 160 -- 11.5 Frequency Response of Two-port Planar Circuits Using the Mutual Energy-Finite Element Method 161 -- 11.6 Stripline Switch Using Puck/Plug Half-spaces 166 -- Bibliography 169 -- 12 Standing Wave Solutions and Cutoff Numbers of Planar WYE and Equilateral Triangle Resonators 171 -- Joseph Helszajn -- 12.1 Introduction 171 -- 12.2 Cutoff Space of WYE Resonator 172 -- 12.3 Standing Wave Circulation Solution of WYE Resonator 174 -- 12.4 Resonant Frequencies of Quasi-wye Magnetized Resonators 175 -- 12.5 The Gyromagnetic Cutoff Space 179 -- 12.6 TM Field Patterns of Triangular Planar Resonator 180.
12.7 TM1,0,−1 Field Components of Triangular Planar Resonator 182 -- 12.8 Circulation Solutions 182 -- Bibliography 184 -- 13 The Turnstile Junction Circulator: First Circulation Condition 185 -- Joseph Helszajn -- 13.1 Introduction 185 -- 13.2 The Four-port Turnstile Junction Circulator 186 -- 13.3 The Turnstile Junction Circulator 188 -- 13.4 Scattering Matrix 190 -- 13.5 Frequencies of Cavity Resonators 193 -- 13.6 Effective Dielectric Constant of Open Dielectric Waveguide 193 -- 13.7 The Open Dielectric Cavity Resonator 196 -- 13.8 The In-phase Mode 198 -- 13.9 First Circulation Condition 200 -- Bibliography 200 -- 14 The Turnstile Junction Circulator: Second Circulation Condition 203 -- Joseph Helszajn and Mark McKay -- 14.1 Introduction 203 -- 14.2 Complex Gyrator of Turnstile Circulator 204 -- 14.3 Susceptance Slope Parameter, Gyrator Conductance, and Quality Factor 207 -- 14.4 Propagation in Gyromagnetic Waveguides 208 -- 14.5 Eigen-network of Turnstile Circulator 209 -- 14.6 The Quality Factor of the Turnstile Circulator 211 -- 14.7 Susceptance Slope Parameter of Turnstile Junction 213 -- Bibliography 213 -- 15 A Finite-Element Algorithm for the Adjustment of the First Circulation Condition of the H-plane Turnstile Waveguide Circulator 217 -- Joseph Helszajn -- 15.1 Introduction 217 -- 15.2 Bandpass Frequency of a Turnstile Junction 219 -- 15.3 In-phase and Counterrotating Modes of Turnstile Junction 221 -- 15.4 Reference Plane 222 -- 15.5 FE Algorithm 222 -- 15.6 FE Adjustment 224 -- 15.7 The Reentrant Turnstile Junction in Standard WR75 Waveguide 230 -- 15.8 Susceptance Slope Parameter of Degree-1 Junction 230 -- 15.9 Split Frequencies of Gyromagnetic Resonators 233 -- References 236 -- 16 The E-plane Waveguide Wye Junction: First Circulation Conditions 239 -- Joseph Helszajn and Marco Caplin -- 16.1 Introduction 239 -- 16.2 Scattering Matrix of Reciprocal E-plane Three-port Y-junction 240 -- 16.3 Reflection Eigenvalue Diagrams of Three-port Junction Circulator 242.
16.4 Eigen-networks 244 -- 16.5 Pass Band and Stop Band Characteristic Planes 246 -- 16.6 The Dicke Eigenvalue Solution 247 -- 16.7 Stop Band Characteristic Plane 248 -- 16.8 The E-plane Geometry 249 -- 16.9 First Circulation Condition 251 -- 16.10 Calculations of Eigenvalues 253 -- Bibliography 254 -- 17 Adjustment of Prism Turnstile Resonators Latched by Wire Loops 257 -- Joseph Helszajn and William D’Orazio -- 17.1 Introduction 257 -- 17.2 The Prism Resonator 258 -- 17.3 Split Frequency of Cavity Resonator with Up or Down Magnetization 260 -- 17.4 Quality Factor of Gyromagnetic Resonator with Up and Down Magnetization 261 -- 17.5 Shape Factor of Tri-toroidal Resonator 262 -- 17.6 Squareness Ratio 264 -- 17.7 The Complex Gyrator Circuit of the Three-port Junction Circulator 265 -- 17.8 The Alternate Line Transformer 266 -- 17.9 Effective Complex Gyrator Circuit 267 -- Bibliography 267 -- 18 Numerical Adjustment of Waveguide Ferrite Switches Using Tri-toroidal Resonators 269 -- Joseph Helszajn and Mark McKay -- 18.1 Introduction 269 -- 18.2 The Tri-toroidal Resonator 270 -- 18.3 The Wire Carrying Slot Geometry 272 -- 18.4 The Magnetostatic Problem 273 -- 18.5 Quality Factor of Junction Circulators with Up and Down Magnetization 274 -- 18.6 Split Frequencies of Planar and Cavity Gyromagnetic Resonators 275 -- 18.7 The Split Frequencies of Prism Resonator with Up and Down Magnetization 276 -- 18.8 Exact Calculation of Split Frequencies in Tri-toroidal Cavity 277 -- 18.9 Calculation and Experiment 278 -- 18.10 Tri-toroidal Composite Prism Resonator 279 -- 18.11 Tri-toroidal Wye Resonator with Up and Down Magnetization 280 -- Bibliography 282 -- 19 The Waveguide H-plane Tee Junction Circulator Using a Composite Gyromagnetic Resonator 285 -- Joseph Helszajn -- 19.1 Introduction 285 -- 19.2 Eigenvalue Problem of the H-plane Reciprocal Tee Junction 286 -- 19.3 Electrically Symmetric H-plane Junction at the Altman Planes 289 -- 19.4 Characteristic Planes 290 -- 19.5 The Septum-loaded H-plane Waveguide 292.
19.6 The Waveguide Tee Junction Using a Dielectric Post Resonator: First Circulation Condition 294 -- 19.7 The Waveguide Tee Junction Circulator Using a Gyromagnetic Post Resonator: Second Circulation Condition 296 -- 19.8 Composite Dielectric Resonator 297 -- Bibliography 299 -- 20 0 , 90 , and 180 Passive Power Dividers 301 -- Joseph Helszajn and Mark McKay -- 20.1 Introduction 301 -- 20.2 Wilkinson Power Divider 302 -- 20.3 Even and Odd Mode Adjustment of the Wilkinson Power Divider 302 -- 20.4 Scattering Matrix of 90 Directional Coupler 305 -- 20.5 Even and Odd Mode Theory of Directional Couplers 309 -- 20.6 Power Divider Using 90 Hybrids 311 -- 20.7 Variable Power Dividers 313 -- 20.8 180 Waveguide Hybrid Network 314 -- Bibliography 318 -- Index 321 --.
Record Nr. UNINA-9910555155203321
Helszajn J (Joseph)  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave polarizers, power dividers, phase shifters, circulators and switches / / by Joseph Helszajn
Microwave polarizers, power dividers, phase shifters, circulators and switches / / by Joseph Helszajn
Autore Helszajn J (Joseph)
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2019]
Descrizione fisica 1 PDF (352 pages)
Disciplina 621.381/33
Soggetto topico Microwave devices
ISBN 1-119-49007-3
1-119-49010-3
1-119-49008-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Acknowledgments xv -- List of Contributors xvii -- 1 Microwave Switching Using Junction Circulators 1 -- Joseph Helszajn -- 1.1 Microwave Switching Using Circulators 1 -- 1.2 The Operation of the Switched Junction Circulator 1 -- 1.3 The Turnstile Circulator 4 -- 1.4 Externally and Internally Latched Junction Circulators 7 -- 1.5 Standing Wave Solution of Resonators with Threefold Symmetry 7 -- 1.6 Magnetic Circuit Using Major Hysteresis Loop 8 -- 1.7 Display of Hysteresis Loop 9 -- 1.8 Switching Coefficient of Magnetization 11 -- 1.9 Magnetostatic Problem 13 -- 1.10 Multiwire Magnetostatic Problem 14 -- 1.11 Shape Factor of Cylindrical Resonator 15 -- Bibliography 16 -- 2 The Operation of Nonreciprocal Microwave Faraday Rotation Devices and Circulators 19 -- Joseph Helszajn -- 2.1 Introduction 19 -- 2.2 Faraday Rotation 20 -- 2.3 Magnetic Variables of Faraday Rotation Devices 25 -- 2.4 The Gyrator Network 27 -- 2.5 Faraday Rotation Isolator 29 -- 2.6 Four-port Faraday Rotation Circulator 30 -- 2.7 Nonreciprocal Faraday Rotation-type Phase Shifter 31 -- 2.8 Coupled Wave Theory of Faraday Rotation Section 32 -- 2.9 The Partially Ferrite-filled Circular Waveguide 33 -- Bibliography 34 -- 3 Circular Polarization in Parallel Plate Waveguides 37 -- Joseph Helszajn -- 3.1 Circular Polarization in Rectangular Waveguide 37 -- 3.2 Circular Polarization in Dielectric Loaded Parallel Plate Waveguide with Open Sidewalls 40 -- Bibliography 47 -- 4 Reciprocal Quarter-wave Plates in Circular Waveguides 49 -- Joseph Helszajn -- 4.1 Quarter-wave Plate 50 -- 4.2 Coupled Mode Theory of Quarter-wave Plate 53 -- 4.3 Effective Waveguide Model of Quarter-wave Plate 58 -- 4.4 Phase Constants of Quarter-wave Plate Using the Cavity Method 59 -- 4.5 Variable Rotor Power Divider 62 -- Bibliography 63 -- 5 Nonreciprocal Ferrite Quarter-wave Plates 65 -- Joseph Helszajn -- 5.1 Introduction 65 -- 5.2 Birefringence 65 -- 5.3 Nonreciprocal Quarter-wave Plate Using the Birefringence Effect 67.
5.4 Circulator Representation of Nonreciprocal Quarter-wave Plates 71 -- 5.5 Coupled and Normal Modes in Magnetized Ferrite Medium 72 -- 5.6 Variable Phase-shifters Employing Birefringent, Faraday Rotation, and Dielectric Half-wave Plates 73 -- 5.7 Circulators and Switches Using Nonreciprocal Quarter-wave Plates 76 -- 5.8 Nonreciprocal Circular Polarizer Using Elliptical Gyromagnetic Waveguide 77 -- Bibliography 79 -- 6 Ridge, Coaxial, and Stripline Phase-shifters 81 -- Joseph Helszajn -- 6.1 Differential Phase-shift, Phase Deviation, and Figure of Merit of Ferrite Phase-shifter 82 -- 6.2 Coaxial Differential Phase-shifter 82 -- 6.3 Ridge Waveguide Differential Phase-shifter 88 -- 6.4 The Stripline Edge Mode Phase-shifter 90 -- 6.5 Latched Quasi-TEM Phase-shifters 91 -- Bibliography 92 -- 7 Finite Element Adjustment of the Rectangular Waveguide-latched Differential Phase-shifter 95 -- Joseph Helszajn and Mark McKay -- 7.1 Introduction 95 -- 7.2 FE Discretization of Rectangular Waveguide Phase-shifters 97 -- 7.3 LS Modes Limit Waveguide Bandwidths 98 -- 7.4 Cutoff Numbers and Split Phase Constants of a Twin Slab Ferrite Phase-shifter 99 -- 7.5 The Waveguide Toroidal Phase-shifter 102 -- 7.6 Industrial Practice 103 -- 7.7 Magnetic Circuits Using Major and Minor Hysteresis Loops 103 -- 7.8 Construction of Latching Circuits 106 -- 7.9 Temperature Compensation Using Composite Circuits 107 -- Bibliography 109 -- 8 Edge Mode Phase-shifter 111 -- Joseph Helszajn and Henry Downs -- 8.1 Edge Mode Effect 112 -- 8.2 Edge Mode Characteristic Equation 115 -- 8.3 Fields and Power in Edge Mode Devices 115 -- 8.4 Circular Polarization and the Edge Mode Effect 118 -- 8.5 Edge Mode Phase-shifter 120 -- 8.6 Edge Mode Isolators, Phase-shifters, and Circulators 123 -- Bibliography 124 -- 9 The Two-port On/Off H-plane Waveguide Turnstile Gyromagnetic Switch 127 -- Joseph Helszajn, Mark McKay, Alicia Casanueva, and Angel Mediavilla Sánchez -- 9.1 Introduction 127 -- 9.2 Two-port H-plane Turnstile On/Off Switch 127.
9.3 Even and Odd Eigenvectors of E-plane Waveguide Tee Junction 129 -- 9.4 Eigenvalue Adjustment of Turnstile Plane Switch 130 -- 9.5 Eigen-networks 132 -- 9.6 Numerical Adjustments of Passbands 133 -- 9.7 An Off/On H-plane Switch 134 -- Bibliography 136 -- 10 Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 137 -- Joseph Helszajn, Mark McKay, and John Sharp -- 10.1 Introduction 137 -- 10.2 The Shunt E-plane Tee Junction 138 -- 10.3 Operation of Off/On and On/Off E-plane Switches 140 -- 10.4 Even and Odd Eigenvector of H-plane Waveguide Tee Junction 141 -- 10.5 Phenomenological Description of Two-port Off/On and On/Off Switches 142 -- 10.6 Eigenvalue Diagrams of Small- and Large-gap E-plane Waveguide Tee Junction 144 -- 10.7 Eigenvalue Diagrams of E-plane Waveguide Tee Junction 145 -- 10.8 Eigen-networks of E-plane Tee Junction 146 -- 10.9 Eigenvalue Algorithm 147 -- 10.10 Pass and Stop Bands in Demagnetized E-plane Waveguide Tee Junction 148 -- Bibliography 150 -- 11 Operation of Two-port On/Off and Off/On Planar Switches Using the Mutual Energy-Finite Element Method 153 -- Joseph Helszajn and David J. Lynch -- 11.1 Introduction 153 -- 11.2 Impedance and Admittance Matrices from Mutual Energy Consideration 154 -- 11.3 Impedance and Admittance Matrices for Reciprocal Planar Circuits 157 -- 11.4 Immittance Matrices of n-Port Planar Circuits Using Finite Elements 160 -- 11.5 Frequency Response of Two-port Planar Circuits Using the Mutual Energy-Finite Element Method 161 -- 11.6 Stripline Switch Using Puck/Plug Half-spaces 166 -- Bibliography 169 -- 12 Standing Wave Solutions and Cutoff Numbers of Planar WYE and Equilateral Triangle Resonators 171 -- Joseph Helszajn -- 12.1 Introduction 171 -- 12.2 Cutoff Space of WYE Resonator 172 -- 12.3 Standing Wave Circulation Solution of WYE Resonator 174 -- 12.4 Resonant Frequencies of Quasi-wye Magnetized Resonators 175 -- 12.5 The Gyromagnetic Cutoff Space 179 -- 12.6 TM Field Patterns of Triangular Planar Resonator 180.
12.7 TM1,0,−1 Field Components of Triangular Planar Resonator 182 -- 12.8 Circulation Solutions 182 -- Bibliography 184 -- 13 The Turnstile Junction Circulator: First Circulation Condition 185 -- Joseph Helszajn -- 13.1 Introduction 185 -- 13.2 The Four-port Turnstile Junction Circulator 186 -- 13.3 The Turnstile Junction Circulator 188 -- 13.4 Scattering Matrix 190 -- 13.5 Frequencies of Cavity Resonators 193 -- 13.6 Effective Dielectric Constant of Open Dielectric Waveguide 193 -- 13.7 The Open Dielectric Cavity Resonator 196 -- 13.8 The In-phase Mode 198 -- 13.9 First Circulation Condition 200 -- Bibliography 200 -- 14 The Turnstile Junction Circulator: Second Circulation Condition 203 -- Joseph Helszajn and Mark McKay -- 14.1 Introduction 203 -- 14.2 Complex Gyrator of Turnstile Circulator 204 -- 14.3 Susceptance Slope Parameter, Gyrator Conductance, and Quality Factor 207 -- 14.4 Propagation in Gyromagnetic Waveguides 208 -- 14.5 Eigen-network of Turnstile Circulator 209 -- 14.6 The Quality Factor of the Turnstile Circulator 211 -- 14.7 Susceptance Slope Parameter of Turnstile Junction 213 -- Bibliography 213 -- 15 A Finite-Element Algorithm for the Adjustment of the First Circulation Condition of the H-plane Turnstile Waveguide Circulator 217 -- Joseph Helszajn -- 15.1 Introduction 217 -- 15.2 Bandpass Frequency of a Turnstile Junction 219 -- 15.3 In-phase and Counterrotating Modes of Turnstile Junction 221 -- 15.4 Reference Plane 222 -- 15.5 FE Algorithm 222 -- 15.6 FE Adjustment 224 -- 15.7 The Reentrant Turnstile Junction in Standard WR75 Waveguide 230 -- 15.8 Susceptance Slope Parameter of Degree-1 Junction 230 -- 15.9 Split Frequencies of Gyromagnetic Resonators 233 -- References 236 -- 16 The E-plane Waveguide Wye Junction: First Circulation Conditions 239 -- Joseph Helszajn and Marco Caplin -- 16.1 Introduction 239 -- 16.2 Scattering Matrix of Reciprocal E-plane Three-port Y-junction 240 -- 16.3 Reflection Eigenvalue Diagrams of Three-port Junction Circulator 242.
16.4 Eigen-networks 244 -- 16.5 Pass Band and Stop Band Characteristic Planes 246 -- 16.6 The Dicke Eigenvalue Solution 247 -- 16.7 Stop Band Characteristic Plane 248 -- 16.8 The E-plane Geometry 249 -- 16.9 First Circulation Condition 251 -- 16.10 Calculations of Eigenvalues 253 -- Bibliography 254 -- 17 Adjustment of Prism Turnstile Resonators Latched by Wire Loops 257 -- Joseph Helszajn and William D’Orazio -- 17.1 Introduction 257 -- 17.2 The Prism Resonator 258 -- 17.3 Split Frequency of Cavity Resonator with Up or Down Magnetization 260 -- 17.4 Quality Factor of Gyromagnetic Resonator with Up and Down Magnetization 261 -- 17.5 Shape Factor of Tri-toroidal Resonator 262 -- 17.6 Squareness Ratio 264 -- 17.7 The Complex Gyrator Circuit of the Three-port Junction Circulator 265 -- 17.8 The Alternate Line Transformer 266 -- 17.9 Effective Complex Gyrator Circuit 267 -- Bibliography 267 -- 18 Numerical Adjustment of Waveguide Ferrite Switches Using Tri-toroidal Resonators 269 -- Joseph Helszajn and Mark McKay -- 18.1 Introduction 269 -- 18.2 The Tri-toroidal Resonator 270 -- 18.3 The Wire Carrying Slot Geometry 272 -- 18.4 The Magnetostatic Problem 273 -- 18.5 Quality Factor of Junction Circulators with Up and Down Magnetization 274 -- 18.6 Split Frequencies of Planar and Cavity Gyromagnetic Resonators 275 -- 18.7 The Split Frequencies of Prism Resonator with Up and Down Magnetization 276 -- 18.8 Exact Calculation of Split Frequencies in Tri-toroidal Cavity 277 -- 18.9 Calculation and Experiment 278 -- 18.10 Tri-toroidal Composite Prism Resonator 279 -- 18.11 Tri-toroidal Wye Resonator with Up and Down Magnetization 280 -- Bibliography 282 -- 19 The Waveguide H-plane Tee Junction Circulator Using a Composite Gyromagnetic Resonator 285 -- Joseph Helszajn -- 19.1 Introduction 285 -- 19.2 Eigenvalue Problem of the H-plane Reciprocal Tee Junction 286 -- 19.3 Electrically Symmetric H-plane Junction at the Altman Planes 289 -- 19.4 Characteristic Planes 290 -- 19.5 The Septum-loaded H-plane Waveguide 292.
19.6 The Waveguide Tee Junction Using a Dielectric Post Resonator: First Circulation Condition 294 -- 19.7 The Waveguide Tee Junction Circulator Using a Gyromagnetic Post Resonator: Second Circulation Condition 296 -- 19.8 Composite Dielectric Resonator 297 -- Bibliography 299 -- 20 0 , 90 , and 180 Passive Power Dividers 301 -- Joseph Helszajn and Mark McKay -- 20.1 Introduction 301 -- 20.2 Wilkinson Power Divider 302 -- 20.3 Even and Odd Mode Adjustment of the Wilkinson Power Divider 302 -- 20.4 Scattering Matrix of 90 Directional Coupler 305 -- 20.5 Even and Odd Mode Theory of Directional Couplers 309 -- 20.6 Power Divider Using 90 Hybrids 311 -- 20.7 Variable Power Dividers 313 -- 20.8 180 Waveguide Hybrid Network 314 -- Bibliography 318 -- Index 321 --.
Record Nr. UNINA-9910829928803321
Helszajn J (Joseph)  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear microwave circuit design [[electronic resource] /] / F. Giannini and G. Leuzzi
Nonlinear microwave circuit design [[electronic resource] /] / F. Giannini and G. Leuzzi
Autore Giannini Franco <1944->
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Descrizione fisica 1 online resource (404 p.)
Disciplina 621.381/33
Altri autori (Persone) LeuzziG
Soggetto topico Microwave circuits
Electric circuits, Nonlinear
ISBN 1-280-27505-7
9786610275052
0-470-02068-7
0-470-02070-9
1-60119-380-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nonlinear Microwave Circuit Design; Contents; Preface; Chapter 1 Nonlinear Analysis Methods; 1.1 Introduction; 1.2 Time-Domain Solution; 1.2.1 General Formulation; 1.2.2 Steady State Analysis; 1.2.3 Convolution Methods; 1.3 Solution Through Series Expansion; 1.3.1 Volterra Series; 1.3.2 Fourier Series; 1.3.2.1 Basic formulation (single tone); 1.3.2.2 Multi-tone analysis; 1.3.2.3 Envelope analysis; 1.3.2.4 Additional remarks; 1.3.2.5 Describing function; 1.3.2.6 Spectral balance; 1.4 The Conversion Matrix; 1.5 Bibliography; Chapter 2 Nonlinear Measurements; 2.1 Introduction
2.2 Load/Source Pull2.3 The Vector Nonlinear Network Analyser; 2.4 Pulsed Measurements; 2.5 Bibliography; Chapter 3 Nonlinear Models; 3.1 Introduction; 3.2 Physical Models; 3.2.1 Introduction; 3.2.2 Basic Equations; 3.2.3 Numerical Models; 3.2.4 Analytical Models; 3.3 Equivalent-Circuit Models; 3.3.1 Introduction; 3.3.2 Linear Models; 3.3.3 From Linear to Nonlinear; 3.3.4 Extraction of an Equivalent Circuit from Multi-bias Small-signal Measurements; 3.3.5 Nonlinear Models; 3.3.6 Packages; 3.4 Black-Box Models; 3.4.1 Table-based Models; 3.4.2 Quasi-static Model Identified from Time-domain Data
3.4.3 Frequency-domain Models3.4.4 Behavioural Models; 3.5 Simplified Models; 3.6 Bibliography; Chapter 4 Power Amplifiers; 4.1 Introduction; 4.2 Classes of Operation; 4.3 Simplified Class-A Fundamental-frequency Design for High Efficiency; 4.3.1 The Methodology; 4.3.2 An Example of Application; 4.4 Multi-harmonic Design for High Power and Efficiency; 4.4.1 Introduction; 4.4.2 Basic Assumptions; 4.4.3 Harmonic Tuning Approach; 4.4.4 Mathematical Statements; 4.4.5 Design Statements; 4.4.6 Harmonic Generation Mechanisms and Drain Current Waveforms
4.4.7 Sample Realisations and Measured Performances4.5 Bibliography; Chapter 5 Oscillators; 5.1 Introduction; 5.2 Linear Stability and Oscillation Conditions; 5.3 From Linear to Nonlinear: Quasi-large-signal Oscillation and Stability Conditions; 5.4 Design Methods; 5.5 Nonlinear Analysis Methods for Oscillators; 5.5.1 The Probe Approach; 5.5.2 Nonlinear Methods; 5.6 Noise; 5.7 Bibliography; Chapter 6 Frequency Multipliers and Dividers; 6.1 Introduction; 6.2 Passive Multipliers; 6.3 Active Multipliers; 6.3.1 Introduction; 6.3.2 Piecewise-linear Analysis; 6.3.3 Full-nonlinear Analysis
6.3.4 Other Circuit Considerations6.4 Frequency Dividers - the Regenerative (Passive) Approach; 6.5 Bibliography; Chapter 7 Mixers; 7.1 Introduction; 7.2 Mixer Configurations; 7.2.1 Passive and Active Mixers; 7.2.2 Symmetry; 7.3 Mixer Design; 7.4 Nonlinear Analysis; 7.5 Noise; 7.6 Bibliography; Chapter 8 Stability and Injection-locked Circuits; 8.1 Introduction; 8.2 Local Stability of Nonlinear Circuits in Large-signal Regime; 8.3 Nonlinear Analysis, Stability and Bifurcations; 8.3.1 Stability and Bifurcations; 8.3.2 Nonlinear Algorithms for Stability Analysis; 8.4 Injection Locking
8.5 Bibliography
Record Nr. UNINA-9910145018403321
Giannini Franco <1944->  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear microwave circuit design / / F. Giannini and G. Leuzzi
Nonlinear microwave circuit design / / F. Giannini and G. Leuzzi
Autore Giannini Franco <1944->
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Descrizione fisica 1 online resource (404 p.)
Disciplina 621.381/33
Altri autori (Persone) LeuzziG
Soggetto topico Microwave circuits
Electric circuits, Nonlinear
ISBN 9786610275052
9781280275050
1280275057
9780470020685
0470020687
9780470020708
0470020709
9781601193803
1601193807
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nonlinear Microwave Circuit Design; Contents; Preface; Chapter 1 Nonlinear Analysis Methods; 1.1 Introduction; 1.2 Time-Domain Solution; 1.2.1 General Formulation; 1.2.2 Steady State Analysis; 1.2.3 Convolution Methods; 1.3 Solution Through Series Expansion; 1.3.1 Volterra Series; 1.3.2 Fourier Series; 1.3.2.1 Basic formulation (single tone); 1.3.2.2 Multi-tone analysis; 1.3.2.3 Envelope analysis; 1.3.2.4 Additional remarks; 1.3.2.5 Describing function; 1.3.2.6 Spectral balance; 1.4 The Conversion Matrix; 1.5 Bibliography; Chapter 2 Nonlinear Measurements; 2.1 Introduction
2.2 Load/Source Pull2.3 The Vector Nonlinear Network Analyser; 2.4 Pulsed Measurements; 2.5 Bibliography; Chapter 3 Nonlinear Models; 3.1 Introduction; 3.2 Physical Models; 3.2.1 Introduction; 3.2.2 Basic Equations; 3.2.3 Numerical Models; 3.2.4 Analytical Models; 3.3 Equivalent-Circuit Models; 3.3.1 Introduction; 3.3.2 Linear Models; 3.3.3 From Linear to Nonlinear; 3.3.4 Extraction of an Equivalent Circuit from Multi-bias Small-signal Measurements; 3.3.5 Nonlinear Models; 3.3.6 Packages; 3.4 Black-Box Models; 3.4.1 Table-based Models; 3.4.2 Quasi-static Model Identified from Time-domain Data
3.4.3 Frequency-domain Models3.4.4 Behavioural Models; 3.5 Simplified Models; 3.6 Bibliography; Chapter 4 Power Amplifiers; 4.1 Introduction; 4.2 Classes of Operation; 4.3 Simplified Class-A Fundamental-frequency Design for High Efficiency; 4.3.1 The Methodology; 4.3.2 An Example of Application; 4.4 Multi-harmonic Design for High Power and Efficiency; 4.4.1 Introduction; 4.4.2 Basic Assumptions; 4.4.3 Harmonic Tuning Approach; 4.4.4 Mathematical Statements; 4.4.5 Design Statements; 4.4.6 Harmonic Generation Mechanisms and Drain Current Waveforms
4.4.7 Sample Realisations and Measured Performances4.5 Bibliography; Chapter 5 Oscillators; 5.1 Introduction; 5.2 Linear Stability and Oscillation Conditions; 5.3 From Linear to Nonlinear: Quasi-large-signal Oscillation and Stability Conditions; 5.4 Design Methods; 5.5 Nonlinear Analysis Methods for Oscillators; 5.5.1 The Probe Approach; 5.5.2 Nonlinear Methods; 5.6 Noise; 5.7 Bibliography; Chapter 6 Frequency Multipliers and Dividers; 6.1 Introduction; 6.2 Passive Multipliers; 6.3 Active Multipliers; 6.3.1 Introduction; 6.3.2 Piecewise-linear Analysis; 6.3.3 Full-nonlinear Analysis
6.3.4 Other Circuit Considerations6.4 Frequency Dividers - the Regenerative (Passive) Approach; 6.5 Bibliography; Chapter 7 Mixers; 7.1 Introduction; 7.2 Mixer Configurations; 7.2.1 Passive and Active Mixers; 7.2.2 Symmetry; 7.3 Mixer Design; 7.4 Nonlinear Analysis; 7.5 Noise; 7.6 Bibliography; Chapter 8 Stability and Injection-locked Circuits; 8.1 Introduction; 8.2 Local Stability of Nonlinear Circuits in Large-signal Regime; 8.3 Nonlinear Analysis, Stability and Bifurcations; 8.3.1 Stability and Bifurcations; 8.3.2 Nonlinear Algorithms for Stability Analysis; 8.4 Injection Locking
8.5 Bibliography
Record Nr. UNINA-9910817026503321
Giannini Franco <1944->  
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor terahertz technology : devices and systems at room temperature operation / / editors, Guillermo Carpintero, Luis Enrique Garcâia-Muänoz, Hans H. Hartnagel, Sascha Preu
Semiconductor terahertz technology : devices and systems at room temperature operation / / editors, Guillermo Carpintero, Luis Enrique Garcâia-Muänoz, Hans H. Hartnagel, Sascha Preu
Pubbl/distr/stampa Hoboken [New Jersey] : , : John Wiley & Sons, Inc., , 2015
Descrizione fisica 1 online resource (427 p.)
Disciplina 621.381/33
Collana Wiley - IEEE
Soggetto topico Terahertz technology
Semiconductors
Submillimeter waves
Very high speed integrated circuits
ISBN 1-118-92039-2
1-118-92041-4
1-118-92040-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments xi -- Preface xiii -- Foreword xvii -- List of Contributors xix -- 1 General Introduction 1 /Hans Hartnagel, Antti V. Raisanen, and Magdalena Salazar-Palma -- 2 Principles of THz Generation 3 /Sascha Preu, Gottfried H. DŠohler, Stefan Malzer, Andreas StŠohr, Vitaly Rymanov, Thorsten GŠobel, Elliott R. Brown, Michael Feiginov, Ramón Gonzalo, Miguel Beruete, and Miguel Navarro-Cya -- 2.1 Overview 3 -- 2.2 THz Generation by Photomixers and Photoconductors 5 -- 2.2.1 Principle of Operation 5 -- 2.2.2 Basic Concepts and Design Rules 7 -- 2.2.3 Thermal Constraints 21 -- 2.2.4 Electrical Constraints 23 -- 2.2.5 Device Layouts of Photoconductive Devices 35 -- 2.2.6 Device Layouts of p-i-n Diode-Based Emitters 47 -- 2.3 Principles of Electronic THz Generation 53 -- 2.3.1 Oscillators with Negative Differential Conductance 54 -- 2.3.2 Multipliers (Schottky Diodes, Hetero-Barrier Varactors) 56 -- 2.3.3 Plasmonic Sources 58 -- References 61 -- 3 Principles of Emission of THzWaves 69 /Luis Enrique Garcya Munoz, Sascha Preu, Stefan Malzer, Gottfried H. DŠohler, Javier Montero-de-Paz, Ramón Gonzalo, David González-Ovejero, Daniel Segovia-Vargas, Dmitri Lioubtchenko, and Antti V. Raisanen -- 3.1 Fundamental Parameters of Antennas 69 -- 3.1.1 Radiation Pattern 69 -- 3.1.2 Directivity 71 -- 3.1.3 Gain and Radiation Efficiency 71 -- 3.1.4 Effective Aperture Area and Aperture Efficiency 72 -- 3.1.5 Phase Pattern and Phase Center 72 -- 3.1.6 Polarization 72 -- 3.1.7 Input Impedance and Radiation Resistance 72 -- 3.1.8 Bandwidth 73 -- 3.2 Outcoupling Issues of THz Waves 73 -- 3.2.1 Radiation Pattern of a Dipole over a Semi-Infinite Substrate 75 -- 3.2.2 Radiation Pattern of a Dipole in a Multilayered Medium 79 -- 3.2.3 Anomalies in the Radiation Pattern 82 -- 3.3 THz Antenna Topologies 84 -- 3.3.1 Resonant Antennas 85 -- 3.3.2 Self-Complementary Antennas 87 -- 3.4 Lenses 90 -- 3.4.1 Lens Design 90 -- 3.5 Techniques for Improving the Performance of THz Antennas 93 -- 3.5.1 Conjugate Matching Technique 93.
3.5.2 Tapered Slot Antenna on Electromagnetic Band Gap Structures 99 -- 3.6 Arrays 107 -- 3.6.1 General Overview and Spectral Features of Arrays 107 -- 3.6.2 Large Area Emitters 113 -- References 157 -- 4 Propagation at THz Frequencies 160 /Antti V. Raisanen, Dmitri Lioubtchenko, Andrey Generalov, J. Anthony Murphy, Créidhe O'Sullivan, Marcin L. Gradziel, Neil Trappe, Luis Enrique Garcia Munoz, Alejandro Garcia-Lamperez, and Javier Montero-de-Paz -- 4.1 Helmholtz Equation and Electromagnetic Modes of Propagation 160 -- 4.2 THz Waveguides 167 -- 4.2.1 Waveguides with a Single Conductor: TE and TM Modes 168 -- 4.2.2 Waveguides with Two or More Conductors: TEM and Quasi-TEM Modes 173 -- 4.2.3 Waveguides with No Conductor: Hybrid Modes 177 -- 4.3 Beam Waveguides 183 -- 4.3.1 Gaussian Beam 183 -- 4.3.2 Launching and Focusing Components: Horns, Lenses, and Mirrors 187 -- 4.3.3 Other Components Needed in Beam Waveguides 193 -- 4.3.4 Absorbers 195 -- 4.3.5 Modeling Horns Using Mode Matching 195 -- 4.3.6 Multimode Systems and Partially Coherent Propagation 199 -- 4.3.7 Modeling Techniques for THz Propagation in THz Systems 201 -- 4.4 High Frequency Electric Characterization of Materials 202 -- 4.4.1 Drude Model 203 -- 4.4.2 Lorentz-Drude Model 204 -- 4.4.3 Brendel-Bormann Model 205 -- 4.5 Propagation in Free Space 205 -- 4.5.1 Link Budget 205 -- 4.5.2 Atmospheric Attenuation 206 -- References 207 -- 5 Principles of THz Direct Detection 212 /Elliott R. Brown, and Daniel Segovia-Vargas -- 5.1 Detection Mechanisms 212 -- 5.1.1 E-Field Rectification 213 -- 5.1.2 Thermal Detection 215 -- 5.1.3 Plasma-Wave, HEMT, and MOS-Based Detection 220 -- 5.2 Noise Mechanisms 223 -- 5.2.1 Noise from Electronic Devices 223 -- 5.2.2 Phonon Noise 225 -- 5.2.3 Photon Noise with Direct Detection 227 -- 5.3 THz Coupling 230 -- 5.3.1 THz Impedance Matching 230 -- 5.3.2 Planar-Antenna Coupling 231 -- 5.3.3 Exemplary THz Coupling Structures 232 -- 5.3.4 Output-Circuit Coupling 235 -- 5.4 External Responsivity Examples 235.
5.4.1 Rectifiers 235 -- 5.4.2 Micro-Bolometers 236 -- 5.5 System Metrics 239 -- 5.5.1 Signal-to-Noise Ratio 239 -- 5.5.2 Sensitivity Metrics 240 -- 5.6 Effect of Amplifier Noise 243 -- 5.7 A Survey of Experimental THz Detector Performance 244 -- 5.7.1 Rectifiers 246 -- 5.7.2 Thermal Detectors 247 -- 5.7.3 CMOS-Based and Plasma-Wave Detectors 249 -- References 250 -- 6 THz Electronics 254 /Michael Feiginov, Ramƒon Gonzalo, Itziar Maestrojuán, Oleg Cojocari, Matthias Hoefle, and Ernesto Limiti -- 6.1 Resonant-Tunneling Diodes 254 -- 6.1.1 Historic Introduction 254 -- 6.1.2 Operating Principles of RTDs 255 -- 6.1.3 Charge-Relaxation Processes in RTDs 256 -- 6.1.4 High-Frequency RTD Conductance 259 -- 6.1.5 Operating Principles of RTD Oscillators 260 -- 6.1.6 Limitations of RTD Oscillators 261 -- 6.1.7 Overview of the State of the Art Results 264 -- 6.1.8 RTD Oscillators versus Other Types of THz Sources 265 -- 6.1.9 Future Perspectives 265 -- 6.2 Schottky Diode Mixers: Fundamental and Harmonic Approaches 265 -- 6.2.1 Sub-Harmonic Mixers 267 -- 6.2.2 Circuit Fabrication Technologies 270 -- 6.2.3 Characterization Technologies 272 -- 6.2.4 Advanced Configuration Approach 276 -- 6.2.5 Imaging Applications of Schottky Mixers 277 -- 6.3 Solid-State THz Low Noise Amplifiers 278 -- 6.3.1 Solid-State Active Devices and Technologies for Low Noise Amplification 280 -- 6.3.2 Circuit and Propagation Issues for TMIC 282 -- 6.3.3 Low Noise Amplifier Design and Realizations 284 -- 6.3.4 Perspectives 287 -- 6.4 Square-Law Detectors 288 -- 6.4.1 Characterization and Modeling of Low-Barrier Schottky Diodes 289 -- 6.4.2 Design of Millimeter-Wave Square-Law Detectors 291 -- 6.5 Fabrication Technologies 292 -- 6.5.1 Overview of Fabrication Approaches of Schottky Structures for Millimeter-Wave Applications 293 -- 6.5.2 Film-Diode Process 296 -- References 299 -- 7 Selected Photonic THz Technologies 304 /Cyril C. Renaud, Andreas StŠohr, Thorsten Goebel, Frédéric Van Dijk, and Guillermo Carpintero.
7.1 Photonic Techniques for THz Emission and Detection 304 -- 7.1.1 Overall Photonic System 304 -- 7.1.2 Basic Components Description 306 -- 7.1.3 Systems Parameters, Pulsed versus CW 307 -- 7.2 Laser Sources for THz Generation 309 -- 7.2.1 Pulsed Laser Sources 309 -- 7.2.2 Continous Wave (CW) Sources 312 -- 7.2.3 Noise Reduction Techniques 314 -- 7.2.4 Photonic Integrated Laser Sources 315 -- 7.3 Photodiode for THz Emission 320 -- 7.3.1 PD Limitations and Key Parameters 320 -- 7.3.2 Traveling Wave UTC-PD Solution 322 -- 7.4 Photonically Enabled THz Detection 324 -- 7.4.1 Pulsed Terahertz Systems 325 -- 7.4.2 Optically Pumped Mixers 328 -- 7.5 Photonic Integration for THz Systems 331 -- 7.5.1 Hybrid or Monolithic Integrations 332 -- 7.5.2 Monolithic Integration of Subsystems 333 -- 7.5.3 Foundry Model for Integrated Systems 334 -- References 335 -- 8 Selected Emerging THz Technologies 340 /Christian Damm, Harald G. L. Schwefel, Florian Sedlmeir, Hans Hartnagel, Sascha Preu, and Christian Weickhmann -- 8.1 THz Resonators 340 -- 8.1.1 Principles of Resonators 341 -- 8.1.2 Introduction to WGM Resonators 343 -- 8.1.3 Evanescent Waveguide Coupling to WGMs 345 -- 8.1.4 Resonant Scattering in WGM Resonators 346 -- 8.1.5 Nonlinear Interactions in WGM 349 -- 8.2 Liquid Crystals 350 -- 8.2.1 Introduction 350 -- 8.2.2 Characterization 357 -- 8.2.3 Applications 365 -- 8.3 Graphene for THz Frequencies 367 -- 8.3.1 Theory and Material Properties 367 -- 8.3.2 Applications 373 -- References 377 -- Index 383.
Record Nr. UNINA-9910131498203321
Hoboken [New Jersey] : , : John Wiley & Sons, Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor terahertz technology : devices and systems at room temperature operation / / editors, Guillermo Carpintero, Luis Enrique Garcâia-Muänoz, Hans H. Hartnagel, Sascha Preu
Semiconductor terahertz technology : devices and systems at room temperature operation / / editors, Guillermo Carpintero, Luis Enrique Garcâia-Muänoz, Hans H. Hartnagel, Sascha Preu
Pubbl/distr/stampa Hoboken [New Jersey] : , : John Wiley & Sons, Inc., , 2015
Descrizione fisica 1 online resource (427 p.)
Disciplina 621.381/33
Collana Wiley - IEEE
Soggetto topico Terahertz technology
Semiconductors
Submillimeter waves
Very high speed integrated circuits
ISBN 1-118-92039-2
1-118-92041-4
1-118-92040-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments xi -- Preface xiii -- Foreword xvii -- List of Contributors xix -- 1 General Introduction 1 /Hans Hartnagel, Antti V. Raisanen, and Magdalena Salazar-Palma -- 2 Principles of THz Generation 3 /Sascha Preu, Gottfried H. DŠohler, Stefan Malzer, Andreas StŠohr, Vitaly Rymanov, Thorsten GŠobel, Elliott R. Brown, Michael Feiginov, Ramón Gonzalo, Miguel Beruete, and Miguel Navarro-Cya -- 2.1 Overview 3 -- 2.2 THz Generation by Photomixers and Photoconductors 5 -- 2.2.1 Principle of Operation 5 -- 2.2.2 Basic Concepts and Design Rules 7 -- 2.2.3 Thermal Constraints 21 -- 2.2.4 Electrical Constraints 23 -- 2.2.5 Device Layouts of Photoconductive Devices 35 -- 2.2.6 Device Layouts of p-i-n Diode-Based Emitters 47 -- 2.3 Principles of Electronic THz Generation 53 -- 2.3.1 Oscillators with Negative Differential Conductance 54 -- 2.3.2 Multipliers (Schottky Diodes, Hetero-Barrier Varactors) 56 -- 2.3.3 Plasmonic Sources 58 -- References 61 -- 3 Principles of Emission of THzWaves 69 /Luis Enrique Garcya Munoz, Sascha Preu, Stefan Malzer, Gottfried H. DŠohler, Javier Montero-de-Paz, Ramón Gonzalo, David González-Ovejero, Daniel Segovia-Vargas, Dmitri Lioubtchenko, and Antti V. Raisanen -- 3.1 Fundamental Parameters of Antennas 69 -- 3.1.1 Radiation Pattern 69 -- 3.1.2 Directivity 71 -- 3.1.3 Gain and Radiation Efficiency 71 -- 3.1.4 Effective Aperture Area and Aperture Efficiency 72 -- 3.1.5 Phase Pattern and Phase Center 72 -- 3.1.6 Polarization 72 -- 3.1.7 Input Impedance and Radiation Resistance 72 -- 3.1.8 Bandwidth 73 -- 3.2 Outcoupling Issues of THz Waves 73 -- 3.2.1 Radiation Pattern of a Dipole over a Semi-Infinite Substrate 75 -- 3.2.2 Radiation Pattern of a Dipole in a Multilayered Medium 79 -- 3.2.3 Anomalies in the Radiation Pattern 82 -- 3.3 THz Antenna Topologies 84 -- 3.3.1 Resonant Antennas 85 -- 3.3.2 Self-Complementary Antennas 87 -- 3.4 Lenses 90 -- 3.4.1 Lens Design 90 -- 3.5 Techniques for Improving the Performance of THz Antennas 93 -- 3.5.1 Conjugate Matching Technique 93.
3.5.2 Tapered Slot Antenna on Electromagnetic Band Gap Structures 99 -- 3.6 Arrays 107 -- 3.6.1 General Overview and Spectral Features of Arrays 107 -- 3.6.2 Large Area Emitters 113 -- References 157 -- 4 Propagation at THz Frequencies 160 /Antti V. Raisanen, Dmitri Lioubtchenko, Andrey Generalov, J. Anthony Murphy, Créidhe O'Sullivan, Marcin L. Gradziel, Neil Trappe, Luis Enrique Garcia Munoz, Alejandro Garcia-Lamperez, and Javier Montero-de-Paz -- 4.1 Helmholtz Equation and Electromagnetic Modes of Propagation 160 -- 4.2 THz Waveguides 167 -- 4.2.1 Waveguides with a Single Conductor: TE and TM Modes 168 -- 4.2.2 Waveguides with Two or More Conductors: TEM and Quasi-TEM Modes 173 -- 4.2.3 Waveguides with No Conductor: Hybrid Modes 177 -- 4.3 Beam Waveguides 183 -- 4.3.1 Gaussian Beam 183 -- 4.3.2 Launching and Focusing Components: Horns, Lenses, and Mirrors 187 -- 4.3.3 Other Components Needed in Beam Waveguides 193 -- 4.3.4 Absorbers 195 -- 4.3.5 Modeling Horns Using Mode Matching 195 -- 4.3.6 Multimode Systems and Partially Coherent Propagation 199 -- 4.3.7 Modeling Techniques for THz Propagation in THz Systems 201 -- 4.4 High Frequency Electric Characterization of Materials 202 -- 4.4.1 Drude Model 203 -- 4.4.2 Lorentz-Drude Model 204 -- 4.4.3 Brendel-Bormann Model 205 -- 4.5 Propagation in Free Space 205 -- 4.5.1 Link Budget 205 -- 4.5.2 Atmospheric Attenuation 206 -- References 207 -- 5 Principles of THz Direct Detection 212 /Elliott R. Brown, and Daniel Segovia-Vargas -- 5.1 Detection Mechanisms 212 -- 5.1.1 E-Field Rectification 213 -- 5.1.2 Thermal Detection 215 -- 5.1.3 Plasma-Wave, HEMT, and MOS-Based Detection 220 -- 5.2 Noise Mechanisms 223 -- 5.2.1 Noise from Electronic Devices 223 -- 5.2.2 Phonon Noise 225 -- 5.2.3 Photon Noise with Direct Detection 227 -- 5.3 THz Coupling 230 -- 5.3.1 THz Impedance Matching 230 -- 5.3.2 Planar-Antenna Coupling 231 -- 5.3.3 Exemplary THz Coupling Structures 232 -- 5.3.4 Output-Circuit Coupling 235 -- 5.4 External Responsivity Examples 235.
5.4.1 Rectifiers 235 -- 5.4.2 Micro-Bolometers 236 -- 5.5 System Metrics 239 -- 5.5.1 Signal-to-Noise Ratio 239 -- 5.5.2 Sensitivity Metrics 240 -- 5.6 Effect of Amplifier Noise 243 -- 5.7 A Survey of Experimental THz Detector Performance 244 -- 5.7.1 Rectifiers 246 -- 5.7.2 Thermal Detectors 247 -- 5.7.3 CMOS-Based and Plasma-Wave Detectors 249 -- References 250 -- 6 THz Electronics 254 /Michael Feiginov, Ramƒon Gonzalo, Itziar Maestrojuán, Oleg Cojocari, Matthias Hoefle, and Ernesto Limiti -- 6.1 Resonant-Tunneling Diodes 254 -- 6.1.1 Historic Introduction 254 -- 6.1.2 Operating Principles of RTDs 255 -- 6.1.3 Charge-Relaxation Processes in RTDs 256 -- 6.1.4 High-Frequency RTD Conductance 259 -- 6.1.5 Operating Principles of RTD Oscillators 260 -- 6.1.6 Limitations of RTD Oscillators 261 -- 6.1.7 Overview of the State of the Art Results 264 -- 6.1.8 RTD Oscillators versus Other Types of THz Sources 265 -- 6.1.9 Future Perspectives 265 -- 6.2 Schottky Diode Mixers: Fundamental and Harmonic Approaches 265 -- 6.2.1 Sub-Harmonic Mixers 267 -- 6.2.2 Circuit Fabrication Technologies 270 -- 6.2.3 Characterization Technologies 272 -- 6.2.4 Advanced Configuration Approach 276 -- 6.2.5 Imaging Applications of Schottky Mixers 277 -- 6.3 Solid-State THz Low Noise Amplifiers 278 -- 6.3.1 Solid-State Active Devices and Technologies for Low Noise Amplification 280 -- 6.3.2 Circuit and Propagation Issues for TMIC 282 -- 6.3.3 Low Noise Amplifier Design and Realizations 284 -- 6.3.4 Perspectives 287 -- 6.4 Square-Law Detectors 288 -- 6.4.1 Characterization and Modeling of Low-Barrier Schottky Diodes 289 -- 6.4.2 Design of Millimeter-Wave Square-Law Detectors 291 -- 6.5 Fabrication Technologies 292 -- 6.5.1 Overview of Fabrication Approaches of Schottky Structures for Millimeter-Wave Applications 293 -- 6.5.2 Film-Diode Process 296 -- References 299 -- 7 Selected Photonic THz Technologies 304 /Cyril C. Renaud, Andreas StŠohr, Thorsten Goebel, Frédéric Van Dijk, and Guillermo Carpintero.
7.1 Photonic Techniques for THz Emission and Detection 304 -- 7.1.1 Overall Photonic System 304 -- 7.1.2 Basic Components Description 306 -- 7.1.3 Systems Parameters, Pulsed versus CW 307 -- 7.2 Laser Sources for THz Generation 309 -- 7.2.1 Pulsed Laser Sources 309 -- 7.2.2 Continous Wave (CW) Sources 312 -- 7.2.3 Noise Reduction Techniques 314 -- 7.2.4 Photonic Integrated Laser Sources 315 -- 7.3 Photodiode for THz Emission 320 -- 7.3.1 PD Limitations and Key Parameters 320 -- 7.3.2 Traveling Wave UTC-PD Solution 322 -- 7.4 Photonically Enabled THz Detection 324 -- 7.4.1 Pulsed Terahertz Systems 325 -- 7.4.2 Optically Pumped Mixers 328 -- 7.5 Photonic Integration for THz Systems 331 -- 7.5.1 Hybrid or Monolithic Integrations 332 -- 7.5.2 Monolithic Integration of Subsystems 333 -- 7.5.3 Foundry Model for Integrated Systems 334 -- References 335 -- 8 Selected Emerging THz Technologies 340 /Christian Damm, Harald G. L. Schwefel, Florian Sedlmeir, Hans Hartnagel, Sascha Preu, and Christian Weickhmann -- 8.1 THz Resonators 340 -- 8.1.1 Principles of Resonators 341 -- 8.1.2 Introduction to WGM Resonators 343 -- 8.1.3 Evanescent Waveguide Coupling to WGMs 345 -- 8.1.4 Resonant Scattering in WGM Resonators 346 -- 8.1.5 Nonlinear Interactions in WGM 349 -- 8.2 Liquid Crystals 350 -- 8.2.1 Introduction 350 -- 8.2.2 Characterization 357 -- 8.2.3 Applications 365 -- 8.3 Graphene for THz Frequencies 367 -- 8.3.1 Theory and Material Properties 367 -- 8.3.2 Applications 373 -- References 377 -- Index 383.
Record Nr. UNINA-9910826172603321
Hoboken [New Jersey] : , : John Wiley & Sons, Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui