Organic solid-state lasers / Sébastien Forget, Sébastien Chénais
| Organic solid-state lasers / Sébastien Forget, Sébastien Chénais |
| Autore | Forget, Sébastien |
| Pubbl/distr/stampa | Berlin ; New York : Springer, c2013 |
| Descrizione fisica | 169 p. ; 25 cm |
| Disciplina | 621.36/61 |
| Altri autori (Persone) | Chénais, Sébastienauthor |
| Collana | Springer series in optical sciences, 0342-4111 ; 175 |
| Soggetto topico |
Organic electronics
Physical organic chemistry Solid-state lasers |
| ISBN | 9783642367045 |
| Classificazione |
LC TA1705
53.2.63 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991002783949707536 |
Forget, Sébastien
|
||
| Berlin ; New York : Springer, c2013 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Photoinduced modifications of the nonlinear optical response in liquid crystalline azopolymers : doctoral thesis accepted by the University of Zaragoza, Spain / / Rapuel Alicante
| Photoinduced modifications of the nonlinear optical response in liquid crystalline azopolymers : doctoral thesis accepted by the University of Zaragoza, Spain / / Rapuel Alicante |
| Autore | Alicante Raquel |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | New York, : Springer, 2013 |
| Descrizione fisica | 1 online resource (208 p.) |
| Disciplina | 621.36/61 |
| Collana | Springer theses |
| Soggetto topico |
Nonlinear optics
Electromagnetic waves |
| ISBN |
1-283-69759-9
3-642-31756-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction and Basic Theory -- Experimental Methods.- Nonlinear Optical Molecular Response -- Piperazine Azopolymer Thin Films -- Films of Doped Low Polar Azopolymers -- Nonlinear Optical Gratings -- General Conclusions -- Appendices. |
| Record Nr. | UNINA-9910438110803321 |
Alicante Raquel
|
||
| New York, : Springer, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The physics and engineering of solid state lasers / / Yehoshua Kalisky
| The physics and engineering of solid state lasers / / Yehoshua Kalisky |
| Autore | Kalisky Yehoshua Y |
| Pubbl/distr/stampa | Bellingham, Wash., : SPIE Press, c2006 |
| Descrizione fisica | 1 online resource (222 p.) |
| Disciplina | 621.36/61 |
| Collana | Tutorial texts in optical engineering |
| Soggetto topico | Solid-state lasers |
| ISBN |
9781615837021
1615837027 9780819480460 0819480460 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
List of abbreviations -- Preface -- Chapter 1. Introduction -- 1.1. Historical background. 1.1.1. Early developments; 1.1.2. Technological developments -- 1.2. Laser materials. 1.2.1. Elements of a typical laser oscillator; 1.2.2. Optics -- References -- Chapter 2. Solid state laser materials -- 2.1. Properties. 2.1.1. Optics; 2.1.2. Material design; 2.1.3. Mechanical design -- 2.2. Doping ions. 2.2.1. Laser host materials -- 2.3. General properties of hosts; 2.3.1. Optical properties; 2.3.2. Chemical properties; 2.3.3. Mechanical properties; 2.3.4. Thermal properties -- References -- Chapter 3. Structure and bonding of solids -- 3.1. Crystal structure. 3.1.1. Types of crystals -- 3.2. Crystal binding. 3.2.1. Van der Waals interaction; 3.2.2. Ionic bonding; 3.2.3. Covalent bonding -- References.
Chapter 4. Garnet crystals as laser hosts -- 4.1. Physical characteristics of garnets and mixed garnets -- 4.2. Chromium- and neodymium-doped garnets -- 4.3. Disordered (mixed) garnets -- 4.4. Glass and crystalline ceramics -- References -- Chapter 5. Fluoride laser crystals: YLiF4 (YLF) -- 5.1. Thermal and mechanical properties of YLF -- 5.1.1. Estimate of thermal load at fracture -- 5.2. Nonradiative losses in YLF -- 5.3. Neodymium-doped YLF -- 5.4. Holmium-doped YLF -- 5.5. Thulium-doped YLF -- 5.6. Other fluoride crystals -- 5.7. Cascade emission -- 5.8. Upconversion -- 5.8.1. Applications to upconversion -- References -- Chapter 6. Photophysics of solid state laser materials -- 6.1. Properties of the lasing ion. 6.1.1. Absorption; 6.1.2. Spontaneous emission; 6.1.3. Stimulated emission; 6.1.4. Oscillator strength -- 6.2. Nonradiative transition. 6.2.1. Energy gap and temperature dependence of multiphonon relaxation; 6.2.2. Temperature dependence of nonradiative relaxation -- References. Chapter 7. Energy transfer -- 7.1. Introduction -- 7.2. Radiative energy transfer -- 7.3. Nonradiative energy transfer. 7.3.1. Basic mechanisms of energy transfer -- References -- Chapter 8. Lasing efficiency and sensitization -- 8.1. Introduction -- 8.2. Why is energy transfer needed? 8.2.1. Examples of CTH-doped systems -- 8.3. Temperature effects -- 8.4. The effect of Tm3+ concentration -- 8.5. The effect of Cr3+ concentration -- 8.6. Nature of ionic interaction. 8.6.1. Cr-Tm interaction; 8.6.2. Tm-Tm interaction; 8.6.3. Tm-Ho interaction; 8.6.4. Ho-Tm back interaction; 8.6.5. Selective energy transfer -- References. Chapter 9. Two-micron lasers: holmium- and thulium-doped crystals -- 9.1. Introduction -- 9.2. Advantages of the holmium laser. 9.2.1. Utilizing energy transfer -- 9.3. Conventional pumping. 9.3.1. CW laser operation; 9.3.2. Pulsed operation of holmium lasers -- 9.4. Diode pumping. 9.4.1. End-pumped 2-æm lasers; 9.4.2. Side-pumped 2-æm lasers -- References -- Chapter 10. Yb:YAG Laser -- 10.1. Introduction -- 10.2. End-pumping -- 10.3. Side-pumping -- 10.4. Face-pumping or thin disk configuration -- References -- Chapter 11. More on other crystals: fluorides and vanadates -- 11.1. Introduction -- 11.2. Laser crystals: YLF (YLiF4) and YVO4 -- 11.3. Pumping schemes. 11.3.1. Diode end-pumping of Nd:YLF; 11.3.2. Side-pumping of Nd:YLF -- 11.4. Diode end-pumping of Nd:YVO4 and Nd:GdVO4 -- 11.4.1. Advantages and disadvantages of vanadate crystals; 11.4.2. Q-switching and mode-locking operation -- References -- Appendix: Diode-pumped solid state lasers -- A.1. Introduction -- A.2. Advantages of diode-pumping -- A.3. Pumping schemes -- A.4. Longitudinal pumping -- A.5. Transverse pumping -- A.6. Types of diodes -- A.7. Temperature control -- References -- Index. |
| Record Nr. | UNINA-9911004838403321 |
Kalisky Yehoshua Y
|
||
| Bellingham, Wash., : SPIE Press, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physics of solid-state lasers [[electronic resource] /] / V.V. Antsiferov and G.I. Smirnov
| Physics of solid-state lasers [[electronic resource] /] / V.V. Antsiferov and G.I. Smirnov |
| Autore | Ant͡siferov V. V (Vitaliĭ Vasilʹevich) |
| Pubbl/distr/stampa | Cambridge, U.K., : Cambridge International Science Publishing, 2005 |
| Descrizione fisica | 1 online resource (179 p.) |
| Disciplina | 621.36/61 |
| Altri autori (Persone) | SmirnovGennadiĭ Ivanovich |
| Soggetto topico |
Solid-state lasers
Lasers |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-23148-3
9786610231485 1-4237-4806-9 1-904602-48-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover; Contents; Preface; Introduction; 1. Solid-state chromium lasers in free lasing regime; 2. Solid-state neodymium lasers in free lasing regime; 3. Generation of powerful single-frequency giant radiation pulses in solid-state lasers; 4. Lasing of stable supershort radiation pulses in solid-state lasers; 5. Increasing the lasing efficiency of solid-state lasers; 6. Principles of lasing of solid-state lasers; 7. Stochastic and transition processes in solid-state lasers; References; Index |
| Record Nr. | UNINA-9910450226503321 |
Ant͡siferov V. V (Vitaliĭ Vasilʹevich)
|
||
| Cambridge, U.K., : Cambridge International Science Publishing, 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physics of solid-state lasers [[electronic resource] /] / V.V. Antsiferov and G.I. Smirnov
| Physics of solid-state lasers [[electronic resource] /] / V.V. Antsiferov and G.I. Smirnov |
| Autore | Ant͡siferov V. V (Vitaliĭ Vasilʹevich) |
| Pubbl/distr/stampa | Cambridge, U.K., : Cambridge International Science Publishing, 2005 |
| Descrizione fisica | 1 online resource (179 p.) |
| Disciplina | 621.36/61 |
| Altri autori (Persone) | SmirnovGennadiĭ Ivanovich |
| Soggetto topico |
Solid-state lasers
Lasers |
| ISBN |
1-280-23148-3
9786610231485 1-4237-4806-9 1-904602-48-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover; Contents; Preface; Introduction; 1. Solid-state chromium lasers in free lasing regime; 2. Solid-state neodymium lasers in free lasing regime; 3. Generation of powerful single-frequency giant radiation pulses in solid-state lasers; 4. Lasing of stable supershort radiation pulses in solid-state lasers; 5. Increasing the lasing efficiency of solid-state lasers; 6. Principles of lasing of solid-state lasers; 7. Stochastic and transition processes in solid-state lasers; References; Index |
| Record Nr. | UNINA-9910783484603321 |
Ant͡siferov V. V (Vitaliĭ Vasilʹevich)
|
||
| Cambridge, U.K., : Cambridge International Science Publishing, 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantum cascade lasers (QCLs) : types and applications / / Joseph D. Bennett, editor
| Quantum cascade lasers (QCLs) : types and applications / / Joseph D. Bennett, editor |
| Pubbl/distr/stampa | New York, [New York] : , : Novinka, , 2017 |
| Descrizione fisica | 1 online resource (100 pages) : illustrations |
| Disciplina | 621.36/61 |
| Collana | Classical and Quantum Mechanics |
| Soggetto topico |
Semiconductor lasers
Quantum wells Hetrostructures |
| ISBN | 1-5361-0405-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Quantum cascade lasers (QCLs): basics, advanced devices, and applications / Fow-Sen Choa -- THz QCLs design towards real applications / Tsung-Tse Lin -- Quantum cascade laser photoacoustic detection of nitrous oxide released from diesel combustion / G.A. Mothe, M.S. Sthel, M.P.P de Castro, I.A. Esquef, M.G. da Silva and H. Vargas. |
| Record Nr. | UNINA-9910160271903321 |
| New York, [New York] : , : Novinka, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semiconductor laser engineering, reliability and diagnostics [[electronic resource] ] : a practical approach to high power and single mode devices / / Peter W. Epperlein
| Semiconductor laser engineering, reliability and diagnostics [[electronic resource] ] : a practical approach to high power and single mode devices / / Peter W. Epperlein |
| Autore | Epperlein Peter W |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (522 p.) |
| Disciplina | 621.36/61 |
| Soggetto topico | Semiconductor lasers |
| ISBN |
1-118-48188-7
1-118-48187-9 1-118-48186-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Dedication Preface About the Author PART I: DIODE LASER ENGINEERING Overview 1. Basic Diode Laser Engineering Principles Introduction 1.1. Brief Recapitulation 1.1.1. Key Features of a Diode Laser 1.1.2. Homo-Junction Diode Laser 1.1.3. Double-Heterostructure Diode Laser 1.1.4. Quantum Well Diode Laser 1.1.5. Common Compounds for Semiconductor Lasers 1.2. Optical Output Power - Diverse Aspects 1.2.1. Approaches to High Power Diode Lasers 1.2.2. High Optical Power Considerations 1.2.3. Power Limitations 1.2.4. High Power versus Reliability Trade-Offs 1.2.5. Typical and Record-High CW Optical Output Powers 1.3. Selected Relevant Basic Diode Laser Characteristics 1.3.1. Threshold Gain 1.3.2. Material Gain Spectra 1.3.3. Optical Confinement 1.3.4. Threshold Current 1.3.5. Transverse Vertical and Transverse Lateral Modes 1.3.6. Fabry-Perot Longitudinal Modes 1.3.7. Operating Characteristics 1.3.8. Mirror Reflectivity Modifications 1.4. Laser Fabrication Technology 1.4.1. Laser Wafer Growth 1.4.2. Laser Wafer Processing 1.4.3. Laser Packaging References 2. Design Considerations for High Power Single Spatial Mode Operation Introduction 2.1. Basic High Power Design Approaches 2.1.1. Key Aspects 2.1.2. Output Power Scaling 2.1.3. Transverse Vertical Waveguides 2.1.4. Narrow Stripe Weakly Index Guided Transverse Lateral Waveguides 2.1.5. Thermal Management 2.1.6. Catastrophic Optical Damage Elimination 2.2. Single Spatial Mode and Kink Control 2.2.1. Key Aspects 2.3.1. Introduction 2.3.2. Selected Calculated Parameter Dependencies 2.3.3. Selected Experimental Parameter Dependencies 2.4.1. Introduction 2.4.2. Broad Area Lasers 2.4.3. Unstable Resonator Lasers 2.4.4. Tapered Amplifier Lasers 2.4.5. Linear Laser Array Structures References Part II: DIODE LASER RELIABILITY Overview 3. Basic Diode Laser Degradation Modes Introduction 3.1. Degradation and Stability Criteria of Critical Diode Laser Characteristics 3.1.1. Optical Power, Threshold, Efficiency and Transverse Modes 3.1.2. Lasing Wavelength and Longitudinal Modes 3.2. Classification of Degradation Modes 3.2.1. Classification of Degradation Phenomena by Location 3.2.2. Basic Degradation Mechanisms 3.3. Key Laser Robustness Factors References 4. Optical Strength Engineering Introduction 4.1. Mirror Facet Properties - Physical Origins of Failure 4.2. Mirror Facet Passivation and Protection 4.2.1. Scope and Effects 4.2.2. Facet Passivation Techniques 4.2.3. Facet Protection Techniques 4.3. Non-Absorbing Mirror Technologies 4.3.1. Concept 4.3.2. Window Grown on Facet 4.3.3. Quantum Well Intermixing Processes 4.3.4. Bent Waveguide 4.4. Further Optical Strength Enhancement Approaches 4.4.1. Current Blocking Mirrors and Material Optimization 4.4.2. Heat Spreader Layer, Device Mounting and Number of Quantum Wells 4.4.3. Mode Spot Widening Techniques References 5. Basic Reliability Engineering Concepts Introduction 5.1. Descriptive Reliability Statistics 5.1.1. Probability Density Function 5.1.2. Cumulative Distribution Function 5.1.3. Reliability Function 5.1.4. Instantaneous Failure Rate or Hazard Rate 5.1.5. Cumulative Hazard Function 5.1.6. Average Failure Rate 5.1.7. Failure Rate Units 5.1.8. Bathtub Failure Rate Curve 5.2. Failure Distribution Functions - Statistics Models for Non-Repairable Populations 5.2.1. Introduction 5.2.2. Lognormal Distribution 5.2.3. Weibull Distribution 5.2.4. Exponential Distribution 5.3. Reliability Data Plotting 5.3.1. Life Test Data Plotting 5.4. Further Reliability Concepts 5.4.1. Data Types 5.4.2. Confidence Limits 5.4.3. Mean Time to Failure Calculations 5.4.4. Reliability Estimations 5.5. Accelerated Reliability Testing - Physics-Statistics Models 5.5.1. Acceleration Relationships 5.5.2. Remarks on Acceleration Models 5.6. System Reliability Calculations 5.6.1. Introduction 5.6.2. Independent Elements Connected in Series 5.6.3. Parallel System of Independent Components References 6. Diode Laser Reliability Engineering Program Introduction 6.1. Reliability Test Plan 6.1.1. Main Purpose, Motivation and Goals 6.1.2. Up-Front Requirements and Activities 6.1.3. Relevant Parameters for Long Term Stability and Reliability 6.1.4. Test Preparations and Operation 6.1.5. Overview Reliability Program Building Blocks 6.1.6. Development Tests 6.1.7. Manufacturing Tests 6.2. Reliability Growth Program 6.3. Reliability Benefits and Costs 6.3.1. Types of Benefit 6.3.2. Reliability - Cost Trade Offs References PART III: DIODE LASER DIAGNOSTICS Overview 7. Novel Diagnostic Laser Data for Active Layer Material Integrity, Impurity Trapping Effects and Mirror Temperatures Introduction 7.1. Optical Integrity of Laser Wafer Substrates 7.1.1. Motivation 7.1.2. Experimental Details 7.1.3. Discussion of Wafer Photoluminescence Maps 7.2. Integrity of Laser Active Layers 7.2.1. Motivation 7.2.2. Experimental Details 7.2.3. Discussion of Quantum Well PL Spectra 7.3. Deep-Level Defects at Interfaces of Active Regions 7.3.1. Motivation 7.3.2. Experimental Details 7.3.3. Discussion of Deep-Level Transient Spectroscopy Results 7.4. Micro-Raman Spectroscopy for Diode Laser Diagnostics 7.4.1. Motivation 7.4.2. Basics of Raman Inelastic Light Scattering 7.4.3. Experimental Details 7.4.4. Raman on Standard Diode Laser Facets 7.4.5. Raman for Facet Temperature Measurements 7.4.6. Various Dependences of Diode Laser Mirror Temperatures References 8. Novel Diagnostic Laser Data for Mirror Facet Disorder Effects, Mechanical Stress Effects and Facet Coating Instability Introduction 8.1. Diode Laser Mirror Facet Studies by Raman 8.1.1. Motivation 8.1.2. Raman Microprobe Spectra 8.1.3. Possible Origins of the 193 cm-1 Mode in (Al)GaAs 8.1.4. Facet Disorder - Facet Temperature - Catastrophic Optical Mirror Damage Robustness Correlations 8.2. Local Mechanical Strain in Ridge-Waveguide Diode Lasers 8.2.1. Motivation 8.2.2. Measurements - Raman Shifts and Stress Profiles 8.2.3. Detection of "Weak Spots" 8.2.4. Stress Model Experiments 8.3. Diode Laser Mirror Facet Coating Structural Instability 8.3.1. Motivation 8.3.2. Experimental Details 8.3.3. Silicon Recrystallization by Internal Power Exposure 8.3.4. Silicon Recrystallization by External Power Exposure - Control Experiments References 9. Novel Diagnostic Data for Diverse Laser Temperature Effects, Dynamic Laser Degradation Effects and Mirror Temperature Maps Introduction 9.1. Thermoreflectance Microscopy for Diode Laser Diagnostics 9.1.1. Motivation 9.1.2. Concept and Signal Interpretation 9.1.3. Reflectance - Temperature Change Relationship 9.1.4. Experimental Details 9.1.5. Potential Perturbation Effects on Reflectance 9.2. Thermoreflectance versus Optical Spectroscopies 9.2.1. General 9.2.2. Comparison 9.3. Lowest Detectable Temperature Rise 9.4. Diode Laser Mirror Temperatures by Micro-Thermoreflectance 9.4.1. Motivation 9.4.2. Dependence on Number of Active Quantum Wells 9.4.3. Dependence on Heat Spreader 9.4.4. Dependence on Mirror Treatment and Coating 9.4.5. Bent-Waveguide Non-Absorbing Mirror 9.5. Diode Laser Mirror Studies by Micro-Thermoreflectance 9.5.1. Motivation 9.5.2. Real-Time Temperature-Monitored Laser Degradation 9.5.3. Local Optical Probe 9.5.3.1. Threshold and heating distribution within near-field spot 9.6. Diode Laser Cavity Temperatures by Micro-Electroluminescence 9.6.1. Motivation 9.6.2. Experimental Details - Sample and Setup 9.6.3. Temperature Profiles along Laser Cavity 9.7. Diode Laser Facet Temperature - Two-Dimensional Mapping 9.7.1. Motivation 9.7.2. Experimental Concept 9.7.3. First Temperature Maps Ever 9.7.4. Independent Temperature Line Scans Perpendicular Active Layer 9.7.5. Temperature Modelling References Index. |
| Record Nr. | UNINA-9910141509103321 |
Epperlein Peter W
|
||
| Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Semiconductor laser engineering, reliability and diagnostics : a practical approach to high power and single mode devices / / Peter W. Epperlein
| Semiconductor laser engineering, reliability and diagnostics : a practical approach to high power and single mode devices / / Peter W. Epperlein |
| Autore | Epperlein Peter W |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (522 p.) |
| Disciplina | 621.36/61 |
| Soggetto topico | Semiconductor lasers |
| ISBN |
9781118481882
1118481887 9781118481875 1118481879 9781118481868 1118481860 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Dedication Preface About the Author PART I: DIODE LASER ENGINEERING Overview 1. Basic Diode Laser Engineering Principles Introduction 1.1. Brief Recapitulation 1.1.1. Key Features of a Diode Laser 1.1.2. Homo-Junction Diode Laser 1.1.3. Double-Heterostructure Diode Laser 1.1.4. Quantum Well Diode Laser 1.1.5. Common Compounds for Semiconductor Lasers 1.2. Optical Output Power - Diverse Aspects 1.2.1. Approaches to High Power Diode Lasers 1.2.2. High Optical Power Considerations 1.2.3. Power Limitations 1.2.4. High Power versus Reliability Trade-Offs 1.2.5. Typical and Record-High CW Optical Output Powers 1.3. Selected Relevant Basic Diode Laser Characteristics 1.3.1. Threshold Gain 1.3.2. Material Gain Spectra 1.3.3. Optical Confinement 1.3.4. Threshold Current 1.3.5. Transverse Vertical and Transverse Lateral Modes 1.3.6. Fabry-Perot Longitudinal Modes 1.3.7. Operating Characteristics 1.3.8. Mirror Reflectivity Modifications 1.4. Laser Fabrication Technology 1.4.1. Laser Wafer Growth 1.4.2. Laser Wafer Processing 1.4.3. Laser Packaging References 2. Design Considerations for High Power Single Spatial Mode Operation Introduction 2.1. Basic High Power Design Approaches 2.1.1. Key Aspects 2.1.2. Output Power Scaling 2.1.3. Transverse Vertical Waveguides 2.1.4. Narrow Stripe Weakly Index Guided Transverse Lateral Waveguides 2.1.5. Thermal Management 2.1.6. Catastrophic Optical Damage Elimination 2.2. Single Spatial Mode and Kink Control 2.2.1. Key Aspects 2.3.1. Introduction 2.3.2. Selected Calculated Parameter Dependencies 2.3.3. Selected Experimental Parameter Dependencies 2.4.1. Introduction 2.4.2. Broad Area Lasers 2.4.3. Unstable Resonator Lasers 2.4.4. Tapered Amplifier Lasers 2.4.5. Linear Laser Array Structures References Part II: DIODE LASER RELIABILITY Overview 3. Basic Diode Laser Degradation Modes Introduction 3.1. Degradation and Stability Criteria of Critical Diode Laser Characteristics 3.1.1. Optical Power, Threshold, Efficiency and Transverse Modes 3.1.2. Lasing Wavelength and Longitudinal Modes 3.2. Classification of Degradation Modes 3.2.1. Classification of Degradation Phenomena by Location 3.2.2. Basic Degradation Mechanisms 3.3. Key Laser Robustness Factors References 4. Optical Strength Engineering Introduction 4.1. Mirror Facet Properties - Physical Origins of Failure 4.2. Mirror Facet Passivation and Protection 4.2.1. Scope and Effects 4.2.2. Facet Passivation Techniques 4.2.3. Facet Protection Techniques 4.3. Non-Absorbing Mirror Technologies 4.3.1. Concept 4.3.2. Window Grown on Facet 4.3.3. Quantum Well Intermixing Processes 4.3.4. Bent Waveguide 4.4. Further Optical Strength Enhancement Approaches 4.4.1. Current Blocking Mirrors and Material Optimization 4.4.2. Heat Spreader Layer, Device Mounting and Number of Quantum Wells 4.4.3. Mode Spot Widening Techniques References 5. Basic Reliability Engineering Concepts Introduction 5.1. Descriptive Reliability Statistics 5.1.1. Probability Density Function 5.1.2. Cumulative Distribution Function 5.1.3. Reliability Function 5.1.4. Instantaneous Failure Rate or Hazard Rate 5.1.5. Cumulative Hazard Function 5.1.6. Average Failure Rate 5.1.7. Failure Rate Units 5.1.8. Bathtub Failure Rate Curve 5.2. Failure Distribution Functions - Statistics Models for Non-Repairable Populations 5.2.1. Introduction 5.2.2. Lognormal Distribution 5.2.3. Weibull Distribution 5.2.4. Exponential Distribution 5.3. Reliability Data Plotting 5.3.1. Life Test Data Plotting 5.4. Further Reliability Concepts 5.4.1. Data Types 5.4.2. Confidence Limits 5.4.3. Mean Time to Failure Calculations 5.4.4. Reliability Estimations 5.5. Accelerated Reliability Testing - Physics-Statistics Models 5.5.1. Acceleration Relationships 5.5.2. Remarks on Acceleration Models 5.6. System Reliability Calculations 5.6.1. Introduction 5.6.2. Independent Elements Connected in Series 5.6.3. Parallel System of Independent Components References 6. Diode Laser Reliability Engineering Program Introduction 6.1. Reliability Test Plan 6.1.1. Main Purpose, Motivation and Goals 6.1.2. Up-Front Requirements and Activities 6.1.3. Relevant Parameters for Long Term Stability and Reliability 6.1.4. Test Preparations and Operation 6.1.5. Overview Reliability Program Building Blocks 6.1.6. Development Tests 6.1.7. Manufacturing Tests 6.2. Reliability Growth Program 6.3. Reliability Benefits and Costs 6.3.1. Types of Benefit 6.3.2. Reliability - Cost Trade Offs References PART III: DIODE LASER DIAGNOSTICS Overview 7. Novel Diagnostic Laser Data for Active Layer Material Integrity, Impurity Trapping Effects and Mirror Temperatures Introduction 7.1. Optical Integrity of Laser Wafer Substrates 7.1.1. Motivation 7.1.2. Experimental Details 7.1.3. Discussion of Wafer Photoluminescence Maps 7.2. Integrity of Laser Active Layers 7.2.1. Motivation 7.2.2. Experimental Details 7.2.3. Discussion of Quantum Well PL Spectra 7.3. Deep-Level Defects at Interfaces of Active Regions 7.3.1. Motivation 7.3.2. Experimental Details 7.3.3. Discussion of Deep-Level Transient Spectroscopy Results 7.4. Micro-Raman Spectroscopy for Diode Laser Diagnostics 7.4.1. Motivation 7.4.2. Basics of Raman Inelastic Light Scattering 7.4.3. Experimental Details 7.4.4. Raman on Standard Diode Laser Facets 7.4.5. Raman for Facet Temperature Measurements 7.4.6. Various Dependences of Diode Laser Mirror Temperatures References 8. Novel Diagnostic Laser Data for Mirror Facet Disorder Effects, Mechanical Stress Effects and Facet Coating Instability Introduction 8.1. Diode Laser Mirror Facet Studies by Raman 8.1.1. Motivation 8.1.2. Raman Microprobe Spectra 8.1.3. Possible Origins of the 193 cm-1 Mode in (Al)GaAs 8.1.4. Facet Disorder - Facet Temperature - Catastrophic Optical Mirror Damage Robustness Correlations 8.2. Local Mechanical Strain in Ridge-Waveguide Diode Lasers 8.2.1. Motivation 8.2.2. Measurements - Raman Shifts and Stress Profiles 8.2.3. Detection of "Weak Spots" 8.2.4. Stress Model Experiments 8.3. Diode Laser Mirror Facet Coating Structural Instability 8.3.1. Motivation 8.3.2. Experimental Details 8.3.3. Silicon Recrystallization by Internal Power Exposure 8.3.4. Silicon Recrystallization by External Power Exposure - Control Experiments References 9. Novel Diagnostic Data for Diverse Laser Temperature Effects, Dynamic Laser Degradation Effects and Mirror Temperature Maps Introduction 9.1. Thermoreflectance Microscopy for Diode Laser Diagnostics 9.1.1. Motivation 9.1.2. Concept and Signal Interpretation 9.1.3. Reflectance - Temperature Change Relationship 9.1.4. Experimental Details 9.1.5. Potential Perturbation Effects on Reflectance 9.2. Thermoreflectance versus Optical Spectroscopies 9.2.1. General 9.2.2. Comparison 9.3. Lowest Detectable Temperature Rise 9.4. Diode Laser Mirror Temperatures by Micro-Thermoreflectance 9.4.1. Motivation 9.4.2. Dependence on Number of Active Quantum Wells 9.4.3. Dependence on Heat Spreader 9.4.4. Dependence on Mirror Treatment and Coating 9.4.5. Bent-Waveguide Non-Absorbing Mirror 9.5. Diode Laser Mirror Studies by Micro-Thermoreflectance 9.5.1. Motivation 9.5.2. Real-Time Temperature-Monitored Laser Degradation 9.5.3. Local Optical Probe 9.5.3.1. Threshold and heating distribution within near-field spot 9.6. Diode Laser Cavity Temperatures by Micro-Electroluminescence 9.6.1. Motivation 9.6.2. Experimental Details - Sample and Setup 9.6.3. Temperature Profiles along Laser Cavity 9.7. Diode Laser Facet Temperature - Two-Dimensional Mapping 9.7.1. Motivation 9.7.2. Experimental Concept 9.7.3. First Temperature Maps Ever 9.7.4. Independent Temperature Line Scans Perpendicular Active Layer 9.7.5. Temperature Modelling References Index. |
| Record Nr. | UNINA-9910806108203321 |
Epperlein Peter W
|
||
| Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Solid-State Mid-Infrared Laser Sources / / edited by Irina T. Sorokina, Konstantin L. Vodopyanov
| Solid-State Mid-Infrared Laser Sources / / edited by Irina T. Sorokina, Konstantin L. Vodopyanov |
| Edizione | [1st ed. 2003.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003 |
| Descrizione fisica | 1 online resource (XVI, 557 p.) |
| Disciplina | 621.36/61 |
| Collana | Topics in Applied Physics |
| Soggetto topico |
Lasers
Condensed matter Spectrum analysis Engineering Laser Condensed Matter Physics Spectroscopy Technology and Engineering |
| ISBN | 3-540-36491-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Mid-Infrared 2—5 ?m Heterojunction Laser Diodes -- High Performance Quantum Cascade Lasers and Their Applications -- Mid-IR Difference Frequency Generation -- Pulsed Mid-IR Optical Parametric Oscillators -- Mid-Infrared Ultrafast and Continuous- Wave Optical Parametric Oscillators -- Mid-Infrared Fiber Lasers -- Crystalline Mid-Infrared Lasers -- Crystalline and Fiber Raman Lasers -- Narrow-Linewidth Tunable Terahertz-Wave Sources Using Nonlinear Optics -- Mid-Infrared and THz Coherent Sources Using Semiconductor-Based Materials -- Mid-Infrared Laser Applications in Spectroscopy -- Mid-IR Laser Applications in Medicine. |
| Record Nr. | UNINA-9910634051703321 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Tunable external cavity diode lasers [[electronic resource] /] / Cunyun Ye
| Tunable external cavity diode lasers [[electronic resource] /] / Cunyun Ye |
| Autore | Ye Cunyun <1965-> |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2004 |
| Descrizione fisica | 1 online resource (273 p.) |
| Disciplina | 621.36/61 |
| Soggetto topico |
Semiconductor lasers
Diodes, Semiconductor |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-34771-X
9786611347710 1-61583-868-6 981-256-310-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface; Contents; Introduction; Basics of Semiconductor Diode Lasers; Tunable Monolithic Semiconductor Diode Lasers; Elements for Tunable External Cavity Diode Lasers; Systems for Tunable External Cavity Diode Lasers; Implementation of Tunable External Cavity Diode Lasers; Frequency Stabilization of Tunable External Cavity Diode Lasers; Applications of Tunable External Cavity Diode Lasers; Conclusions; Bibliography; Index |
| Record Nr. | UNINA-9910450197703321 |
Ye Cunyun <1965->
|
||
| Hackensack, N.J., : World Scientific, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||