Advanced Materials for Battery Separators
| Advanced Materials for Battery Separators |
| Autore | Thomas Sabu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (444 pages) |
| Disciplina | 621.312423 |
| Altri autori (Persone) |
RouxelDidier
KalarikkalNandakumar KottathodiBicy J MariaHanna |
| Soggetto topico |
Lithium ion batteries
Energy storage |
| ISBN |
9780128175088
0128175087 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Advanced Materials for Battery Separators -- Advanced Materials for Battery Separators -- Copyright -- Contents -- Contributors -- Preface -- 1 - Battery energy storage systems: A methodical enabler of reliable power -- 1.1 Introduction -- 1.2 Performance characteristics -- 1.2.1 Overall expenditures -- 1.2.2 Potential parameters -- 1.2.2.1 Energy capacity and power rating -- 1.2.2.2 Volumetric and gravimetric energy and power density -- 1.2.2.3 Autonomy -- 1.2.2.4 Response time -- 1.2.2.5 Operating temperature -- 1.2.2.6 Self-discharge rate -- 1.2.2.7 Round-trip efficiency -- 1.2.2.8 Depth of discharge -- 1.2.2.9 Lifetime -- 1.2.2.10 Spatial requirement -- 1.2.2.11 Recharge time -- 1.2.2.12 Memory effect -- 1.2.2.13 Recyclability -- 1.2.2.14 Scalability and transportability -- 1.2.2.15 Technical maturity -- 1.2.2.16 Environmental impact -- 1.3 Potential applications -- 1.3.1 Mobile applications -- 1.3.2 Transportation applications -- 1.3.2.1 Conventional vehicles -- 1.3.2.2 Electric vehicles -- 1.3.2.3 Fuel cell vehicles -- 1.3.2.4 Hybrid vehicles -- 1.3.3 Stationary applications -- 1.4 Battery energy storage principles -- 1.4.1 Lead-acid -- 1.4.2 Alkaline -- 1.4.3 Metal-air -- 1.4.4 Sodium beta -- 1.4.5 Lithium-ion -- 1.5 Conclusions -- References -- 2 - Separators: An essential barrier between electrodes -- 2.1 Introduction -- 2.2 General principles -- 2.2.1 Permeability -- 2.2.2 Porosity -- 2.2.3 Pore size -- 2.2.4 Tortuosity -- 2.2.5 Thickness -- 2.2.6 Chemical stability -- 2.2.7 Thermal stability -- 2.2.8 Mechanical strength -- 2.3 Separators for lead-acid batteries -- 2.3.1 Flooded automotive batteries -- 2.3.1.1 Polyethylene separators -- 2.3.1.2 Sintered PVC separators -- 2.3.1.3 Cellulosic separators -- 2.3.1.4 Glass fiber leaf separators -- 2.3.1.5 Synthetic wood pulp/glass mat separators.
2.3.2 Absorptive glass mat separators for valve-regulated lead-acid automotive batteries -- 2.3.3 Flooded industrial batteries -- 2.3.3.1 Polyethylene separators -- 2.3.3.2 Rubber separators -- 2.3.3.3 Microporous PVC separators -- 2.3.3.4 Phenol-formaldehyde-resorcinol separators -- 2.3.4 VRLA industrial batteries -- 2.3.4.1 AGM separators -- 2.3.4.2 VRLA gel batteries -- 2.4 Separators for Li-ion batteries -- 2.4.1 Microporous polymer separators -- 2.4.2 Nonwoven fabric mat separators -- 2.4.3 Inorganic composite separators -- 2.5 Separators for nickel-metal hydride and nickel-cadmium batteries -- 2.6 Primary cells -- 2.7 Conclusions -- References -- I - Separators for non-aqueous batteries -- 3 - Introduction to separators for nonaqueous batteries -- 3.1 Introduction -- 3.1.1 Classification of nonaqueous electrolyte systems -- 3.2 Nonaqueous battery systems -- 3.2.1 Lithium-ion battery -- 3.2.2 Lithium-sulfur battery -- 3.2.2.1 Separators for lithium-sulfur batteries -- 3.2.3 Lithium-air battery -- 3.2.4 Solid-state electrolytes/membranes for lithium-air batteries -- 3.2.5 Designing ion transport pathways for lithium-ion battery separators -- 3.3 Conclusion -- Acknowledgments -- References -- 4 - Separators for lithium ion batteries -- 4.1 Introduction -- 4.2 Properties and characterization methods of separators -- 4.2.1 Fundamental physical evaluation -- 4.2.1.1 Thickness -- 4.2.1.2 Morphology -- 4.2.1.3 Pore size and pore distribution -- 4.2.1.4 Porosity -- 4.2.1.5 Permeability (Gurley value) -- 4.2.1.6 Mechanical properties -- 4.2.2 Thermal stability -- 4.2.2.1 Thermal shrinkage property -- 4.2.2.2 Thermal shutdown temperature -- 4.2.2.3 Melt fracture temperature -- 4.2.2.4 Decomposition temperature -- 4.2.3 Chemical characterization -- 4.2.3.1 Chemical stability -- 4.2.3.2 Wettability with liquid electrolyte and wetting rate. 4.2.3.3 Electrolyte uptake ability -- 4.2.3.4 Molecular weight -- 4.2.3.5 Structure and composition -- 4.2.4 Electrochemical characterization -- 4.2.4.1 Electrochemical stability window -- 4.2.4.2 Lithium ionic conductivity -- 4.2.4.3 Interfacial compatibility -- 4.2.4.4 Lithium ion transference number -- 4.2.4.5 Mac-Mullin number -- 4.2.4.6 Tortuosity -- 4.3 Preparation methods of separator -- 4.3.1 Dry process -- 4.3.2 Wet process -- 4.3.3 Solution casting technique -- 4.3.4 Phase inversion method -- 4.3.5 Electrospinning method -- 4.3.6 Dip coating/coating method -- 4.3.7 Other methods -- 4.4 Composition of separator materials -- 4.4.1 Polyolefin -- 4.4.2 Fluoropolymer -- 4.4.3 Polyimide -- 4.4.4 Polyetherimide -- 4.4.5 Polyethylene terephthalate -- 4.4.6 Polyaniline -- 4.4.7 Biomass cellulose -- 4.4.8 Polysulfonamide fiber -- 4.4.9 Poly(vinyl alcohol) -- 4.4.10 Other polymers -- 4.5 Separator types -- 4.5.1 Nongelled polymer separator -- 4.5.2 Gelled polymer separator -- 4.5.2.1 Microporous pure polymer separator -- Self-supported separator -- Supported separator -- 4.5.2.2 Polymer ceramic separator -- Self-supported polymer ceramic separator -- Supported polymer ceramic separator -- 4.5.2.3 Conventional ceramic separator -- 4.6 Critical discussion -- 4.7 Conclusion and outlook -- Acknowledgments -- References -- 5 - Advanced separators for lithium-sulfur batteries -- 5.1 Introduction to lithium-sulfur batteries -- 5.2 Mechanism of charge-discharge -- 5.3 Bottlenecks of Li-S cells -- 5.3.1 Positive electrode issues -- 5.3.2 Polysulfide shuttle and self-discharge -- 5.3.3 Poor interfacial properties with lithium metal anode -- 5.4 The polysulfide shuttle phenomenon -- 5.4.1 Chemistry of shuttling and self-discharge -- 5.4.2 Development and types -- 5.4.3 Mechanism of permselectivity -- 5.4.4 A glimpse of different types of permselective separators. 5.5 Performance evaluation of separators -- 5.5.1 Basic characterization -- 5.5.1.1 Electrolyte uptake and porosity -- 5.5.1.2 Shrinkage test -- 5.5.2 Evaluation of permselectivity -- 5.5.2.1 Visual crossover and zeta potential analysis -- 5.5.2.2 Postcycling analysis -- 5.5.3 Electrochemical impedance spectroscopy -- 5.5.4 Quantitative measurement of shuttle current -- 5.6 Future outlook -- 5.7 Conclusions -- References -- 6 - Lithium ion conducting membranes for lithium-air batteries -- 6.1 Introduction -- 6.2 Nonaqueous lithium-air battery -- 6.3 Aqueous lithium-air battery -- 6.4 Solid-state lithium-air batteries -- 6.5 Summary -- References -- 7 - Designing of ion transport pathways in separator for lithium-ion batteries -- 7.1 Introduction -- 7.2 Experimental and theoretical methods -- 7.2.1 Experimental method -- 7.2.2 Theoretical derivations of inherent dynamic values of ions -- 7.3 Evaluation of polyethylene separator membranes -- 7.3.1 Peak assignment for the species in separator membrane -- 7.3.2 Comparison of fundamental dynamic values of free electrolyte solutions -- 7.3.3 Comparison of dynamic values of solutions in PE separators -- 7.4 Evaluation of polypropylene separator membranes -- 7.4.1 Comparison of dynamic values of solution in PP separators -- 7.4.2 Effect of pathway tortuosity on dynamic values -- 7.5 Evaluation of specific restricted diffusion -- 7.6 Summary -- References -- II - Separators for aqueous batteries -- 8 - Introduction to separators for aqueous batteries -- 8.1 Introduction -- 8.2 Alkaline zinc manganese dioxide (Zn||MnO2) batteries -- 8.2.1 Separators for Zn||MnO2 batteries -- 8.3 Redox flow batteries -- 8.4 Conclusion -- Acknowledgments -- References -- 9 - Alkaline zinc-MnO2 battery separators -- 9.1 Introduction -- 9.1.1 Alkaline Zn/MnO2 battery -- 9.1.2 Electrode reactions -- 9.2 Separator properties. 9.2.1 Ionic transport through the separators -- 9.2.2 Blocking of zincate crossover -- 9.2.3 Improvement of OH− exchange -- 9.2.4 Dendrites prevention and resistance to perforation -- 9.3 Nonwoven separators -- 9.4 Gel polymer electrolytes as separators for alkaline batteries -- 9.4.1 Properties of gel polymer electrolytes -- 9.4.2 PVA and its derivatives -- 9.4.2.1 Cross-linking methods -- 9.4.3 PAA and its derivatives -- 9.4.4 PAM and its derivatives -- 9.4.5 PEO and its derivatives -- 9.4.6 Copolymerized GPEs -- 9.4.7 Biobased GPEs -- 9.4.7.1 Cellulose and its derivatives -- 9.4.7.2 Gelatin-based GPEs -- 9.4.7.3 Chitosan-based GPEs -- 9.5 Summary and perspectives -- References -- 10 - Redox flow batteries -- 10.1 Need for energy storage -- 10.2 Redox flow batteries overview -- 10.2.1 Advantages -- 10.2.2 Disadvantages -- 10.2.3 Operating principle of a redox flow battery -- 10.2.4 Present RFB technologies -- 10.2.4.1 Aqueous redox flow battery -- 10.2.4.2 Nonaqueous redox flow batteries -- 10.2.4.3 Membrane for redox flow batteries -- Membranes for aqueous-type RFBs -- Membranes for nonaqueous type RFBs -- 10.3 Future perspectives -- References -- III - Theoretical predictions and future challenges -- 11 - Theoretical simulations of lithium ion micro- and macrobatteries -- 11.1 Introduction -- 11.2 Theoretical models for lithium ion batteries -- 11.2.1 Computer simulations applied to lithium ion batteries -- 11.3 Lithium ion micro- and macrobatteries -- 11.3.1 Theoretical simulations of lithium ion micro- and macrobatteries -- 11.3.2 Experimental results on lithium ion microbatteries -- 11.4 Conclusions -- Nomenclature section -- flink1 -- flink2 -- flink3 -- Acknowledgments -- References -- 12 - New opportunities and challenges of battery separators -- 12.1 Introduction -- 12.2 Polymer-based separator for lithium ion batteries. 12.2.1 Thermal stability. |
| Record Nr. | UNINA-9911045228303321 |
Thomas Sabu
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries / / by Eric McCalla
| Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries / / by Eric McCalla |
| Autore | McCalla Eric |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (174 p.) |
| Disciplina | 621.312423 |
| Collana | Springer Theses, Recognizing Outstanding Ph.D. Research |
| Soggetto topico |
Cheminformatics
Energy storage Electrochemistry Materials science Computer Applications in Chemistry Energy Storage Characterization and Evaluation of Materials |
| ISBN | 3-319-05849-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Experimental and Theoretical Considerations -- Optimization of the Synthesis of Combinatorial Samples -- Combinatorial Studies in the Li-Co-Mn-O System -- Combinatorial Studies of the Spinel and Rocksalt Regions in the Li-Mn-Ni-O System -- Combinatorial Studies of Compositions Containing Layered Phases in the Li-Mn-Ni-O System -- Investigations of Bulk Li-Mn-Ni-O Samples to Confirm the Combinatorial Studies -- Layered Materials with Metal Site Vacancies -- Materials Near the Layered Boundary -- Conclusions and Future Works. |
| Record Nr. | UNINA-9910298659103321 |
McCalla Eric
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Exploitation of redox mediators for high-energy-density and high-efficiency lithium-oxygen batteries / / Youngmin Ko
| Exploitation of redox mediators for high-energy-density and high-efficiency lithium-oxygen batteries / / Youngmin Ko |
| Autore | Ko Youngmin |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XX, 68 p. 61 illus., 54 illus. in color.) |
| Disciplina | 621.312423 |
| Collana | Springer Theses, Recognizing Outstanding Ph.D. Research |
| Soggetto topico |
Lithium cells - Design and construction
Oxidation-reduction reaction |
| ISBN | 981-16-2532-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Exploring a Novel Redox Mediator Inspired By Biological System -- Investigation on the Kinetic Property of Redox -- Addressing Shuttle Phenomena: Anchored Redox Mediator for Sustainable Redox Mediation -- Conclusion. |
| Record Nr. | UNINA-9910484445303321 |
Ko Youngmin
|
||
| Gateway East, Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar
| High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar |
| Pubbl/distr/stampa | Weimheim, : Wiley-VCH, 2010 |
| Descrizione fisica | 1 online resource (283 p.) |
| Disciplina | 621.312423 |
| Altri autori (Persone) |
AifantisKaterina E
HackneyStephen A KumarR. Vasant |
| Soggetto topico | Lithium cells |
| ISBN |
3-527-63001-5
1-282-68631-3 9786612686313 3-527-63002-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
High Energy Density Lithium Batteries; Contents; Preface; List of Contributors; 1: Introduction to Electrochemical Cells; 1.1 What are Batteries?; 1.2 Quantities Characterizing Batteries; 1.2.1 Voltage; 1.2.2 Electrode Kinetics (Polarization and Cell Impedance); 1.2.2.1 Electrical Double Layer; 1.2.2.2 Rate of Reaction; 1.2.2.3 Electrodes Away from Equilibrium; 1.2.2.4 The Tafel Equation; 1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode; 1.2.2.6 Other Limiting Factors; 1.2.2.7 Tafel Curves for a Battery; 1.2.3 Capacity; 1.2.4 Shelf-Life; 1.2.5 Discharge Curve/Cycle Life
1.2.6 Energy Density1.2.7 Specific Energy Density; 1.2.8 Power Density; 1.2.9 Service Life/Temperature Dependence; 1.3 Primary and Secondary Batteries; 1.4 Battery Market; 1.5 Recycling and Safety Issues; References; 2: Primary Batteries; 2.1 Introduction; 2.2 The Early Batteries; 2.3 The Zinc/Carbon Cell; 2.3.1 The Leclanché Cell; 2.3.2 The Gassner Cell; 2.3.3 Current Zinc/Carbon Cell; 2.3.3.1 Electrochemical Reactions; 2.3.3.2 Components; 2.3.4 Disadvantages; 2.4 Alkaline Batteries; 2.4.1 Electrochemical Reactions; 2.4.2 Components; 2.4.3 Disadvantages; 2.5 Button Batteries 2.5.1 Mercury Oxide Battery2.5.2 Zn/Ag2O Battery; 2.5.3 Metal-Air Batteries; 2.5.3.1 Zn/Air Battery; 2.5.3.2 Aluminum/Air Batteries; 2.6 Li Primary Batteries; 2.6.1 Lithium/Thionyl Chloride Batteries; 2.6.2 Lithium/Sulfur Dioxide Cells; 2.7 Oxyride Batteries; 2.8 Damage in Primary Batteries; 2.9 Conclusions; References; 3: A Review of Materials and Chemistry for Secondary Batteries; 3.1 The Lead-Acid Battery; 3.1.1 Electrochemical Reactions; 3.1.2 Components; 3.1.3 New Components; 3.2 The Nickel-Cadmium Battery; 3.2.1 Electrochemical Reactions; 3.3 Nickel-Metal Hydride (Ni-MH) Batteries 3.4 Secondary Alkaline Batteries3.4.1 Components; 3.5 Secondary Lithium Batteries; 3.5.1 Lithium-Ion Batteries; 3.5.2 Li-Polymer Batteries; 3.5.3 Evaluation of Li Battery Materials and Chemistry; 3.6 Lithium-Sulfur Batteries; 3.7 Conclusions; References; 4: Current and Potential Applications of Secondary Li Batteries; 4.1 Portable Electronic Devices; 4.2 Hybrid and Electric Vehicles; 4.3 Medical Applications; 4.3.1 Heart Pacemakers; 4.3.2 Neurological Pacemakers; 4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology; 4.4.1 Parallel Connection; 4.4.2 Series Connections 4.4.3 Limitations and Safety IssuesReferences; 5: Li-Ion Cathodes: Materials Engineering Through Chemistry; 5.1 Energy Density and Thermodynamics; 5.2 Materials Chemistry and Engineering of Voltage Plateau; 5.3 Multitransition Metal Oxide Engineering for Capacity and Stability; 5.4 Conclusion; References; 6: Next-Generation Anodes for Secondary Li-Ion Batteries; 6.1 Introduction; 6.2 Chemical Attack by the Electrolyte; 6.3 Mechanical Instabilities during Electrochemical Cycling; 6.4 Nanostructured Anodes; 6.5 Thin Film Anodes; 6.5.1 Sn-Based Thin Film Anodes; 6.5.2 Si-Based Thin Film Anodes 6.6 Nanofiber/Nanotube/Nanowire Anodes |
| Record Nr. | UNINA-9910140556603321 |
| Weimheim, : Wiley-VCH, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar
| High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar |
| Pubbl/distr/stampa | Weimheim, : Wiley-VCH, 2010 |
| Descrizione fisica | 1 online resource (283 p.) |
| Disciplina | 621.312423 |
| Altri autori (Persone) |
AifantisKaterina E
HackneyStephen Andrew KumarR. Vasant |
| Soggetto topico | Lithium cells |
| ISBN |
3-527-63001-5
1-282-68631-3 9786612686313 3-527-63002-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
High Energy Density Lithium Batteries; Contents; Preface; List of Contributors; 1: Introduction to Electrochemical Cells; 1.1 What are Batteries?; 1.2 Quantities Characterizing Batteries; 1.2.1 Voltage; 1.2.2 Electrode Kinetics (Polarization and Cell Impedance); 1.2.2.1 Electrical Double Layer; 1.2.2.2 Rate of Reaction; 1.2.2.3 Electrodes Away from Equilibrium; 1.2.2.4 The Tafel Equation; 1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode; 1.2.2.6 Other Limiting Factors; 1.2.2.7 Tafel Curves for a Battery; 1.2.3 Capacity; 1.2.4 Shelf-Life; 1.2.5 Discharge Curve/Cycle Life
1.2.6 Energy Density1.2.7 Specific Energy Density; 1.2.8 Power Density; 1.2.9 Service Life/Temperature Dependence; 1.3 Primary and Secondary Batteries; 1.4 Battery Market; 1.5 Recycling and Safety Issues; References; 2: Primary Batteries; 2.1 Introduction; 2.2 The Early Batteries; 2.3 The Zinc/Carbon Cell; 2.3.1 The Leclanché Cell; 2.3.2 The Gassner Cell; 2.3.3 Current Zinc/Carbon Cell; 2.3.3.1 Electrochemical Reactions; 2.3.3.2 Components; 2.3.4 Disadvantages; 2.4 Alkaline Batteries; 2.4.1 Electrochemical Reactions; 2.4.2 Components; 2.4.3 Disadvantages; 2.5 Button Batteries 2.5.1 Mercury Oxide Battery2.5.2 Zn/Ag2O Battery; 2.5.3 Metal-Air Batteries; 2.5.3.1 Zn/Air Battery; 2.5.3.2 Aluminum/Air Batteries; 2.6 Li Primary Batteries; 2.6.1 Lithium/Thionyl Chloride Batteries; 2.6.2 Lithium/Sulfur Dioxide Cells; 2.7 Oxyride Batteries; 2.8 Damage in Primary Batteries; 2.9 Conclusions; References; 3: A Review of Materials and Chemistry for Secondary Batteries; 3.1 The Lead-Acid Battery; 3.1.1 Electrochemical Reactions; 3.1.2 Components; 3.1.3 New Components; 3.2 The Nickel-Cadmium Battery; 3.2.1 Electrochemical Reactions; 3.3 Nickel-Metal Hydride (Ni-MH) Batteries 3.4 Secondary Alkaline Batteries3.4.1 Components; 3.5 Secondary Lithium Batteries; 3.5.1 Lithium-Ion Batteries; 3.5.2 Li-Polymer Batteries; 3.5.3 Evaluation of Li Battery Materials and Chemistry; 3.6 Lithium-Sulfur Batteries; 3.7 Conclusions; References; 4: Current and Potential Applications of Secondary Li Batteries; 4.1 Portable Electronic Devices; 4.2 Hybrid and Electric Vehicles; 4.3 Medical Applications; 4.3.1 Heart Pacemakers; 4.3.2 Neurological Pacemakers; 4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology; 4.4.1 Parallel Connection; 4.4.2 Series Connections 4.4.3 Limitations and Safety IssuesReferences; 5: Li-Ion Cathodes: Materials Engineering Through Chemistry; 5.1 Energy Density and Thermodynamics; 5.2 Materials Chemistry and Engineering of Voltage Plateau; 5.3 Multitransition Metal Oxide Engineering for Capacity and Stability; 5.4 Conclusion; References; 6: Next-Generation Anodes for Secondary Li-Ion Batteries; 6.1 Introduction; 6.2 Chemical Attack by the Electrolyte; 6.3 Mechanical Instabilities during Electrochemical Cycling; 6.4 Nanostructured Anodes; 6.5 Thin Film Anodes; 6.5.1 Sn-Based Thin Film Anodes; 6.5.2 Si-Based Thin Film Anodes 6.6 Nanofiber/Nanotube/Nanowire Anodes |
| Record Nr. | UNINA-9910830612003321 |
| Weimheim, : Wiley-VCH, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
High energy density lithium batteries : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar
| High energy density lithium batteries : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar |
| Pubbl/distr/stampa | Weimheim, : Wiley-VCH, 2010 |
| Descrizione fisica | 1 online resource (283 p.) |
| Disciplina | 621.312423 |
| Altri autori (Persone) |
AifantisKaterina E
HackneyStephen A KumarR. Vasant |
| Soggetto topico | Lithium cells |
| ISBN |
9786612686313
9783527630011 3527630015 9781282686311 1282686313 9783527630028 3527630023 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
High Energy Density Lithium Batteries; Contents; Preface; List of Contributors; 1: Introduction to Electrochemical Cells; 1.1 What are Batteries?; 1.2 Quantities Characterizing Batteries; 1.2.1 Voltage; 1.2.2 Electrode Kinetics (Polarization and Cell Impedance); 1.2.2.1 Electrical Double Layer; 1.2.2.2 Rate of Reaction; 1.2.2.3 Electrodes Away from Equilibrium; 1.2.2.4 The Tafel Equation; 1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode; 1.2.2.6 Other Limiting Factors; 1.2.2.7 Tafel Curves for a Battery; 1.2.3 Capacity; 1.2.4 Shelf-Life; 1.2.5 Discharge Curve/Cycle Life
1.2.6 Energy Density1.2.7 Specific Energy Density; 1.2.8 Power Density; 1.2.9 Service Life/Temperature Dependence; 1.3 Primary and Secondary Batteries; 1.4 Battery Market; 1.5 Recycling and Safety Issues; References; 2: Primary Batteries; 2.1 Introduction; 2.2 The Early Batteries; 2.3 The Zinc/Carbon Cell; 2.3.1 The Leclanché Cell; 2.3.2 The Gassner Cell; 2.3.3 Current Zinc/Carbon Cell; 2.3.3.1 Electrochemical Reactions; 2.3.3.2 Components; 2.3.4 Disadvantages; 2.4 Alkaline Batteries; 2.4.1 Electrochemical Reactions; 2.4.2 Components; 2.4.3 Disadvantages; 2.5 Button Batteries 2.5.1 Mercury Oxide Battery2.5.2 Zn/Ag2O Battery; 2.5.3 Metal-Air Batteries; 2.5.3.1 Zn/Air Battery; 2.5.3.2 Aluminum/Air Batteries; 2.6 Li Primary Batteries; 2.6.1 Lithium/Thionyl Chloride Batteries; 2.6.2 Lithium/Sulfur Dioxide Cells; 2.7 Oxyride Batteries; 2.8 Damage in Primary Batteries; 2.9 Conclusions; References; 3: A Review of Materials and Chemistry for Secondary Batteries; 3.1 The Lead-Acid Battery; 3.1.1 Electrochemical Reactions; 3.1.2 Components; 3.1.3 New Components; 3.2 The Nickel-Cadmium Battery; 3.2.1 Electrochemical Reactions; 3.3 Nickel-Metal Hydride (Ni-MH) Batteries 3.4 Secondary Alkaline Batteries3.4.1 Components; 3.5 Secondary Lithium Batteries; 3.5.1 Lithium-Ion Batteries; 3.5.2 Li-Polymer Batteries; 3.5.3 Evaluation of Li Battery Materials and Chemistry; 3.6 Lithium-Sulfur Batteries; 3.7 Conclusions; References; 4: Current and Potential Applications of Secondary Li Batteries; 4.1 Portable Electronic Devices; 4.2 Hybrid and Electric Vehicles; 4.3 Medical Applications; 4.3.1 Heart Pacemakers; 4.3.2 Neurological Pacemakers; 4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology; 4.4.1 Parallel Connection; 4.4.2 Series Connections 4.4.3 Limitations and Safety IssuesReferences; 5: Li-Ion Cathodes: Materials Engineering Through Chemistry; 5.1 Energy Density and Thermodynamics; 5.2 Materials Chemistry and Engineering of Voltage Plateau; 5.3 Multitransition Metal Oxide Engineering for Capacity and Stability; 5.4 Conclusion; References; 6: Next-Generation Anodes for Secondary Li-Ion Batteries; 6.1 Introduction; 6.2 Chemical Attack by the Electrolyte; 6.3 Mechanical Instabilities during Electrochemical Cycling; 6.4 Nanostructured Anodes; 6.5 Thin Film Anodes; 6.5.1 Sn-Based Thin Film Anodes; 6.5.2 Si-Based Thin Film Anodes 6.6 Nanofiber/Nanotube/Nanowire Anodes |
| Record Nr. | UNINA-9911020048903321 |
| Weimheim, : Wiley-VCH, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu
| Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu |
| Autore | Han Shumin |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
| Descrizione fisica | 1 online resource (244 pages) : illustrations |
| Disciplina | 621.312423 |
| Soggetto topico |
Nickel-hydrogen batteries
Nickel-metal hydride batteries |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-11-049838-3
3-11-050148-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1 Introduction -- 2 Preparation, Electrochemical Properties and Gaseous Hydrogen Storage Characteristics of the Single-Phase Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 3 Effect of Multiphase Structures on Electrochemical Properties of the Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 4 Effect of Element Composition on Microstructure and Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 5 Effect of Surface Treatment on Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 6 Outlook and Challenges of RE-Mg-Ni-Based Alloys as Negative Electrode Materials for Ni/MH Batteries -- Index |
| Record Nr. | UNINA-9910467329503321 |
Han Shumin
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu
| Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu |
| Autore | Han Shumin |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
| Descrizione fisica | 1 online resource (244 pages) : illustrations |
| Disciplina | 621.312423 |
| Soggetto topico |
Nickel-hydrogen batteries
Nickel-metal hydride batteries |
| Soggetto non controllato |
Alloy
Battery Energy Storage Hydrogen Storage Hydrogen |
| ISBN |
3-11-049838-3
3-11-050148-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1 Introduction -- 2 Preparation, Electrochemical Properties and Gaseous Hydrogen Storage Characteristics of the Single-Phase Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 3 Effect of Multiphase Structures on Electrochemical Properties of the Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 4 Effect of Element Composition on Microstructure and Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 5 Effect of Surface Treatment on Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 6 Outlook and Challenges of RE-Mg-Ni-Based Alloys as Negative Electrode Materials for Ni/MH Batteries -- Index |
| Record Nr. | UNINA-9910796505803321 |
Han Shumin
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu
| Hydrogen storage alloys : with RE-Mg-Ni based negative electrodes / / Shumin Han, Yuan Li, Baozhong Liu |
| Autore | Han Shumin |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
| Descrizione fisica | 1 online resource (244 pages) : illustrations |
| Disciplina | 621.312423 |
| Soggetto topico |
Nickel-hydrogen batteries
Nickel-metal hydride batteries |
| Soggetto non controllato |
Alloy
Battery Energy Storage Hydrogen Storage Hydrogen |
| ISBN |
3-11-049838-3
3-11-050148-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1 Introduction -- 2 Preparation, Electrochemical Properties and Gaseous Hydrogen Storage Characteristics of the Single-Phase Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 3 Effect of Multiphase Structures on Electrochemical Properties of the Superlattice RE-Mg-Ni-Based Hydrogen Storage Alloys -- 4 Effect of Element Composition on Microstructure and Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 5 Effect of Surface Treatment on Electrochemical Characteristics of RE-Mg-Ni-Based Hydrogen Storage Alloys -- 6 Outlook and Challenges of RE-Mg-Ni-Based Alloys as Negative Electrode Materials for Ni/MH Batteries -- Index |
| Record Nr. | UNINA-9910806277503321 |
Han Shumin
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to thermal cloaking : theory and analysis in conduction and convection / / Woon-Shing Yeung and Ruey-Jen Yang
| Introduction to thermal cloaking : theory and analysis in conduction and convection / / Woon-Shing Yeung and Ruey-Jen Yang |
| Autore | Yeung Woon-Shing |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (264 pages) |
| Disciplina | 621.312423 |
| Soggetto topico |
Thermal barrier coatings
Heat - Transmission |
| ISBN |
981-16-7549-X
981-16-7550-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface I -- Preface II -- Acknowledgements -- Contents -- About the Authors -- 1 Introduction -- 1.1 What Is a Thermal Cloak? -- 1.2 Historical Perspective: General Cloaking -- 1.3 Historical Perspective: Thermal Cloaking -- 1.4 Book Organization -- References -- 2 Review of Curvilinear Coordinates -- 2.1 Introduction -- 2.2 Scale Factors -- 2.3 Relationships of Unit Base Vectors -- 2.4 Relationship to Jacobian -- 2.5 Gradient and Divergence in Curvilinear Coordinates -- 2.6 Summary -- Reference -- 3 Review of Heat Conduction -- 3.1 Introduction -- 3.2 Matrix Representation of Heat Conduction Equation -- 3.3 Heat Conduction in Anisotropic Media -- 3.4 Summary -- References -- 4 Transformation Theory for Conduction Thermal Cloaking -- 4.1 Introduction -- 4.2 Fundamental Theory -- 4.2.1 Homogenization of Metamaterials -- 4.2.2 Arbitrary Two-Dimensional Shape -- 4.3 Numerical and Experimental Verification -- 4.4 Temperature Distribution Within Cloak -- 4.4.1 Arbitrary Shape -- 4.4.2 Nonlinear Background Temperature Distribution -- 4.5 Summary -- References -- 5 Bilayer Theory for Conduction Thermal Cloaking -- 5.1 Introduction -- 5.2 Basic Bilayer Theory -- 5.3 Does a 1D Bilayer Thermal Cloak Exist? -- 5.4 General Remarks on Bilayer Thermal Cloak -- 5.5 Temperature Distribution in a Circular Bilayer Cloak -- 5.6 Elliptical Bilayer -- 5.7 Trilayer Thermal Cloak -- 5.7.1 Trilayer Theory -- 5.7.2 Temperature Distribution in a Trilayer Cloak -- 5.7.3 Spherical Trilayer -- 5.8 Effect of Thermal Contact Resistance -- 5.9 Nonlinear Background Temperature Distribution -- 5.9.1 Examples of Specific Background Temperature Distributions -- 5.9.2 Inner Layer Temperature Distribution -- 5.9.3 Section Summary -- 5.10 Summary -- References -- 6 General Consideration of Bilayer Thermal Cloaks -- 6.1 Introduction -- 6.2 Cloaked Sensor.
6.2.1 Circular Cloaked Sensor -- 6.2.2 Elliptical Cloaked Sensor -- 6.3 Bilayer with Conducting Inner Layer -- 6.3.1 General Circular Bilayer -- 6.3.2 General Elliptical Bilayer -- 6.4 Application to Bilayer Cloak Design -- 6.5 Bilayer Versus Metamaterials -- 6.6 Inverse Problem: Bilayer Cloak of Arbitrary Shape -- 6.6.1 Uniqueness and Existence of Solution for the Inverse Formulation -- 6.7 Summary -- References -- 7 Transformation Theory for Convection Thermal Cloaking -- 7.1 Introduction -- 7.2 Flow in Porous Media -- 7.2.1 Anisotropic Porous Media -- 7.2.2 Section Summary -- 7.3 Transformation Theory -- 7.3.1 Hydrodynamic Cloak -- 7.3.2 Convection Cloak -- 7.3.3 Analytical Results for the Convection Cloak -- 7.4 Summary -- References -- 8 Bilayer Theory for Convection Thermal Cloaking -- 8.1 Introduction -- 8.2 Theory -- 8.3 Two-Dimensional Systems: Planar Cloaks -- 8.3.1 Flow in x Direction -- 8.3.2 Flow in y Direction -- 8.4 Three-Dimensional Systems: Spherical Cloaks -- 8.5 Analytical Results -- 8.5.1 Analytical Results for Spherical Cloaks -- 8.6 Numerical Simulation -- 8.6.1 Simulation Results for Spherical Cloaks -- 8.7 Summary -- References -- 9 Transient Thermal Cloaking -- 9.1 Introduction -- 9.2 Transient Transformation Theory for Conduction -- 9.2.1 Initial Temperature Distribution in Cloak -- 9.2.2 Analytical Example -- 9.2.3 Practical Example -- 9.2.4 Realization of Transient Thermal Cloaks -- 9.3 Transient Behavior of Bilayer Thermal Cloaks for Conduction -- 9.3.1 Simulation and Experimental Studies of Transient Bilayer Cloaks -- 9.3.2 Effect of Volumetric Heat Capacity -- 9.4 Transient Transformation Theory for Convection Cloaks -- 9.5 Transient Bilayer Theory for Convection Cloaks -- 9.6 Summary -- References -- 10 Numerical Simulations and Experiments -- 10.1 Introduction -- 10.2 Numerical Simulations. 10.2.1 Numerical Procedures -- 10.2.2 Overview of COMSOL -- 10.2.3 Examples: Application of COMSOL -- 10.3 Experimental Study -- 10.3.1 Common Apparatus in Thermal Cloaking Experiments -- 10.3.2 Example: Experimental Investigation of a Quadrilateral Bi-Material Thermal Cloak -- 10.4 Summary -- References -- 11 Potential Engineering Applications and Future Prospects -- 11.1 Introductory Remarks -- 11.2 Potential Applications -- 11.3 Thermal Metamaterials Research -- 11.3.1 Metamaterials for Multi-field Applications -- 11.4 Concluding Remarks: Future Prospects and Outlook -- References -- Appendix A Derivation of Principal Conductivities in Spherical Coordinates -- Appendix B Derivation of Principal Conductivities in Polar Coordinates -- Appendix C Direct Solution Path to Eq. 4.4.9摥映數爠eflinklinearTcloak4.4.94 -- Appendix D Step-by-Step COMSOL Execution for Example 3 -- References. |
| Record Nr. | UNINA-9910743390203321 |
Yeung Woon-Shing
|
||
| Gateway East, Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||